提交 b3f9e5e0 编写于 作者: W weixing02

make test_hsigmoid_op.py right

上级 3e46ec41
......@@ -14,8 +14,8 @@
import unittest
import numpy as np
from op_test import OpTest
import math
from op_test import OpTest
def find_latest_set(num):
......@@ -37,40 +37,36 @@ class CodeTable(object):
def hsigmoid(x, w, ids, bias, num_classes):
# code length =
# initialize pre out with dims={batch_size, code_length}
global pre_output
batch_size = x.shape[0]
code_length = find_latest_set(num_classes - 1)
code_table = [0 for _ in range(code_length)]
pre_output = np.zeros((batch_size, code_length))
pre_sum = np.zeros((batch_size, 1))
out = np.zeros((batch_size, 1)).astype("float32")
# pre_out += code(bias)
for i in xrange(batch_size):
for i in range(batch_size):
code_table = CodeTable(num_classes, ids[i])
length = code_table.get_length()
for j in xrange(length):
for j in range(length):
idx = code_table.cal_index(j)
pre_output[i][j] += bias[0][idx]
# pre_out += code(w) * x
for i in xrange(batch_size):
for j in xrange(batch_size):
for j in range(batch_size):
code_table = CodeTable(num_classes, ids[j])
length = code_table.get_length()
for k in xrange(length):
for k in range(length):
idx = code_table.cal_index(k)
sum = 0.0
for l in xrange(x.shape[1]):
sum += w[i][idx][l] * x[j][l]
for l in range(x.shape[1]):
sum += w[idx][l] * x[j][l]
pre_output[j][k] += sum
# clip[-40.0, 40.0]
np.clip(pre_output, -40.0, 40.0)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for i in xrange(batch_size):
for i in range(batch_size):
code_table = CodeTable(num_classes, ids[i])
length = code_table.get_length()
sum = 0.0
for j in xrange(length):
for j in range(length):
if code_table.cal_bit(j):
sum += pre_output[i][j]
out[i] = -1.0 * sum
......@@ -85,24 +81,23 @@ def hsigmoid(x, w, ids, bias, num_classes):
class TestHSigmoidOp(OpTest):
def setUp(self):
self.op_type = "hierarchical_sigmoid"
num_classes = 6
embded_size = 10
batch_size = 5
num_classes = 4
embded_size = 1
batch_size = 1
x = np.random.random((batch_size, embded_size)).astype("float32")
w = np.random.random(
(batch_size, num_classes - 1, embded_size)).astype("float32")
w = np.random.random((num_classes - 1, embded_size)).astype("float32")
ids = np.random.randint(0, num_classes, batch_size)
bias = np.random.random((1, num_classes - 1)).astype("float32")
self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias}
self.attrs = {'num_classes': num_classes}
self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias}
out = hsigmoid(x, w, ids, bias, num_classes)
self.outputs = {'Out': out}
self.outputs = {'PreOut': pre_output, 'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'W', 'Bias'], 'Out', no_grad_set=set('Ids'))
self.check_grad(['Bias', 'X', 'W'], 'Out', no_grad_set=set('Ids'))
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册