Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b2912939
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b2912939
编写于
6月 21, 2022
作者:
C
cifar10
提交者:
GitHub
6月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mlu arg_max kernel (#43624)
上级
be05f84b
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
500 addition
and
0 deletion
+500
-0
paddle/fluid/operators/arg_max_op_mlu.cc
paddle/fluid/operators/arg_max_op_mlu.cc
+112
-0
python/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
...n/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
+388
-0
未找到文件。
paddle/fluid/operators/arg_max_op_mlu.cc
0 → 100644
浏览文件 @
b2912939
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ArgMaxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
axis
=
static_cast
<
int
>
(
ctx
.
Attr
<
int64_t
>
(
"axis"
));
auto
dtype
=
ctx
.
Attr
<
int
>
(
"dtype"
);
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
if
(
x
->
numel
()
==
0
)
return
;
PADDLE_ENFORCE_EQ
(
(
dtype
==
2
||
dtype
==
3
),
true
,
platform
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmax op must be [%s] or [%s], "
"but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
if
(
axis
<
0
)
{
framework
::
DDim
x_dims
;
x_dims
=
x
->
dims
();
axis
+=
x_dims
.
size
();
}
framework
::
Tensor
flatten_x
(
x
->
type
());
flatten_x
.
ShareDataWith
(
*
x
);
if
(
flatten
)
{
flatten_x
.
Resize
(
phi
::
make_ddim
({
x
->
numel
()}));
// if flatten, the axis just as 0
axis
=
0
;
}
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
push_back
(
axis
);
auto
out_dims
=
out
->
dims
();
int
out_count
=
out_dims
[
0
];
for
(
int
i
=
1
;
i
<
out_dims
.
size
();
i
++
)
{
out_count
=
out_count
*
out_dims
[
i
];
}
size_t
indices_size_inbytes
=
out_count
*
sizeof
(
int32_t
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
framework
::
Tensor
value_out
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
out
->
dims
(),
dev_ctx
);
MLUCnnlTensorDesc
value_out_desc
(
value_out
);
MLUCnnlTensorDesc
input_desc
(
flatten_x
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
flatten_x
.
dtype
()));
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
CNNL_REDUCE_MAX_LAST_INDEX
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_ONLY_INDICES
,
CNNL_32BIT_INDICES
);
if
(
dtype
==
2
)
{
out
->
template
mutable_data
<
int32_t
>(
ctx
.
GetPlace
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
&
flatten_x
),
indices_size_inbytes
/*indices_size*/
,
GetBasePtr
(
out
),
nullptr
,
value_out_desc
.
get
(),
GetBasePtr
(
&
value_out
));
}
else
{
out
->
template
mutable_data
<
int64_t
>(
ctx
.
GetPlace
());
framework
::
Tensor
out_int32
=
ctx
.
AllocateTmpTensor
<
int32_t
,
MLUDeviceContext
>
(
out
->
dims
(),
dev_ctx
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
&
flatten_x
),
indices_size_inbytes
/*indices_size*/
,
GetBasePtr
(
&
out_int32
),
nullptr
,
value_out_desc
.
get
(),
GetBasePtr
(
&
value_out
));
// cast indices type to int64
MLUCnnlTensorDesc
out_int32_desc
(
out_int32
);
MLUCnnlTensorDesc
cast_output_desc
(
*
out
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
VT
::
INT32
,
VT
::
INT64
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
out_int32_desc
.
get
(),
GetBasePtr
(
&
out_int32
),
cast_output_desc
.
get
(),
GetBasePtr
(
out
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
arg_max
,
ops
::
ArgMaxMLUKernel
<
int
>
,
ops
::
ArgMaxMLUKernel
<
float
>
,
ops
::
ArgMaxMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
0 → 100644
浏览文件 @
b2912939
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
paddle
.
enable_static
()
class
BaseTestCase
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# test argmax, dtype: float16
class
TestArgMaxFloat16Case1
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
-
1
class
TestArgMaxFloat16Case2
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case3
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
1
class
TestArgMaxFloat16Case4
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
2
class
TestArgMaxFloat16Case5
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
-
1
class
TestArgMaxFloat16Case6
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case7
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
1
class
TestArgMaxFloat16Case8
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
1
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case9
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
2
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case10
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
# test argmax, dtype: float32
class
TestArgMaxFloat32Case1
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
-
1
class
TestArgMaxFloat32Case2
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case3
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
1
class
TestArgMaxFloat32Case4
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
2
class
TestArgMaxFloat32Case5
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
-
1
class
TestArgMaxFloat32Case6
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case7
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
1
class
TestArgMaxFloat32Case8
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
1
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case9
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
2
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case10
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
BaseTestComplex1_1
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
'float32'
self
.
axis
=
2
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
BaseTestComplex1_2
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
'float16'
self
.
axis
=
2
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestArgMaxAPI
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
,
axis
=
self
.
axis
)
paddle_output
=
paddle
.
argmax
(
tensor_input
,
axis
=
self
.
axis
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
class
TestArgMaxAPI_2
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
self
.
keep_dims
=
True
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
,
axis
=
self
.
axis
).
reshape
(
1
,
4
,
5
)
paddle_output
=
paddle
.
argmax
(
tensor_input
,
axis
=
self
.
axis
,
keepdim
=
self
.
keep_dims
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
self
.
assertEqual
(
numpy_output
.
shape
,
paddle_output
.
numpy
().
shape
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
class
TestArgMaxAPI_3
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
1
,
9
)
self
.
dtype
=
'float32'
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
).
reshape
([
1
])
paddle_output
=
paddle
.
argmax
(
tensor_input
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
self
.
assertEqual
(
numpy_output
.
shape
,
paddle_output
.
numpy
().
shape
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录