Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b294f054
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b294f054
编写于
9月 15, 2022
作者:
W
wanghuancoder
提交者:
GitHub
9月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] saved_tensors_hooks (#45763)
* saved_tensors_hooks
上级
0c40d889
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
649 addition
and
9 deletion
+649
-9
paddle/fluid/eager/CMakeLists.txt
paddle/fluid/eager/CMakeLists.txt
+6
-1
paddle/fluid/eager/hooks.h
paddle/fluid/eager/hooks.h
+14
-0
paddle/fluid/eager/saved_tensors_hooks.cc
paddle/fluid/eager/saved_tensors_hooks.cc
+107
-0
paddle/fluid/eager/saved_tensors_hooks.h
paddle/fluid/eager/saved_tensors_hooks.h
+97
-0
paddle/fluid/eager/tensor_wrapper.h
paddle/fluid/eager/tensor_wrapper.h
+50
-2
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+2
-1
paddle/fluid/pybind/eager.h
paddle/fluid/pybind/eager.h
+3
-0
paddle/fluid/pybind/eager_functions.cc
paddle/fluid/pybind/eager_functions.cc
+32
-0
paddle/fluid/pybind/eager_py_layer.cc
paddle/fluid/pybind/eager_py_layer.cc
+133
-5
python/paddle/autograd/__init__.py
python/paddle/autograd/__init__.py
+2
-0
python/paddle/autograd/saved_tensors_hooks.py
python/paddle/autograd/saved_tensors_hooks.py
+111
-0
python/paddle/fluid/tests/unittests/test_saved_tensors_hooks.py
.../paddle/fluid/tests/unittests/test_saved_tensors_hooks.py
+92
-0
未找到文件。
paddle/fluid/eager/CMakeLists.txt
浏览文件 @
b294f054
...
...
@@ -14,7 +14,8 @@ set(eager_deps
grad_node_info
grad_tensor_holder
accumulation_node
custom_operator_node
)
custom_operator_node
python
)
set
(
fluid_deps
tracer
...
...
@@ -77,6 +78,10 @@ cc_library(
autograd_meta
hook_utils
)
cc_library
(
saved_tensors_hooks
SRCS saved_tensors_hooks.cc
DEPS hook_utils
)
if
(
NOT
((
NOT WITH_PYTHON
)
AND ON_INFER
))
add_subdirectory
(
tests
)
endif
()
paddle/fluid/eager/hooks.h
浏览文件 @
b294f054
...
...
@@ -62,4 +62,18 @@ class CppVoidHook : public VoidHook {
std
::
function
<
void
()
>
fn_
;
};
class
PackHookBase
{
public:
virtual
~
PackHookBase
()
=
default
;
virtual
void
*
operator
()(
const
paddle
::
experimental
::
Tensor
&
tensor
)
=
0
;
virtual
void
*
operator
()(
void
*
py_tensor
)
=
0
;
};
class
UnPackHookBase
{
public:
virtual
~
UnPackHookBase
()
=
default
;
virtual
paddle
::
experimental
::
Tensor
operator
()(
void
*
packed_value
)
=
0
;
virtual
void
*
operator
()(
void
*
packed_value
,
void
*
other
)
=
0
;
};
}
// namespace egr
paddle/fluid/eager/saved_tensors_hooks.cc
0 → 100644
浏览文件 @
b294f054
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/eager/saved_tensors_hooks.h"
#include "paddle/fluid/eager/api/utils/global_utils.h"
#if !(defined(PADDLE_NO_PYTHON) && defined(PADDLE_ON_INFERENCE))
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#endif
namespace
egr
{
#if !(defined(PADDLE_NO_PYTHON) && defined(PADDLE_ON_INFERENCE))
PackHook
::
PackHook
(
PyObject
*
hook
)
:
hook_
(
hook
)
{
Py_INCREF
(
hook_
);
}
PackHook
::~
PackHook
()
{
::
pybind11
::
gil_scoped_acquire
gil
;
Py_DECREF
(
hook_
);
}
void
*
PackHook
::
operator
()(
const
paddle
::
experimental
::
Tensor
&
tensor
)
{
bool
grad_tmp
=
egr
::
Controller
::
Instance
().
HasGrad
();
egr
::
Controller
::
Instance
().
SetHasGrad
(
false
);
::
pybind11
::
gil_scoped_acquire
gil
;
auto
args
=
PyTuple_New
(
1
);
PyTuple_SET_ITEM
(
args
,
0
,
paddle
::
pybind
::
ToPyObject
(
tensor
));
PyObject
*
ret
=
PyObject_Call
(
hook_
,
args
,
nullptr
);
Py_XDECREF
(
args
);
egr
::
Controller
::
Instance
().
SetHasGrad
(
grad_tmp
);
return
reinterpret_cast
<
void
*>
(
ret
);
}
void
*
PackHook
::
operator
()(
void
*
py_tensor
)
{
bool
grad_tmp
=
egr
::
Controller
::
Instance
().
HasGrad
();
egr
::
Controller
::
Instance
().
SetHasGrad
(
false
);
::
pybind11
::
gil_scoped_acquire
gil
;
auto
args
=
PyTuple_New
(
1
);
Py_INCREF
(
reinterpret_cast
<
PyObject
*>
(
py_tensor
));
PyTuple_SET_ITEM
(
args
,
0
,
reinterpret_cast
<
PyObject
*>
(
py_tensor
));
PyObject
*
ret
=
PyObject_Call
(
hook_
,
args
,
nullptr
);
Py_XDECREF
(
args
);
egr
::
Controller
::
Instance
().
SetHasGrad
(
grad_tmp
);
return
reinterpret_cast
<
void
*>
(
ret
);
}
UnPackHook
::
UnPackHook
(
PyObject
*
hook
)
:
hook_
(
hook
)
{
Py_INCREF
(
hook_
);
}
UnPackHook
::~
UnPackHook
()
{
::
pybind11
::
gil_scoped_acquire
gil
;
Py_DECREF
(
hook_
);
}
paddle
::
experimental
::
Tensor
UnPackHook
::
operator
()(
void
*
packed_value
)
{
bool
grad_tmp
=
egr
::
Controller
::
Instance
().
HasGrad
();
egr
::
Controller
::
Instance
().
SetHasGrad
(
false
);
::
pybind11
::
gil_scoped_acquire
gil
;
auto
args
=
PyTuple_New
(
1
);
Py_INCREF
(
reinterpret_cast
<
PyObject
*>
(
packed_value
));
PyTuple_SET_ITEM
(
args
,
0
,
reinterpret_cast
<
PyObject
*>
(
packed_value
));
PyObject
*
ret
=
PyObject_Call
(
hook_
,
args
,
nullptr
);
Py_XDECREF
(
args
);
egr
::
Controller
::
Instance
().
SetHasGrad
(
grad_tmp
);
PADDLE_ENFORCE_EQ
(
paddle
::
pybind
::
IsEagerTensor
(
ret
),
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"paddle.autograd.saved_tensors_hooks only one pair "
"of hooks is allowed at a time."
));
auto
tensor
=
reinterpret_cast
<
paddle
::
pybind
::
TensorObject
*>
(
ret
)
->
tensor
;
Py_XDECREF
(
ret
);
return
tensor
;
}
void
*
UnPackHook
::
operator
()(
void
*
packed_value
,
void
*
other
)
{
bool
grad_tmp
=
egr
::
Controller
::
Instance
().
HasGrad
();
egr
::
Controller
::
Instance
().
SetHasGrad
(
false
);
::
pybind11
::
gil_scoped_acquire
gil
;
auto
args
=
PyTuple_New
(
1
);
Py_INCREF
(
reinterpret_cast
<
PyObject
*>
(
packed_value
));
PyTuple_SET_ITEM
(
args
,
0
,
reinterpret_cast
<
PyObject
*>
(
packed_value
));
PyObject
*
ret
=
PyObject_Call
(
hook_
,
args
,
nullptr
);
Py_XDECREF
(
args
);
egr
::
Controller
::
Instance
().
SetHasGrad
(
grad_tmp
);
PADDLE_ENFORCE_EQ
(
paddle
::
pybind
::
IsEagerTensor
(
ret
),
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"paddle.autograd.saved_tensors_hooks only one pair "
"of hooks is allowed at a time."
));
return
reinterpret_cast
<
void
*>
(
ret
);
}
#endif
}
// namespace egr
paddle/fluid/eager/saved_tensors_hooks.h
0 → 100644
浏览文件 @
b294f054
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Python.h>
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/hooks.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
namespace
egr
{
#if !(defined(PADDLE_NO_PYTHON) && defined(PADDLE_ON_INFERENCE))
class
PackHook
:
public
PackHookBase
{
public:
explicit
PackHook
(
PyObject
*
hook
);
~
PackHook
();
void
*
operator
()(
const
paddle
::
experimental
::
Tensor
&
tensor
)
override
;
void
*
operator
()(
void
*
py_tensor
)
override
;
private:
PyObject
*
hook_
;
};
class
UnPackHook
:
public
UnPackHookBase
{
public:
explicit
UnPackHook
(
PyObject
*
hook
);
~
UnPackHook
();
paddle
::
experimental
::
Tensor
operator
()(
void
*
packed_value
)
override
;
void
*
operator
()(
void
*
packed_value
,
void
*
other
)
override
;
private:
PyObject
*
hook_
;
};
#endif
class
SavedTensorsHooks
{
public:
SavedTensorsHooks
()
=
default
;
~
SavedTensorsHooks
()
{}
void
SetHooks
(
PyObject
*
pack_hook
,
PyObject
*
unpack_hook
)
{
#if !(defined(PADDLE_NO_PYTHON) && defined(PADDLE_ON_INFERENCE))
PADDLE_ENFORCE_EQ
(
pack_hook_
==
nullptr
&&
unpack_hook_
==
nullptr
,
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"paddle.autograd.saved_tensors_hooks only one pair "
"of hooks is allowed at a time."
));
pack_hook_
=
std
::
make_shared
<
PackHook
>
(
pack_hook
);
unpack_hook_
=
std
::
make_shared
<
UnPackHook
>
(
unpack_hook
);
is_enable_
=
true
;
#endif
}
void
ResetHooks
()
{
#if !(defined(PADDLE_NO_PYTHON) && defined(PADDLE_ON_INFERENCE))
pack_hook_
=
nullptr
;
unpack_hook_
=
nullptr
;
is_enable_
=
false
;
#endif
}
bool
IsEnable
()
{
return
is_enable_
;
}
std
::
shared_ptr
<
PackHookBase
>
GetPackHook
()
{
return
pack_hook_
;
}
std
::
shared_ptr
<
UnPackHookBase
>
GetUnPackHook
()
{
return
unpack_hook_
;
}
static
SavedTensorsHooks
&
GetInstance
()
{
static
SavedTensorsHooks
instance
;
return
instance
;
}
private:
std
::
shared_ptr
<
PackHookBase
>
pack_hook_
;
std
::
shared_ptr
<
UnPackHookBase
>
unpack_hook_
;
bool
is_enable_
{
false
};
};
}
// namespace egr
paddle/fluid/eager/tensor_wrapper.h
浏览文件 @
b294f054
...
...
@@ -27,6 +27,7 @@
#pragma once
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/saved_tensors_hooks.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/phi/api/lib/utils/allocator.h"
...
...
@@ -68,9 +69,22 @@ class TensorWrapper {
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unrecognized tensor type for no_need_buffer feature"
));
}
}
else
{
if
(
SavedTensorsHooks
::
GetInstance
().
IsEnable
()
&&
tensor
.
is_dense_tensor
())
{
phi
::
DenseTensor
*
dense_tensor
=
static_cast
<
phi
::
DenseTensor
*>
(
tensor
.
impl
().
get
());
intermidiate_tensor_
.
set_impl
(
std
::
move
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
std
::
make_shared
<
phi
::
Allocation
>
(
nullptr
,
0
,
tensor
.
place
()),
dense_tensor
->
meta
())));
auto
pack_hook
=
SavedTensorsHooks
::
GetInstance
().
GetPackHook
();
unpack_hook_
=
SavedTensorsHooks
::
GetInstance
().
GetUnPackHook
();
packed_value_
=
reinterpret_cast
<
PyObject
*>
((
*
pack_hook
)(
tensor
));
}
else
{
intermidiate_tensor_
.
set_impl
(
tensor
.
impl
());
}
}
if
(
VLOG_IS_ON
(
7
))
{
// TODO(jiabin): This may has server performance issue
...
...
@@ -86,6 +100,29 @@ class TensorWrapper {
}
}
TensorWrapper
(
const
TensorWrapper
&
other
)
{
no_need_buffer_
=
other
.
no_need_buffer_
;
intermidiate_tensor_
=
other
.
intermidiate_tensor_
;
weak_grad_node_
=
other
.
weak_grad_node_
;
inplace_version_snapshot_
=
other
.
inplace_version_snapshot_
;
packed_value_
=
other
.
packed_value_
;
unpack_hook_
=
other
.
unpack_hook_
;
Py_XINCREF
(
packed_value_
);
}
TensorWrapper
&
operator
=
(
const
TensorWrapper
&
other
)
{
no_need_buffer_
=
other
.
no_need_buffer_
;
intermidiate_tensor_
=
other
.
intermidiate_tensor_
;
weak_grad_node_
=
other
.
weak_grad_node_
;
inplace_version_snapshot_
=
other
.
inplace_version_snapshot_
;
packed_value_
=
other
.
packed_value_
;
unpack_hook_
=
other
.
unpack_hook_
;
Py_XINCREF
(
packed_value_
);
return
*
this
;
}
~
TensorWrapper
()
{
Py_XDECREF
(
packed_value_
);
}
paddle
::
experimental
::
Tensor
recover
()
{
VLOG
(
6
)
<<
"Recover tensor: "
<<
intermidiate_tensor_
.
name
()
<<
" for wrapper"
;
...
...
@@ -94,7 +131,16 @@ class TensorWrapper {
return
paddle
::
experimental
::
Tensor
();
}
if
(
packed_value_
&&
unpack_hook_
)
{
auto
tensor_unpacked
=
(
*
unpack_hook_
)(
reinterpret_cast
<
void
*>
(
packed_value_
));
auto
src_dense_tensor
=
static_cast
<
phi
::
DenseTensor
*>
(
tensor_unpacked
.
impl
().
get
());
static_cast
<
phi
::
DenseTensor
*>
(
intermidiate_tensor_
.
impl
().
get
())
->
ResetHolder
(
src_dense_tensor
->
MoveMemoryHolder
());
}
else
{
check_inplace_version
();
}
paddle
::
experimental
::
Tensor
recovered_tensor
=
intermidiate_tensor_
;
...
...
@@ -168,5 +214,7 @@ class TensorWrapper {
paddle
::
experimental
::
Tensor
intermidiate_tensor_
;
std
::
weak_ptr
<
egr
::
GradNodeBase
>
weak_grad_node_
;
uint32_t
inplace_version_snapshot_
=
0
;
PyObject
*
packed_value_
{
nullptr
};
std
::
shared_ptr
<
UnPackHookBase
>
unpack_hook_
;
};
}
// namespace egr
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
b294f054
...
...
@@ -41,7 +41,8 @@ set(PYBIND_DEPS
new_profiler
auto_parallel
jit_layer
jit_property
)
jit_property
saved_tensors_hooks
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
ps_service
)
...
...
paddle/fluid/pybind/eager.h
浏览文件 @
b294f054
...
...
@@ -12,6 +12,7 @@ limitations under the License. */
#include <Python.h>
#include "paddle/fluid/eager/hooks.h"
#include "paddle/fluid/eager/pylayer/py_layer_node.h"
#include "paddle/phi/core/dense_tensor.h"
#include "pybind11/pybind11.h"
...
...
@@ -28,6 +29,8 @@ typedef struct {
typedef
struct
{
PyObject_HEAD
PyObject
*
container
;
bool
container_be_packed
;
std
::
shared_ptr
<
egr
::
UnPackHookBase
>
unpack_hook
;
PyObject
*
non_differentiable
;
PyObject
*
not_inplace_tensors
;
bool
materialize_grads
;
...
...
paddle/fluid/pybind/eager_functions.cc
浏览文件 @
b294f054
...
...
@@ -25,6 +25,7 @@ typedef SSIZE_T ssize_t;
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
#include "paddle/fluid/eager/saved_tensors_hooks.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/custom_operator.h"
...
...
@@ -591,6 +592,29 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
eager_api_register_saved_tensors_hooks
(
PyObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
egr
::
Controller
::
Instance
().
HasGrad
())
{
auto
pack_hook
=
PyTuple_GET_ITEM
(
args
,
0
);
auto
unpack_hook
=
PyTuple_GET_ITEM
(
args
,
1
);
egr
::
SavedTensorsHooks
::
GetInstance
().
SetHooks
(
pack_hook
,
unpack_hook
);
}
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
eager_api_reset_saved_tensors_hooks
(
PyObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
egr
::
SavedTensorsHooks
::
GetInstance
().
ResetHooks
();
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
}
#if defined(PADDLE_WITH_CUDA)
static
PyObject
*
eager_api_async_read
(
PyObject
*
self
,
PyObject
*
args
,
...
...
@@ -965,6 +989,14 @@ PyMethodDef variable_functions[] = {
(
PyCFunction
)(
void
(
*
)(
void
))
eager_api_sparse_csr_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"register_saved_tensors_hooks"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_api_register_saved_tensors_hooks
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"reset_saved_tensors_hooks"
,
(
PyCFunction
)(
void
(
*
)(
void
))
eager_api_reset_saved_tensors_hooks
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/**sparse functions**/
#if defined(PADDLE_WITH_CUDA)
{
"async_read"
,
...
...
paddle/fluid/pybind/eager_py_layer.cc
浏览文件 @
b294f054
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/pylayer/py_layer_node.h"
#include "paddle/fluid/eager/saved_tensors_hooks.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
...
...
@@ -78,6 +79,7 @@ PyObject* PyLayerNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
if
(
obj
)
{
auto
v
=
reinterpret_cast
<
PyLayerObject
*>
(
obj
);
v
->
materialize_grads
=
true
;
v
->
container_be_packed
=
false
;
new
(
&
v
->
grad_node
)
std
::
weak_ptr
<
egr
::
GradNodePyLayer
>
();
new
(
&
v
->
forward_input_tensor_is_duplicable
)
std
::
vector
<
bool
>
();
new
(
&
v
->
forward_output_tensor_is_duplicable
)
std
::
vector
<
bool
>
();
...
...
@@ -96,6 +98,7 @@ static void PyLayerDealloc(PyLayerObject* self) {
Py_DECREF
(
self
->
not_inplace_tensors
);
}
self
->
grad_node
.
~
weak_ptr
<
egr
::
GradNodePyLayer
>
();
self
->
unpack_hook
=
nullptr
;
self
->
forward_input_tensor_is_duplicable
.
~
vector
();
self
->
forward_output_tensor_is_duplicable
.
~
vector
();
Py_TYPE
(
self
)
->
tp_free
(
reinterpret_cast
<
PyObject
*>
(
self
));
...
...
@@ -455,23 +458,148 @@ PyObject* pylayer_method_apply(PyObject* cls,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyObject
*
call_unpack_hook
(
PyLayerObject
*
self
)
{
auto
unpack_hook
=
self
->
unpack_hook
;
auto
packed_value
=
self
->
container
;
auto
packed_value_size
=
PyTuple_GET_SIZE
(
packed_value
);
auto
unpacked_value
=
PyTuple_New
(
packed_value_size
);
for
(
Py_ssize_t
i
=
0
;
i
<
packed_value_size
;
i
++
)
{
PyObject
*
obj
=
PyTuple_GET_ITEM
(
packed_value
,
i
);
if
(
PyList_Check
(
obj
))
{
Py_ssize_t
len
=
PyList_Size
(
obj
);
auto
tmp_list
=
PyList_New
(
len
);
for
(
Py_ssize_t
j
=
0
;
j
<
len
;
j
++
)
{
PyObject
*
o
=
PyList_GetItem
(
obj
,
j
);
PyTuple_SET_ITEM
(
tmp_list
,
j
,
reinterpret_cast
<
PyObject
*>
(((
*
unpack_hook
)(
reinterpret_cast
<
void
*>
(
o
),
nullptr
))));
}
PyTuple_SET_ITEM
(
unpacked_value
,
i
,
tmp_list
);
}
else
if
(
PyTuple_Check
(
obj
))
{
Py_ssize_t
len
=
PyTuple_Size
(
obj
);
auto
tmp_tuple
=
PyTuple_New
(
len
);
for
(
Py_ssize_t
j
=
0
;
j
<
len
;
j
++
)
{
PyObject
*
o
=
PyTuple_GetItem
(
obj
,
j
);
PyTuple_SET_ITEM
(
tmp_tuple
,
j
,
reinterpret_cast
<
PyObject
*>
((
*
unpack_hook
)(
reinterpret_cast
<
void
*>
(
o
),
nullptr
)));
}
PyTuple_SET_ITEM
(
unpacked_value
,
i
,
tmp_tuple
);
}
else
{
PyTuple_SET_ITEM
(
unpacked_value
,
i
,
reinterpret_cast
<
PyObject
*>
((
*
unpack_hook
)(
reinterpret_cast
<
void
*>
(
obj
),
nullptr
)));
}
}
return
unpacked_value
;
}
PyObject
*
tensor_properties_get_container
(
PyLayerObject
*
self
,
void
*
closure
)
{
EAGER_TRY
if
(
self
->
container
==
nullptr
)
{
RETURN_PY_NONE
;
}
if
(
self
->
container_be_packed
)
{
return
call_unpack_hook
(
self
);
}
else
{
Py_INCREF
(
self
->
container
);
return
self
->
container
;
}
EAGER_CATCH_AND_THROW_RETURN_NULL
}
void
call_pack_hook
(
PyLayerObject
*
self
,
PyObject
*
value
)
{
PyObject
*
saved_value
=
nullptr
;
if
(
PyTuple_Check
(
value
))
{
saved_value
=
value
;
}
else
if
(
PyList_Check
(
value
))
{
saved_value
=
PyList_AsTuple
(
value
);
}
else
{
saved_value
=
PyTuple_New
(
1
);
Py_INCREF
(
value
);
PyTuple_SET_ITEM
(
saved_value
,
0
,
value
);
}
auto
pack_hook
=
egr
::
SavedTensorsHooks
::
GetInstance
().
GetPackHook
();
self
->
unpack_hook
=
egr
::
SavedTensorsHooks
::
GetInstance
().
GetUnPackHook
();
auto
saved_value_size
=
PyTuple_GET_SIZE
(
saved_value
);
PyObject
*
packed_value
=
PyTuple_New
(
saved_value_size
);
for
(
Py_ssize_t
i
=
0
;
i
<
saved_value_size
;
i
++
)
{
PyObject
*
obj
=
PyTuple_GET_ITEM
(
saved_value
,
i
);
if
(
IsEagerTensor
(
obj
))
{
PyTuple_SET_ITEM
(
packed_value
,
i
,
reinterpret_cast
<
PyObject
*>
(
(
*
pack_hook
)(
reinterpret_cast
<
void
*>
(
obj
))));
}
else
if
(
PyList_Check
(
obj
))
{
Py_ssize_t
len
=
PyList_Size
(
obj
);
auto
tmp_list
=
PyList_New
(
len
);
for
(
Py_ssize_t
j
=
0
;
j
<
len
;
j
++
)
{
PyObject
*
o
=
PyList_GetItem
(
obj
,
j
);
if
(
IsEagerTensor
(
o
))
{
PyTuple_SET_ITEM
(
tmp_list
,
j
,
reinterpret_cast
<
PyObject
*>
(
(
*
pack_hook
)(
reinterpret_cast
<
void
*>
(
o
))));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"save_for_backward only support Tensor, list of Tensor, tuple of "
"Tensor."
));
}
}
PyTuple_SET_ITEM
(
packed_value
,
i
,
tmp_list
);
}
else
if
(
PyTuple_Check
(
obj
))
{
Py_ssize_t
len
=
PyTuple_Size
(
obj
);
auto
tmp_tuple
=
PyTuple_New
(
len
);
for
(
Py_ssize_t
j
=
0
;
j
<
len
;
j
++
)
{
PyObject
*
o
=
PyTuple_GetItem
(
obj
,
j
);
if
(
IsEagerTensor
(
o
))
{
PyTuple_SET_ITEM
(
tmp_tuple
,
j
,
reinterpret_cast
<
PyObject
*>
(
(
*
pack_hook
)(
reinterpret_cast
<
void
*>
(
o
))));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"save_for_backward only support Tensor, list of Tensor, tuple of "
"Tensor."
));
}
}
PyTuple_SET_ITEM
(
packed_value
,
i
,
tmp_tuple
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"save_for_backward only support Tensor, list of Tensor, tuple of "
"Tensor."
));
}
}
if
(
PyTuple_Check
(
value
))
{
Py_XDECREF
(
saved_value
);
}
Py_XDECREF
(
self
->
container
);
self
->
container
=
packed_value
;
self
->
container_be_packed
=
true
;
}
int
tensor_properties_set_container
(
PyLayerObject
*
self
,
PyObject
*
value
,
void
*
closure
)
{
EAGER_TRY
if
(
egr
::
SavedTensorsHooks
::
GetInstance
().
IsEnable
())
{
call_pack_hook
(
self
,
value
);
}
else
{
Py_XINCREF
(
value
);
Py_XDECREF
(
self
->
container
);
self
->
container
=
value
;
}
return
0
;
EAGER_CATCH_AND_THROW_RETURN_NEG
}
...
...
python/paddle/autograd/__init__.py
浏览文件 @
b294f054
...
...
@@ -26,9 +26,11 @@ else:
from
.py_layer
import
LegacyPyLayerContext
as
PyLayerContext
# noqa: F401
from
..framework
import
set_grad_enabled
,
is_grad_enabled
# noqa: F401
from
..fluid.dygraph.base
import
no_grad_
as
no_grad
# noqa: F401
from
.saved_tensors_hooks
import
saved_tensors_hooks
__all__
=
[
# noqa
'backward'
,
'PyLayer'
,
'PyLayerContext'
,
'saved_tensors_hooks'
,
]
python/paddle/autograd/saved_tensors_hooks.py
0 → 100644
浏览文件 @
b294f054
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.fluid
import
core
__all__
=
[]
class
saved_tensors_hooks
():
"""
Dynamic graph, registers a pair of pack / unpack hooks for saved tensors.
Parameters:
pack_hook (function): The pack hook will be called every time the forward
operation inputs/outputs tensors need be saved for backward. Then you
can save it to CPU or Disk. The input of `pack_hook` is a tensor need
be saved. The output of `pack_hook` is then stored information instead
of the original tensor. `pack_hook` will also be called while any
tensor need be saved by `PyLayerContext.save_for_backward`. If a tensor
saved for backward is no need buffer, `pack_hook` will not be called.
Only the thensor saved for backward is LoDTensor, `pack_hook` will be
called.
unpack_hook (function): The unpack hook will be called every time the
backward need use the saved inputs/outputs tensors. Then you can reload
the tensor and return it to paddle framework. The input of `unpack_hook`
is the information returned by `pack_hook`. The output of `unpack_hook`
is a tensor reloaded by the information, and the tensor mast has the same
content as the original tensor passed as input to the corresponding
`pack_hook`.
Returns:
None
Examples:
.. code-block:: python
# Example1
import paddle
def pack_hook(x):
print("Packing", x)
return x.numpy()
def unpack_hook(x):
print("UnPacking", x)
return paddle.to_tensor(x)
a = paddle.ones([3,3])
b = paddle.ones([3,3]) * 2
a.stop_gradient = False
b.stop_gradient = False
with paddle.autograd.saved_tensors_hooks(pack_hook, unpack_hook):
y = paddle.multiply(a, b)
y.sum().backward()
# Example2
import paddle
from paddle.autograd import PyLayer
class cus_multiply(PyLayer):
@staticmethod
def forward(ctx, a, b):
y = paddle.multiply(a, b)
ctx.save_for_backward(a, b)
return y
@staticmethod
def backward(ctx, dy):
a,b = ctx.saved_tensor()
grad_a = dy * a
grad_b = dy * b
return grad_a, grad_b
def pack_hook(x):
print("Packing", x)
return x.numpy()
def unpack_hook(x):
print("UnPacking", x)
return paddle.to_tensor(x)
a = paddle.ones([3,3])
b = paddle.ones([3,3]) * 2
a.stop_gradient = False
b.stop_gradient = False
with paddle.autograd.saved_tensors_hooks(pack_hook, unpack_hook):
y = cus_multiply.apply(a, b)
y.sum().backward()
"""
def
__init__
(
self
,
pack_hook
,
unpack_hook
):
self
.
pack_hook
=
pack_hook
self
.
unpack_hook
=
unpack_hook
def
__enter__
(
self
):
core
.
eager
.
register_saved_tensors_hooks
(
self
.
pack_hook
,
self
.
unpack_hook
)
def
__exit__
(
self
,
*
args
):
core
.
eager
.
reset_saved_tensors_hooks
()
python/paddle/fluid/tests/unittests/test_saved_tensors_hooks.py
0 → 100644
浏览文件 @
b294f054
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
paddle.autograd
import
PyLayer
class
TestSavedTensorsHooks
(
unittest
.
TestCase
):
def
test_save_for_multiply
(
self
):
def
pack_hook
(
x
):
return
x
.
numpy
()
def
unpack_hook
(
x
):
return
paddle
.
to_tensor
(
x
)
a
=
paddle
.
ones
([
3
,
3
])
b
=
paddle
.
ones
([
3
,
3
])
*
2
a
.
stop_gradient
=
False
b
.
stop_gradient
=
False
with
paddle
.
autograd
.
saved_tensors_hooks
(
pack_hook
,
unpack_hook
):
y
=
paddle
.
multiply
(
a
,
b
)
y
.
sum
().
backward
()
aa
=
paddle
.
ones
([
3
,
3
])
bb
=
paddle
.
ones
([
3
,
3
])
*
2
aa
.
stop_gradient
=
False
bb
.
stop_gradient
=
False
yy
=
paddle
.
multiply
(
aa
,
bb
)
yy
.
sum
().
backward
()
self
.
assertTrue
(
paddle
.
equal_all
(
aa
.
grad
,
a
.
grad
))
self
.
assertTrue
(
paddle
.
equal_all
(
bb
.
grad
,
b
.
grad
))
def
test_save_for_pylayer
(
self
):
class
cus_multiply
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
a
,
b
):
y
=
paddle
.
multiply
(
a
,
b
)
ctx
.
save_for_backward
(
a
,
b
)
return
y
@
staticmethod
def
backward
(
ctx
,
dy
):
a
,
b
=
ctx
.
saved_tensor
()
grad_a
=
dy
*
a
grad_b
=
dy
*
b
return
grad_a
,
grad_b
def
pack_hook
(
x
):
return
x
.
numpy
()
def
unpack_hook
(
x
):
return
paddle
.
to_tensor
(
x
)
a
=
paddle
.
ones
([
3
,
3
])
b
=
paddle
.
ones
([
3
,
3
])
*
2
a
.
stop_gradient
=
False
b
.
stop_gradient
=
False
with
paddle
.
autograd
.
saved_tensors_hooks
(
pack_hook
,
unpack_hook
):
y
=
cus_multiply
.
apply
(
a
,
b
)
y
.
sum
().
backward
()
aa
=
paddle
.
ones
([
3
,
3
])
bb
=
paddle
.
ones
([
3
,
3
])
*
2
aa
.
stop_gradient
=
False
bb
.
stop_gradient
=
False
yy
=
cus_multiply
.
apply
(
aa
,
bb
)
yy
.
sum
().
backward
()
self
.
assertTrue
(
paddle
.
equal_all
(
aa
.
grad
,
a
.
grad
))
self
.
assertTrue
(
paddle
.
equal_all
(
bb
.
grad
,
b
.
grad
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录