From b174b9976416cd98b1d2db0071452ce9c21b46de Mon Sep 17 00:00:00 2001 From: Liufang Sang Date: Thu, 4 Jun 2020 20:10:05 +0800 Subject: [PATCH] support user defined quantization func and preprocess (#24720) * add user defined func test=develop * update test=develop * update test=develop * fix name conflicts test=develop * add unittest test=develop * change 2018 to 2020 test=develop * add comment test=develop * add comment for function test=develop * fix details test=develop * fix details test=develop --- .../slim/quantization/quantization_pass.py | 316 ++++++++++++++++-- .../tests/test_user_defined_quantization.py | 271 +++++++++++++++ python/paddle/fluid/framework.py | 8 +- 3 files changed, 565 insertions(+), 30 deletions(-) create mode 100644 python/paddle/fluid/contrib/slim/tests/test_user_defined_quantization.py diff --git a/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py b/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py index f04869156f9..d5bba8e210f 100644 --- a/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py +++ b/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py @@ -21,6 +21,11 @@ from ....framework import IrNode from ....framework import Operator from .... import unique_name +from ....framework import Program, program_guard, default_startup_program +from ....data import data +from ....layers import mean +from ....executor import scope_guard + __all__ = [ 'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass', 'TransformForMobilePass', 'OutScaleForTrainingPass', @@ -163,7 +168,13 @@ class QuantizationTransformPass(object): window_size=10000, moving_rate=0.9, skip_pattern=['skip_quant'], - quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']): + quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'], + weight_quantize_func=None, + act_quantize_func=None, + weight_preprocess_func=None, + act_preprocess_func=None, + optimizer_func=None, + executor=None): """ Constructor. @@ -194,6 +205,33 @@ class QuantizationTransformPass(object): quantizable_op_type(list[str]): List the type of ops that will be quantized. Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in QuantizationFreezePass and ConvertToInt8Pass must be the same as this. + weight_quantize_func(function): Function that defines how to quantize weight. Using this + can quickly test if user's quantization method works or not. In this function, user should + both define quantization function and dequantization function, that is, the function's input + is non-quantized weight and function returns dequantized weight. If None, will use + quantization op defined by 'weight_quantize_type'. + Default is None. + act_quantize_func(function): Function that defines how to quantize activation. Using this + can quickly test if user's quantization method works or not. In this function, user should + both define quantization and dequantization process, that is, the function's input + is non-quantized activation and function returns dequantized activation. If None, will use + quantization op defined by 'activation_quantize_type'. + Default is None. + weight_preprocess_func(function): Function that defines how to preprocess weight before quantization. Using this + can quickly test if user's preprocess method works or not. The function's input + is non-quantized weight and function returns processed weight to be quantized. If None, the weight will + be quantized directly. + Default is None. + act_preprocess_func(function): Function that defines how to preprocess activation before quantization. Using this + can quickly test if user's preprocess method works or not. The function's input + is non-quantized activation and function returns processed activation to be quantized. If None, the activation will + be quantized directly. + Default is None. + optimizer_func(function): Fuction return a optimizer. When 'is_test' is False and user want to use self-defined + quantization function and preprocess function, this function must be set. Default is None. + executor(Fluid.Executor): If user want to use self-defined quantization function and preprocess function, + executor must be set for initialization. Default is None. + Examples: .. code-block:: python @@ -215,7 +253,12 @@ class QuantizationTransformPass(object): self._weight_bits = weight_bits self._activation_bits = activation_bits self._skip_pattern = skip_pattern - + self._weight_quantize_func = weight_quantize_func + self._act_quantize_func = act_quantize_func + self._weight_preprocess_func = weight_preprocess_func + self._act_preprocess_func = act_preprocess_func + self._optimizer = optimizer_func + self._exe = executor quant_type = [ 'abs_max', 'channel_wise_abs_max', 'range_abs_max', 'moving_average_abs_max' @@ -249,6 +292,183 @@ class QuantizationTransformPass(object): self._is_test = None self._global_step = None + self.create_var_map = {} + self.create_op_map = {} + + def _create_new_node(self, graph, in_node): + """ + create a node that same with in_node in graph + Args: + graph(IrGraph): create node in graph. + in_node(IrVarNode): create node that same with in_node. + Returns: + created new node + """ + key = '' + for inp in in_node.inputs: + key = key + inp.name() + key = key + in_node.name() + for inp in in_node.outputs: + key = key + inp.name() + + if key in self.create_var_map.keys(): + new_node = self.create_var_map[key] + elif in_node.is_ctrl_var(): + new_node = graph.create_control_dep_var() + self.create_var_map[key] = new_node + else: + new_node = graph.create_var_node_from_desc(in_node.node.var()) + self.create_var_map[key] = new_node + return new_node + + def _copy_graph(self, graph, source_graph, op_node): + """ + copy op_node in source_graph to graph. And will run recursively + for next ops that link to op_node's outputs. + Args: + graph(IrGraph): target graph to copy. + source_graph(IrGraph): source graph to copy. + op_node(IrOpNode): op node in source_graph. + Returns: + None + + """ + key = '' + for inp in op_node.inputs: + key = key + inp.name() + key = key + op_node.name() + for inp in op_node.outputs: + key = key + inp.name() + has_created = False + if key in self.create_op_map.keys(): + new_op_node = self.create_op_map[key] + has_created = True + else: + new_op_node = graph.create_op_node_from_desc(op_node.node.op()) + self.create_op_map[key] = new_op_node + if has_created: + return + for in_node in op_node.inputs: + new_node = self._create_new_node(graph, in_node) + graph.link_to(new_node, new_op_node) + for in_node in op_node.outputs: + new_node = self._create_new_node(graph, in_node) + graph.link_to(new_op_node, new_node) + for var_node in op_node.outputs: + for next_op_node in var_node.outputs: + self._copy_graph(graph, source_graph, next_op_node) + return + + def _insert_func(self, graph, func, var_node, op): + """ + Insert a tmp program that returned by func between var_node and op. + + Args: + graph(IrGraph): target graph to insert tmp program. + func(Function): function to define a tmp program + var_node(IrVarNode): node in target graph. + op(IrOpNode): op in target graph. + Returns: + op's new input that replaces var_node + """ + tmp_program = Program() + startup_program = Program() + with program_guard(tmp_program, startup_program): + with unique_name.guard(var_node.name() + "_"): + in_node = data( + var_node.name() + '_tmp_input', + shape=var_node.shape(), + dtype='float32') + out_node = func(in_node) + # loss shape must be 1 when minimize + loss = mean(out_node) + if not graph._for_test: + assert self._optimizer, "optimizer_func must be set when graph is test graph" + in_node.stop_gradient = False + optimizer = self._optimizer() + optimizer.minimize(loss) + with scope_guard(self._scope): + self._exe.run(startup_program) + + tmp_graph = IrGraph( + core.Graph(tmp_program.desc), for_test=graph._for_test) + in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(), + in_node.name) + out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(), + out_node.name) + + in_node_params = [] + in_op_node = [] + # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph. + for node in tmp_graph.all_var_nodes(): + if node.inputs == [] and node.persistable(): + in_node_params.append(node) + for node in tmp_graph.all_op_nodes(): + if node.inputs == []: + in_op_node.append(node) + for node in in_node.outputs: + self._copy_graph(graph, tmp_graph, node) + for node in in_node_params: + for op_node in node.outputs: + self._copy_graph(graph, tmp_graph, op_node) + for node in in_op_node: + self._copy_graph(graph, tmp_graph, node) + + target_in_node = graph._find_node_by_name(graph.all_var_nodes(), + in_node.name()) + target_out_node = graph._find_node_by_name(graph.all_var_nodes(), + out_node.name()) + loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name) + outputs = target_in_node.outputs + for node in outputs: + graph.update_input_link(target_in_node, var_node, node) + graph.update_input_link(var_node, target_out_node, op) + + # update grad + if not graph._for_test: + op_out = op.outputs[0] + op_out_grad = graph._find_node_by_name(graph.all_var_nodes(), + op_out.name() + "@GRAD") + # find op's gradient op, such as conv2d_grad + op_grad = op_out_grad.outputs[0] + target_out_grad_node = graph._find_node_by_name( + graph.all_var_nodes(), target_out_node.name() + "@GRAD") + in_node_grad = graph._find_node_by_name( + graph.all_var_nodes(), target_in_node.name() + "@GRAD") + in_node_grad_op = in_node_grad.inputs + # update op_grad's input + graph.update_input_link(var_node, target_out_node, op_grad) + + op_grad_out = None + # find var_node's corresponding grad node + for node in op_grad.outputs: + if var_node.name() + "@GRAD" in node.name(): + op_grad_out = node + # update op_grad's output + if op_grad_out is not None: + graph.update_output_link(op_grad_out, target_out_grad_node, + op_grad) + else: + graph.link_to(op_grad, target_out_grad_node) + + for node in in_node_grad_op: + graph.update_input_link(target_in_node, var_node, node) + if op_grad_out: + graph.update_output_link(in_node_grad, op_grad_out, node) + # remove useless nodes + mean_grad = target_out_grad_node.inputs[0] + mean_out_grad = mean_grad.inputs[0] + fill_constant_node = mean_out_grad.inputs[0] + graph.safe_remove_nodes(mean_grad) + graph.safe_remove_nodes(mean_out_grad) + graph.safe_remove_nodes(fill_constant_node) + graph.safe_remove_nodes(in_node_grad) + + graph.safe_remove_nodes(loss_node.inputs[0]) + graph.safe_remove_nodes(loss_node) + graph.safe_remove_nodes(target_in_node) + return target_out_node + def apply(self, graph): """ Quantize the graph for training process. According to weight and @@ -266,6 +486,7 @@ class QuantizationTransformPass(object): # marked the variable which has been dequantized. dequantized_vars = collections.OrderedDict() persistable_vars = [p.name() for p in graph.all_persistable_nodes()] + processed_vars = [] def _quant_preprocess(op_node): user_skipped = False @@ -281,37 +502,75 @@ class QuantizationTransformPass(object): def _transform_forward(graph, op): op.op()._set_attr("quantization_type", "qat_with_weight") - for var_node in op.inputs: + inputs = op.inputs + for var_node in inputs: if var_node.name() not in op.input_arg_names(): continue if var_node.name() in dequantized_vars: dequant_var_node = dequantized_vars[var_node.name()] else: + + name = var_node.name() + if name in processed_vars: + continue + + if var_node.name() in persistable_vars: + is_weight = True + else: + is_weight = False + + # if var node is weight and weight_preprocess_func is not None, + # will insert weight preprocess func + # to preorocess weight before quantization + # if var node is activation and act_preprocess_func is not None, + # will insert activation preprocess func + # to preorocess activation before quantization + if is_weight and self._weight_preprocess_func is not None: + var_node = self._insert_func( + graph, self._weight_preprocess_func, var_node, op) + elif not is_weight and self._act_preprocess_func is not None: + var_node = self._insert_func( + graph, self._act_preprocess_func, var_node, op) + + # if var node is weight and weight_quantize_func is not None, + # will insert weight quantize func to quantize and dequantize weight + # if var node is activation and act_quantize_func is not None, + # will insert act quantize func to quantize and dequantize activation + if is_weight and self._weight_quantize_func is not None: + target_out_node = self._insert_func( + graph, self._weight_quantize_func, var_node, op) + processed_vars.append(name) + continue + elif not is_weight and self._act_quantize_func is not None: + target_out_node = self._insert_func( + graph, self._act_quantize_func, var_node, op) + processed_vars.append(name) + continue + quant_bits = self._weight_bits if var_node.name() in persistable_vars \ else self._activation_bits - quant_type = self._weight_quantize_type if var_node.name() \ - in persistable_vars else self._activation_quantize_type + quant_type = self._weight_quantize_type if is_weight \ + else self._activation_quantize_type if quant_type == 'channel_wise_abs_max': - assert var_node.name( - ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights." + assert is_weight, "'channel_wise_abs_max' can only be applied on weights." if op.name() in self._conv_ops: quant_var_node, scale_var_node = self._insert_channel_quant_op( - graph, var_node, quant_bits) + graph, var_node, name, quant_bits) dequant_var_node = self._insert_channel_dequant_op( graph, quant_var_node, [scale_var_node], [quant_bits]) else: quant_var_node, scale_var_node = self._insert_quant_op( - graph, var_node, quant_bits, 'abs_max') + graph, var_node, name, quant_bits, 'abs_max') dequant_var_node = self._insert_dequant_op( graph, quant_var_node, scale_var_node, quant_bits) else: quant_var_node, scale_var_node = self._insert_quant_op( - graph, var_node, quant_bits, quant_type) + graph, var_node, name, quant_bits, quant_type) dequant_var_node = self._insert_dequant_op( graph, quant_var_node, scale_var_node, quant_bits) - dequantized_vars[var_node.name()] = dequant_var_node + dequantized_vars[name] = dequant_var_node graph.update_input_link(var_node, dequant_var_node, op) def _transform_backward(graph, op): @@ -379,32 +638,33 @@ class QuantizationTransformPass(object): graph.link_to(increment_op, global_step_out) self._global_step = global_step_out - def _insert_quant_op(self, graph, var_node, quant_bits, quant_type): + def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type): """ Insert fake_quantize_op in the graph. """ if quant_type == 'abs_max': - return self._insert_quant_abs_max_op(graph, var_node, quant_bits) + return self._insert_quant_abs_max_op(graph, var_node, name, + quant_bits) elif quant_type == 'range_abs_max': - return self._insert_quant_range_abs_max_op(graph, var_node, + return self._insert_quant_range_abs_max_op(graph, var_node, name, quant_bits) elif quant_type == 'moving_average_abs_max': - return self._insert_quant_moving_average_abs_max_op(graph, var_node, - quant_bits) + return self._insert_quant_moving_average_abs_max_op( + graph, var_node, name, quant_bits) - def _insert_quant_abs_max_op(self, graph, var_node, quant_bits): + def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits): """ Insert fake_quantize_abs_max op in the graph. """ assert var_node.is_var(), '{} is not a var'.format(var_node.name()) quant_var_node = graph.create_var_node( - name=self._quantized_var_name(var_node.name()), + name=self._quantized_var_name(name), var_type=var_node.type(), shape=var_node.shape(), var_dtype=var_node.dtype()) scale_var_node = graph.create_var_node( - name=self._quantized_scale_name(var_node.name()), + name=self._quantized_scale_name(name), var_type=var_node.type(), shape=[1], var_dtype=var_node.dtype()) @@ -422,20 +682,20 @@ class QuantizationTransformPass(object): graph.link_to(quant_op_node, scale_var_node) return quant_var_node, scale_var_node - def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits): + def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits): """ Insert fake_quantize_range_abs_max on the graph. """ assert var_node.is_var(), '{} is not a var'.format(var_node.name()) quant_var_node = graph.create_var_node( - name=self._quantized_var_name(var_node.name()), + name=self._quantized_var_name(name), var_type=var_node.type(), shape=var_node.shape(), var_dtype=var_node.dtype()) scale_in_node = graph.create_persistable_node( - name=self._quantized_scale_name(var_node.name()), + name=self._quantized_scale_name(name), var_type=core.VarDesc.VarType.LOD_TENSOR, shape=[1], var_dtype=var_node.dtype()) @@ -493,17 +753,17 @@ class QuantizationTransformPass(object): return quant_var_node, scale_out_node - def _insert_quant_moving_average_abs_max_op(self, graph, var_node, + def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name, quant_bits): """Insert fake_quantize_moving_average_abs_max """ quant_var_node = graph.create_var_node( - name=self._quantized_var_name(var_node.name()), + name=self._quantized_var_name(name), var_type=var_node.type(), shape=var_node.shape(), var_dtype=var_node.dtype()) scale_in_node = graph.create_persistable_node( - name=self._quantized_scale_name(var_node.name()), + name=self._quantized_scale_name(name), var_type=core.VarDesc.VarType.LOD_TENSOR, shape=[1], var_dtype=var_node.dtype()) @@ -580,19 +840,19 @@ class QuantizationTransformPass(object): return quant_var_node, scale_out_node - def _insert_channel_quant_op(self, graph, var_node, quant_bits): + def _insert_channel_quant_op(self, graph, var_node, name, quant_bits): """ Insert fake_channel_wise_quantize_abs_max op in the graph. """ assert var_node.is_var(), '{} is not a var'.format(var_node.name()) quant_var_node = graph.create_var_node( - name=self._quantized_var_name(var_node.name()), + name=self._quantized_var_name(name), var_type=var_node.type(), shape=var_node.shape(), var_dtype=var_node.dtype()) scale_var_node = graph.create_var_node( - name=self._quantized_scale_name(var_node.name()), + name=self._quantized_scale_name(name), var_type=var_node.type(), shape=[var_node.shape()[0]], var_dtype=var_node.dtype()) diff --git a/python/paddle/fluid/contrib/slim/tests/test_user_defined_quantization.py b/python/paddle/fluid/contrib/slim/tests/test_user_defined_quantization.py new file mode 100644 index 00000000000..6f8d84a20a6 --- /dev/null +++ b/python/paddle/fluid/contrib/slim/tests/test_user_defined_quantization.py @@ -0,0 +1,271 @@ +# copyright (c) 2020 paddlepaddle authors. all rights reserved. +# +# licensed under the apache license, version 2.0 (the "license"); +# you may not use this file except in compliance with the license. +# you may obtain a copy of the license at +# +# http://www.apache.org/licenses/license-2.0 +# +# unless required by applicable law or agreed to in writing, software +# distributed under the license is distributed on an "as is" basis, +# without warranties or conditions of any kind, either express or implied. +# see the license for the specific language governing permissions and +# limitations under the license. + +import os +import unittest +import random +import numpy as np +import six +import paddle.fluid as fluid +import paddle +from paddle.fluid.framework import IrGraph +from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass +from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass +from paddle.fluid.contrib.slim.quantization import OutScaleForTrainingPass +from paddle.fluid.contrib.slim.quantization import OutScaleForInferencePass +from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass +from paddle.fluid import core +from paddle.fluid.layer_helper import LayerHelper + +os.environ["CUDA_VISIBLE_DEVICES"] = "0" +os.environ["CPU_NUM"] = "1" + + +def residual_block(img, label, num=1): + def conv_bn_layer(input, + ch_out, + filter_size, + stride, + padding, + act='relu', + bias_attr=False): + tmp = fluid.layers.conv2d( + input=input, + filter_size=filter_size, + num_filters=ch_out, + stride=stride, + padding=padding, + act=None, + bias_attr=bias_attr) + return fluid.layers.batch_norm(input=tmp, act=act) + + hidden = img + for _ in six.moves.xrange(num): + conv = conv_bn_layer(hidden, 20, 3, 1, 1, act=None, bias_attr=True) + short = conv_bn_layer(hidden, 20, 1, 1, 0, act=None) + hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') + fc = fluid.layers.fc(input=hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=fc, label=label) + loss = fluid.layers.mean(loss) + return loss + + +def pact(x, name=None): + helper = LayerHelper("pact", **locals()) + dtype = 'float32' + init_thres = 20 + u_param_attr = fluid.ParamAttr( + name=x.name + '_pact', + initializer=fluid.initializer.ConstantInitializer(value=init_thres), + regularizer=fluid.regularizer.L2Decay(0.0001), + learning_rate=1) + u_param = helper.create_parameter(attr=u_param_attr, shape=[1], dtype=dtype) + x = fluid.layers.elementwise_sub( + x, fluid.layers.relu(fluid.layers.elementwise_sub(x, u_param))) + x = fluid.layers.elementwise_add( + x, fluid.layers.relu(fluid.layers.elementwise_sub(-u_param, x))) + + return x + + +class TestUserDefinedQuantization(unittest.TestCase): + def quantization_scale(self, + use_cuda, + seed, + activation_quant_type, + weight_quant_type='abs_max', + for_ci=False, + act_preprocess_func=None, + weight_preprocess_func=None, + act_quantize_func=None, + weight_quantize_func=None): + def build_program(main, startup, is_test): + main.random_seed = seed + startup.random_seed = seed + with fluid.unique_name.guard(): + with fluid.program_guard(main, startup): + img = fluid.layers.data( + name='image', shape=[1, 28, 28], dtype='float32') + img.stop_gradient = False + label = fluid.layers.data( + name='label', shape=[1], dtype='int64') + loss = residual_block(img, label, 1) + if not is_test: + opt = fluid.optimizer.SGD(learning_rate=0.0001) + opt.minimize(loss) + return [img, label], loss + + def get_optimizer(): + return fluid.optimizer.MomentumOptimizer(0.0001, 0.9) + + random.seed(0) + np.random.seed(0) + + main = fluid.Program() + startup = fluid.Program() + test_program = fluid.Program() + feeds, loss = build_program(main, startup, False) + build_program(test_program, startup, True) + test_program = test_program.clone(for_test=True) + main_graph = IrGraph(core.Graph(main.desc), for_test=False) + test_graph = IrGraph(core.Graph(test_program.desc), for_test=True) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + scope = fluid.Scope() + with fluid.scope_guard(scope): + exe.run(startup) + train_transform_pass = QuantizationTransformPass( + scope=scope, + place=place, + activation_quantize_type=activation_quant_type, + weight_quantize_type=weight_quant_type, + act_preprocess_func=act_preprocess_func, + weight_preprocess_func=weight_preprocess_func, + act_quantize_func=act_quantize_func, + weight_quantize_func=weight_quantize_func, + optimizer_func=get_optimizer, + executor=exe) + train_transform_pass.apply(main_graph) + test_transform_pass = QuantizationTransformPass( + scope=scope, + place=place, + activation_quantize_type=activation_quant_type, + weight_quantize_type=weight_quant_type, + act_preprocess_func=act_preprocess_func, + weight_preprocess_func=weight_preprocess_func, + act_quantize_func=act_quantize_func, + weight_quantize_func=weight_quantize_func, + optimizer_func=get_optimizer, + executor=exe) + + test_transform_pass.apply(test_graph) + + add_quant_dequant_pass = AddQuantDequantPass(scope=scope, place=place) + add_quant_dequant_pass.apply(main_graph) + add_quant_dequant_pass.apply(test_graph) + + scale_training_pass = OutScaleForTrainingPass(scope=scope, place=place) + scale_training_pass.apply(main_graph) + + dev_name = '_gpu' if use_cuda else '_cpu' + + build_strategy = fluid.BuildStrategy() + build_strategy.memory_optimize = False + build_strategy.enable_inplace = False + build_strategy.fuse_all_reduce_ops = False + binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel( + loss_name=loss.name, build_strategy=build_strategy) + iters = 5 + batch_size = 8 + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=batch_size) + feeder = fluid.DataFeeder(feed_list=feeds, place=place) + with fluid.scope_guard(scope): + for _ in range(iters): + data = next(train_reader()) + loss_v = exe.run(binary, + feed=feeder.feed(data), + fetch_list=[loss]) + + def test_act_preprocess_cuda(self): + if fluid.core.is_compiled_with_cuda(): + with fluid.unique_name.guard(): + self.quantization_scale( + True, + seed=1, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + act_preprocess_func=pact) + + def test_act_preprocess_cpu(self): + with fluid.unique_name.guard(): + self.quantization_scale( + False, + seed=2, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + act_preprocess_func=pact) + + def test_weight_preprocess_cuda(self): + if fluid.core.is_compiled_with_cuda(): + with fluid.unique_name.guard(): + self.quantization_scale( + True, + seed=1, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + weight_preprocess_func=pact) + + def test_weight_preprocess_cpu(self): + with fluid.unique_name.guard(): + self.quantization_scale( + False, + seed=2, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + weight_preprocess_func=pact) + + def test_act_quantize_cuda(self): + if fluid.core.is_compiled_with_cuda(): + with fluid.unique_name.guard(): + self.quantization_scale( + True, + seed=1, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + act_quantize_func=pact) + + def test_act_quantize_cpu(self): + with fluid.unique_name.guard(): + self.quantization_scale( + False, + seed=2, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + act_quantize_func=pact) + + def test_weight_quantize_cuda(self): + if fluid.core.is_compiled_with_cuda(): + with fluid.unique_name.guard(): + self.quantization_scale( + True, + seed=1, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + weight_quantize_func=pact) + + def test_weight_quantize_cpu(self): + with fluid.unique_name.guard(): + self.quantization_scale( + False, + seed=2, + activation_quant_type='moving_average_abs_max', + weight_quant_type='channel_wise_abs_max', + for_ci=True, + weight_quantize_func=pact) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 0ecf0d65fda..7454c70d55b 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -3341,8 +3341,6 @@ class IrOpNode(IrNode): """ assert self.node.op() is not None, \ "The node operator description can not be None." - print("op: {}, old: {}, new: {}\n".format(self.node.op().type( - ), old_output_name, new_output_name)) self.node.op()._rename_output(old_output_name, new_output_name) def input(self, name): @@ -3566,6 +3564,12 @@ class IrGraph(object): var_desc.set_dtype(var_dtype) return IrVarNode(self.graph.create_var_node(var_desc)) + def create_control_dep_var(self): + """ + create a control var + """ + return IrVarNode(self.graph.create_control_dep_var()) + def create_var_node_from_desc(self, var_desc): """ Create a variable node by using an existing VarDesc in the graph. -- GitLab