Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b4751a34
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b4751a34
编写于
10月 18, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix illegal instruction of rnn2
上级
36588b33
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
125 addition
and
79 deletion
+125
-79
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+3
-9
paddle/fluid/operators/math/jit_kernel_lstm.cc
paddle/fluid/operators/math/jit_kernel_lstm.cc
+122
-70
未找到文件。
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
b4751a34
...
...
@@ -27,13 +27,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
math
{
#ifdef __AVX__
namespace
detail
{
__m256
Exp
(
__m256
a
);
}
// namespace detail
#endif
namespace
jitkernel
{
namespace
jit
=
platform
::
jit
;
...
...
@@ -205,7 +198,7 @@ __m256 ExpAVX(__m256 x) {
#ifdef __AVX2__
__m256
ExpAVX2
(
__m256
x
)
{
__m256
tmp
=
_mm256_setzero_ps
(),
fx
;
__m256
one
=
*
reinterpret_cast
<
const
__m256
*>
_ps256_one
;
__m256
one
=
*
reinterpret_cast
<
const
__m256
*>
(
_ps256_one
)
;
__m256i
imm0
;
x
=
_mm256_min_ps
(
x
,
*
reinterpret_cast
<
const
__m256
*>
(
_ps256_exp_hi
));
...
...
@@ -335,7 +328,8 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
template <> \
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \
/*use static const??*/
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
/* TODO(TJ): try to use static const*/
\
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max, expisa); \
...
...
paddle/fluid/operators/math/jit_kernel_lstm.cc
浏览文件 @
b4751a34
...
...
@@ -25,13 +25,18 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
math
{
#ifdef __AVX__
namespace
jitkernel
{
namespace
detail
{
__m256
Exp
(
__m256
a
);
}
// namespace detail
#ifdef __AVX__
__m256
ExpAVX
(
__m256
x
);
#endif
namespace
jitkernel
{
#ifdef __AVX2__
__m256
ExpAVX2
(
__m256
x
);
#endif
}
// namespace detail
namespace
jit
=
platform
::
jit
;
#ifdef __AVX__
...
...
@@ -43,43 +48,72 @@ class AVXAct {
virtual
__m256
Compute
(
__m256
x
)
const
=
0
;
};
template
<
act_type
type
>
template
<
act_type
type
,
jit
::
cpu_isa_t
isa
>
class
AVXActImpl
:
public
AVXAct
{
public:
__m256
Compute
(
__m256
x
)
const
override
{
PADDLE_THROW
(
"Unkown type!"
);
}
};
template
<
>
__m256
AVXActImpl
<
kSigmoid
>::
Compute
(
__m256
x
)
const
{
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
x
=
_mm256_max_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MIN
));
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MAX
));
x
=
_mm256_sub_ps
(
_mm256_set1_ps
(
0.0
f
),
x
);
x
=
detail
::
Exp
(
x
);
x
=
_mm256_add_ps
(
ones
,
x
);
return
_mm256_div_ps
(
ones
,
x
);
}
#define AVX_SIGMOID(isa, expisa) \
template <> \
__m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
return _mm256_div_ps(ones, x); \
}
template
<
>
__m256
AVXActImpl
<
kTanh
>::
Compute
(
__m256
x
)
const
{
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
x
=
_mm256_mul_ps
(
_mm256_set1_ps
(
-
2.0
f
),
x
);
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
EXP_MAX_INPUT
));
x
=
detail
::
Exp
(
x
);
x
=
_mm256_add_ps
(
ones
,
x
);
x
=
_mm256_div_ps
(
_mm256_set1_ps
(
2.0
f
),
x
);
return
_mm256_sub_ps
(
x
,
ones
);
}
#define AVX_TANH(isa, expisa) \
template <> \
__m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); \
x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); \
return _mm256_sub_ps(x, ones); \
}
template
<
>
__m256
AVXActImpl
<
kRelu
>::
Compute
(
__m256
x
)
const
{
return
_mm256_max_ps
(
x
,
_mm256_setzero_ps
());
}
#define AVX_RELU(isa) \
template <> \
__m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
return _mm256_max_ps(x, _mm256_setzero_ps()); \
}
#define AVX_IDENTITY(isa) \
template <> \
__m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
return x; \
}
#define FOR_EACH_AVX_ISA(macro_) \
macro_(jit::avx); \
macro_(jit::avx2); \
macro_(jit::avx512f)
FOR_EACH_AVX_ISA
(
AVX_RELU
);
FOR_EACH_AVX_ISA
(
AVX_IDENTITY
);
AVX_SIGMOID
(
jit
::
avx
,
detail
::
ExpAVX
);
AVX_TANH
(
jit
::
avx
,
detail
::
ExpAVX
);
#ifdef __AVX2__
AVX_SIGMOID
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_SIGMOID
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
#endif
#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
template
<
>
__m256
AVXActImpl
<
kIdentity
>::
Compute
(
__m256
x
)
const
{
return
x
;
}
#endif
template
<
typename
T
>
...
...
@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> {
act_cell_d_
=
GetActKernel
<
T
>
(
act_cell
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
vadd_d_
=
KernelPool
::
Instance
().
template
Get
<
VAddKernel
<
T
>
>
(
d
);
#ifdef __AVX__
auto
GetAVXAct
=
[
&
](
const
std
::
string
&
type
)
->
std
::
unique_ptr
<
AVXAct
>
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
};
avx_act_gate_
=
GetAVXAct
(
act_gate
);
avx_act_cand_
=
GetAVXAct
(
act_cand
);
avx_act_cell_
=
GetAVXAct
(
act_cell
);
#endif
}
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
,
...
...
@@ -176,6 +193,27 @@ class LSTMKernelImpl : public LSTMKernel<T> {
};
#define INTRI8_FLOAT(isa) \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
if (type == "sigmoid") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
} else if (type == "relu") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
} else if (type == "tanh") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
} else if (type == "identity" || type == "") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
} \
PADDLE_THROW("Not support type: %s", type); \
}; \
avx_act_gate_ = GetAVXAct(act_gate); \
avx_act_cand_ = GetAVXAct(act_cand); \
avx_act_cell_ = GetAVXAct(act_cell); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
float* gates, const float* ct_1, float* ct, float* ht, \
...
...
@@ -195,6 +233,20 @@ class LSTMKernelImpl : public LSTMKernel<T> {
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
// TODO(TJ): optimize keq16
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录