Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b1401fb7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1401fb7
编写于
1月 07, 2020
作者:
Y
Yiqun Liu
提交者:
石晓伟
1月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove subgraph_detector from inference/analysis to the common framework/ir directory. (#22094)
test=develop
上级
50bee83f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
660 addition
and
673 deletion
+660
-673
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-1
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
+7
-11
paddle/fluid/framework/ir/subgraph_detector.cc
paddle/fluid/framework/ir/subgraph_detector.cc
+472
-474
paddle/fluid/framework/ir/subgraph_detector.h
paddle/fluid/framework/ir/subgraph_detector.h
+154
-160
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+0
-1
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
+5
-8
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
...luid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
+9
-8
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+11
-10
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
b1401fb7
...
@@ -39,6 +39,7 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
...
@@ -39,6 +39,7 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
graph_traits SRCS graph_traits.cc DEPS graph
)
cc_library
(
graph_traits SRCS graph_traits.cc DEPS graph
)
cc_library
(
graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits
)
cc_library
(
graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits
)
cc_library
(
subgraph_detector SRCS subgraph_detector.cc DEPS graph_pattern_detector executor
)
cc_library
(
fuse_pass_base SRCS fuse_pass_base.cc DEPS pass
)
cc_library
(
fuse_pass_base SRCS fuse_pass_base.cc DEPS pass
)
cc_library
(
placement_pass_base SRCS placement_pass_base.cc DEPS pass
)
cc_library
(
placement_pass_base SRCS placement_pass_base.cc DEPS pass
)
...
@@ -99,7 +100,7 @@ endif()
...
@@ -99,7 +100,7 @@ endif()
if
(
WITH_NGRAPH
)
if
(
WITH_NGRAPH
)
cc_library
(
ngraph_subgraph_pass SRCS ngraph_subgraph_pass.cc DEPS ngraph_bridge
cc_library
(
ngraph_subgraph_pass SRCS ngraph_subgraph_pass.cc DEPS ngraph_bridge
analysis_helper subgraph_detector graph_pattern_detector pass
fuse_pass_base
${
op_library_DEPS
}
)
subgraph_detector
fuse_pass_base
${
op_library_DEPS
}
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
file
(
APPEND
${
pass_file
}
"USE_PASS(ngraph_subgraph_pass);
\n
"
)
file
(
APPEND
${
pass_file
}
"USE_PASS(ngraph_subgraph_pass);
\n
"
)
set
(
INFER_IR_PASSES
${
INFER_IR_PASSES
}
ngraph_subgraph_pass CACHE INTERNAL
""
)
set
(
INFER_IR_PASSES
${
INFER_IR_PASSES
}
ngraph_subgraph_pass CACHE INTERNAL
""
)
...
...
paddle/fluid/framework/ir/ngraph_subgraph_pass.cc
浏览文件 @
b1401fb7
...
@@ -20,8 +20,7 @@
...
@@ -20,8 +20,7 @@
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/ngraph_subgraph_pass.h"
#include "paddle/fluid/framework/ir/ngraph_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
#include "paddle/fluid/string/pretty_log.h"
...
@@ -30,8 +29,6 @@ namespace paddle {
...
@@ -30,8 +29,6 @@ namespace paddle {
namespace
framework
{
namespace
framework
{
namespace
ir
{
namespace
ir
{
namespace
ANAT
=
paddle
::
inference
::
analysis
;
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
const
std
::
set
<
std
::
string
>
&
engine_outputs
,
const
std
::
set
<
std
::
string
>
&
engine_outputs
,
const
std
::
string
&
size
)
{
const
std
::
string
&
size
)
{
...
@@ -59,19 +56,18 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
...
@@ -59,19 +56,18 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
return
!
paddle
::
operators
::
NgraphBridge
::
isRegister
(
op_type
);
return
!
paddle
::
operators
::
NgraphBridge
::
isRegister
(
op_type
);
};
};
ANAT
::
SubGraphFuser
fuser
(
graph
,
teller
,
0
,
"ngraph_engine"
);
SubGraphFuser
fuser
(
graph
,
teller
,
0
,
"ngraph_engine"
);
fuser
();
fuser
();
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
A
NAT
::
A
gent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
OpDesc
*
op_desc
=
node
->
Op
();
OpDesc
*
op_desc
=
node
->
Op
();
op_desc
->
SetType
(
"ngraph_engine"
);
op_desc
->
SetType
(
"ngraph_engine"
);
CreateNgraphEngineOp
(
node
,
graph
);
CreateNgraphEngineOp
(
node
,
graph
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
ANAT
::
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
ANAT
::
Agent
(
node
).
subgraph
()
->
end
());
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
}
...
@@ -79,7 +75,7 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
...
@@ -79,7 +75,7 @@ void NgraphSubgraphPass::ApplyImpl(Graph *graph) const {
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
A
NAT
::
A
gent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
nodes2remove
.
insert
(
node
);
}
}
}
}
...
@@ -116,7 +112,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
...
@@ -116,7 +112,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
return
;
return
;
}
}
auto
&
subgraph
=
*
A
NAT
::
A
gent
(
node
).
subgraph
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
std
::
unordered_set
<
std
::
string
>
inputs
;
std
::
unordered_set
<
std
::
string
>
inputs
;
std
::
unordered_set
<
std
::
string
>
outputs
;
std
::
unordered_set
<
std
::
string
>
outputs
;
for
(
auto
*
node
:
subgraph
)
{
for
(
auto
*
node
:
subgraph
)
{
...
@@ -138,7 +134,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
...
@@ -138,7 +134,7 @@ void UpdateNgraphIO(Node *node, Graph *graph,
}
}
void
NgraphSubgraphPass
::
CreateNgraphEngineOp
(
Node
*
node
,
Graph
*
graph
)
const
{
void
NgraphSubgraphPass
::
CreateNgraphEngineOp
(
Node
*
node
,
Graph
*
graph
)
const
{
auto
&
subgraph
=
*
A
NAT
::
A
gent
(
node
).
subgraph
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE_NE
(
subgraph
.
empty
(),
true
,
"subgraph cannot be empty"
);
PADDLE_ENFORCE_NE
(
subgraph
.
empty
(),
true
,
"subgraph cannot be empty"
);
framework
::
proto
::
BlockDesc
block_proto
;
framework
::
proto
::
BlockDesc
block_proto
;
...
...
paddle/fluid/
inference/analysis/ir_passes
/subgraph_detector.cc
→
paddle/fluid/
framework/ir
/subgraph_detector.cc
浏览文件 @
b1401fb7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <unordered_set>
#include <unordered_set>
#include <utility>
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/node.h"
DECLARE_bool
(
use_ngraph
);
DECLARE_bool
(
use_ngraph
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
framework
{
namespace
analysis
{
namespace
ir
{
using
framework
::
ir
::
Node
;
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
// NOLINT
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
std
::
unordered_set
<
Node
*>
nodes
(
graph
.
begin
(),
graph
.
end
());
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
)
{
// NOLINT
std
::
unordered_set
<
Node
*>
inputs
;
std
::
unordered_set
<
Node
*>
nodes
(
graph
.
begin
(),
graph
.
end
());
std
::
unordered_set
<
Node
*>
outputs
;
std
::
unordered_set
<
Node
*>
inputs
;
// Input a Value, check whether its inlink is in the subgraph.
std
::
unordered_set
<
Node
*>
outputs
;
auto
inlink_in_subgraph
=
[
&
](
Node
*
n
)
{
// Input a Value, check whether its inlink is in the subgraph.
for
(
auto
*
in
:
n
->
inputs
)
{
auto
inlink_in_subgraph
=
[
&
](
Node
*
n
)
{
if
(
nodes
.
count
(
in
))
return
true
;
for
(
auto
*
in
:
n
->
inputs
)
{
}
if
(
nodes
.
count
(
in
))
return
true
;
return
false
;
}
};
return
false
;
};
for
(
auto
&
node
:
graph
)
{
for
(
auto
*
in
:
node
->
inputs
)
{
for
(
auto
&
node
:
graph
)
{
// The Value that is written by nodes inside a sub-graph shouldn't be the
for
(
auto
*
in
:
node
->
inputs
)
{
// input of the sub-graph.
// The Value that is written by nodes inside a sub-graph shouldn't be the
if
(
!
nodes
.
count
(
in
)
&&
in
->
IsVar
()
&&
!
inlink_in_subgraph
(
in
))
{
// input of the sub-graph.
inputs
.
insert
(
in
);
if
(
!
nodes
.
count
(
in
)
&&
in
->
IsVar
()
&&
!
inlink_in_subgraph
(
in
))
{
}
inputs
.
insert
(
in
);
}
}
for
(
auto
*
out
:
node
->
outputs
)
{
}
if
(
!
nodes
.
count
(
out
)
&&
out
->
IsVar
())
{
for
(
auto
*
out
:
node
->
outputs
)
{
outputs
.
insert
(
out
);
if
(
!
nodes
.
count
(
out
)
&&
out
->
IsVar
())
{
}
outputs
.
insert
(
out
);
}
}
}
}
return
std
::
make_pair
(
std
::
vector
<
Node
*>
(
inputs
.
begin
(),
inputs
.
end
()),
}
std
::
vector
<
Node
*>
(
outputs
.
begin
(),
outputs
.
end
()));
return
std
::
make_pair
(
std
::
vector
<
Node
*>
(
inputs
.
begin
(),
inputs
.
end
()),
}
std
::
vector
<
Node
*>
(
outputs
.
begin
(),
outputs
.
end
()));
}
// Filter the Intermediate results of the subgraph node.
void
FilterRedundantOutputOfSubGraph
(
Graph
*
graph
)
{
// Filter the Intermediate results of the subgraph node.
std
::
vector
<
Node
*>
op_nodes
;
void
FilterRedundantOutputOfSubGraph
(
Graph
*
graph
)
{
for
(
auto
&
node
:
TopologicalSort
(
*
graph
))
{
std
::
vector
<
Node
*>
op_nodes
;
if
(
node
.
IsVar
()
||
Agent
(
&
node
).
deleted
())
{
for
(
auto
&
node
:
TopologicalSort
(
*
graph
))
{
continue
;
if
(
node
.
IsVar
()
||
Agent
(
&
node
).
deleted
())
{
}
continue
;
op_nodes
.
push_back
(
&
node
);
}
}
op_nodes
.
push_back
(
&
node
);
size_t
op_num
=
op_nodes
.
size
();
}
for
(
size_t
i
=
0
;
i
<
op_num
;
i
++
)
{
size_t
op_num
=
op_nodes
.
size
();
if
(
op_nodes
[
i
]
->
IsOp
())
continue
;
for
(
size_t
i
=
0
;
i
<
op_num
;
i
++
)
{
std
::
unordered_set
<
std
::
string
>
follow_up_input_names
;
if
(
op_nodes
[
i
]
->
IsOp
())
continue
;
for
(
size_t
j
=
i
+
1
;
j
<
op_num
;
j
++
)
{
std
::
unordered_set
<
std
::
string
>
follow_up_input_names
;
for
(
auto
*
in
:
op_nodes
[
j
]
->
inputs
)
{
for
(
size_t
j
=
i
+
1
;
j
<
op_num
;
j
++
)
{
follow_up_input_names
.
insert
(
in
->
Name
());
for
(
auto
*
in
:
op_nodes
[
j
]
->
inputs
)
{
}
follow_up_input_names
.
insert
(
in
->
Name
());
}
}
std
::
vector
<
Node
*>
filtered_subgraph_outlinks
;
}
for
(
auto
*
out
:
op_nodes
[
i
]
->
outputs
)
{
std
::
vector
<
Node
*>
filtered_subgraph_outlinks
;
if
(
follow_up_input_names
.
count
(
out
->
Name
()))
{
for
(
auto
*
out
:
op_nodes
[
i
]
->
outputs
)
{
filtered_subgraph_outlinks
.
push_back
(
out
);
if
(
follow_up_input_names
.
count
(
out
->
Name
()))
{
}
else
{
filtered_subgraph_outlinks
.
push_back
(
out
);
Agent
(
out
).
set_deleted
(
true
);
}
else
{
}
Agent
(
out
).
set_deleted
(
true
);
}
}
// The filtered_subgraph_outlinks may be empty.
}
op_nodes
[
i
]
->
outputs
=
filtered_subgraph_outlinks
;
// The filtered_subgraph_outlinks may be empty.
}
op_nodes
[
i
]
->
outputs
=
filtered_subgraph_outlinks
;
}
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
operator
()()
{
MarkNodesInsideSubGraph
();
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
operator
()()
{
return
ExtractSubGraphs
();
MarkNodesInsideSubGraph
();
}
return
ExtractSubGraphs
();
}
// Mark the output variables inside a subgraph with the func.
inline
void
MarkOutLinksInSubGraph
(
const
Node
*
func
)
{
// Mark the output variables inside a subgraph with the func.
for
(
auto
*
var
:
func
->
outputs
)
{
inline
void
MarkOutLinksInSubGraph
(
const
Node
*
func
)
{
Agent
(
var
).
set_marked
(
true
);
for
(
auto
*
var
:
func
->
outputs
)
{
}
Agent
(
var
).
set_marked
(
true
);
}
}
}
void
SubgraphDetector
::
MarkNodesInsideSubGraph
()
{
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
DFS
(
*
graph_
))
{
void
SubgraphDetector
::
MarkNodesInsideSubGraph
()
{
if
(
node_inside_subgraph_teller_
(
&
node
))
{
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
DFS
(
*
graph_
))
{
Agent
(
&
node
).
set_marked
(
true
);
if
(
node_inside_subgraph_teller_
(
&
node
))
{
if
(
node
.
IsOp
())
{
Agent
(
&
node
).
set_marked
(
true
);
// If a function is inside the sub-graph, mark all the output variables
if
(
node
.
IsOp
())
{
// to be inside too, so that two marked functions will be inside a same
// If a function is inside the sub-graph, mark all the output variables
// sub-graph, lets take a example: A_function->var->B_function, if
// to be inside too, so that two marked functions will be inside a same
// A_function is marked, var should also be marked, so that B_function
// sub-graph, lets take a example: A_function->var->B_function, if
// will be in the same sub-graph with A_function if B_function is
// A_function is marked, var should also be marked, so that B_function
// marked.
// will be in the same sub-graph with A_function if B_function is
MarkOutLinksInSubGraph
(
&
node
);
// marked.
}
MarkOutLinksInSubGraph
(
&
node
);
}
}
}
}
}
}
}
// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// algorithm will group them to the same cluster.
// a's output is node b, that is a and b is in the same sub-graph. The UF
using
node_map_t
=
std
::
unordered_map
<
int
,
Node
*>
;
// algorithm will group them to the same cluster.
// Find the ancestor id of a node.
using
node_map_t
=
std
::
unordered_map
<
int
,
Node
*>
;
int
UnionFindGetAncestor
(
const
node_map_t
&
node_map
,
size_t
id
)
{
// Find the ancestor id of a node.
int
tmp
=
id
;
int
UnionFindGetAncestor
(
const
node_map_t
&
node_map
,
size_t
id
)
{
do
{
int
tmp
=
id
;
tmp
=
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
();
do
{
}
while
(
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
()
!=
tmp
);
tmp
=
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
();
return
tmp
;
}
while
(
Agent
(
node_map
.
at
(
tmp
)).
union_find_parent
()
!=
tmp
);
}
return
tmp
;
// Make this two node share the same ancestor.
}
// TODO(Superjom) bad performance, make a balanced tree latter.
// Make this two node share the same ancestor.
void
UnionFindCombine
(
const
node_map_t
&
node_map
,
size_t
a
,
size_t
b
)
{
// TODO(Superjom) bad performance, make a balanced tree latter.
int
a_ancestor
=
UnionFindGetAncestor
(
node_map
,
a
);
void
UnionFindCombine
(
const
node_map_t
&
node_map
,
size_t
a
,
size_t
b
)
{
int
b_ancestor
=
UnionFindGetAncestor
(
node_map
,
b
);
int
a_ancestor
=
UnionFindGetAncestor
(
node_map
,
a
);
Agent
(
node_map
.
at
(
b_ancestor
)).
set_union_find_parent
(
a_ancestor
);
int
b_ancestor
=
UnionFindGetAncestor
(
node_map
,
b
);
Agent
(
node_map
.
at
(
a
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
b_ancestor
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
b
)).
set_union_find_parent
(
a_ancestor
);
Agent
(
node_map
.
at
(
a
)).
set_union_find_parent
(
a_ancestor
);
}
Agent
(
node_map
.
at
(
b
)).
set_union_find_parent
(
a_ancestor
);
}
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is a simple representation of a graph.
// This is to avoid changing the original graph
// The BriefNode hold the pointer of the Node.
// in the process of trt graph analysis.
// This is to avoid changing the original graph
struct
BriefNode
{
// in the process of trt graph analysis.
explicit
BriefNode
(
Node
*
n
)
{
node
=
n
;
}
struct
BriefNode
{
Node
*
node
;
explicit
BriefNode
(
Node
*
n
)
{
node
=
n
;
}
std
::
vector
<
BriefNode
*>
inlinks
;
Node
*
node
;
std
::
vector
<
BriefNode
*>
outlinks
;
std
::
vector
<
BriefNode
*>
inlinks
;
};
std
::
vector
<
BriefNode
*>
outlinks
;
};
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// Union two adjacent BriefNode.
// We will perform the following operations:
// Suppose we have two adjacent nodes src and dst.
// 1. add all inputs(except src) of dst to src inlinks.
// We will perform the following operations:
// 2. add all outputs of dst to src outlinks.
// 1. add all inputs(except src) of dst to src inlinks.
// 3. change all the dst's inputs and outputs
// 2. add all outputs of dst to src outlinks.
// corresponding inlinks and outlinks to src node.
// 3. change all the dst's inputs and outputs
// 4. delete all dst's inlinks and outlinks.
// corresponding inlinks and outlinks to src node.
void
UnionContractedNodes
(
const
std
::
unordered_map
<
int
,
BriefNode
*>
&
node_map
,
// 4. delete all dst's inlinks and outlinks.
int
src_id
,
int
dst_id
)
{
void
UnionContractedNodes
(
const
std
::
unordered_map
<
int
,
BriefNode
*>
&
node_map
,
// merge the two adjacent nodes into one node.
int
src_id
,
int
dst_id
)
{
BriefNode
*
src_node
=
node_map
.
at
(
src_id
);
// merge the two adjacent nodes into one node.
BriefNode
*
dst_node
=
node_map
.
at
(
dst_id
);
BriefNode
*
src_node
=
node_map
.
at
(
src_id
);
BriefNode
*
dst_node
=
node_map
.
at
(
dst_id
);
std
::
unordered_set
<
BriefNode
*>
inputs
(
src_node
->
inlinks
.
begin
(),
src_node
->
inlinks
.
end
());
std
::
unordered_set
<
BriefNode
*>
inputs
(
src_node
->
inlinks
.
begin
(),
std
::
unordered_set
<
BriefNode
*>
outputs
;
src_node
->
inlinks
.
end
());
std
::
unordered_set
<
BriefNode
*>
outputs
;
for
(
auto
*
n
:
src_node
->
outlinks
)
{
if
(
n
!=
dst_node
)
outputs
.
insert
(
n
);
for
(
auto
*
n
:
src_node
->
outlinks
)
{
}
if
(
n
!=
dst_node
)
outputs
.
insert
(
n
);
}
// Add the inlinks and outlinks of dst node to src node.
std
::
vector
<
BriefNode
*>
dst_in_nodes
=
dst_node
->
inlinks
;
// Add the inlinks and outlinks of dst node to src node.
for
(
BriefNode
*
node
:
dst_in_nodes
)
{
std
::
vector
<
BriefNode
*>
dst_in_nodes
=
dst_node
->
inlinks
;
if
(
node
!=
src_node
)
{
for
(
BriefNode
*
node
:
dst_in_nodes
)
{
inputs
.
insert
(
node
);
if
(
node
!=
src_node
)
{
}
inputs
.
insert
(
node
);
}
}
}
std
::
vector
<
BriefNode
*>
dst_out_nodes
=
dst_node
->
outlinks
;
for
(
BriefNode
*
node
:
dst_out_nodes
)
{
std
::
vector
<
BriefNode
*>
dst_out_nodes
=
dst_node
->
outlinks
;
outputs
.
insert
(
node
);
for
(
BriefNode
*
node
:
dst_out_nodes
)
{
}
outputs
.
insert
(
node
);
}
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
// update the dst and src node's inlinks and outlinks.
src_node
->
inlinks
=
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
());
#ifdef __clang__
src_node
->
outlinks
=
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
());
src_node
->
inlinks
=
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
());
dst_node
->
inlinks
.
clear
();
src_node
->
outlinks
=
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
());
dst_node
->
outlinks
.
clear
();
dst_node
->
inlinks
.
clear
();
#else
dst_node
->
outlinks
.
clear
();
src_node
->
inlinks
=
#else
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
src_node
->
inlinks
=
src_node
->
outlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
src_node
->
outlinks
=
dst_node
->
inlinks
.
clear
();
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
dst_node
->
outlinks
.
clear
();
dst_node
->
inlinks
.
clear
();
#endif
dst_node
->
outlinks
.
clear
();
#endif
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
if
(
n
==
src_node
||
n
==
dst_node
)
{
for
(
auto
*&
n
:
nodes
)
{
n
=
src_node
;
if
(
n
==
src_node
||
n
==
dst_node
)
{
}
n
=
src_node
;
}
}
};
}
// Change all the dst inputs and outputs corresponding inlink and
};
// outlink to the src node.
// Change all the dst inputs and outputs corresponding inlink and
for
(
auto
*
node
:
src_node
->
inlinks
)
{
// outlink to the src node.
inlink_or_outlink_cleaner
(
node
->
outlinks
);
for
(
auto
*
node
:
src_node
->
inlinks
)
{
}
inlink_or_outlink_cleaner
(
node
->
outlinks
);
}
for
(
auto
*
node
:
src_node
->
outlinks
)
{
inlink_or_outlink_cleaner
(
node
->
inlinks
);
for
(
auto
*
node
:
src_node
->
outlinks
)
{
}
inlink_or_outlink_cleaner
(
node
->
inlinks
);
}
}
}
// FlexibleDFS
// If reverse is true, do reverse dfs.
// FlexibleDFS
// If enter func is not nullptr, calls enter(node) before visiting any children
// If reverse is true, do reverse dfs.
// of node.
// If enter func is not nullptr, calls enter(node) before visiting any children
// If leave func not nullptr, calls leave(node) after visiting all parents of
// of node.
// node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
void
FlexibleDFS
(
const
std
::
vector
<
BriefNode
*>
&
source
,
bool
reverse
,
// node.
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
enter
,
void
FlexibleDFS
(
const
std
::
vector
<
BriefNode
*>
&
source
,
bool
reverse
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
leave
)
{
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
enter
,
typedef
struct
{
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
leave
)
{
const
BriefNode
*
node
;
typedef
struct
{
bool
leave
;
const
BriefNode
*
node
;
}
FNode
;
bool
leave
;
}
FNode
;
std
::
vector
<
FNode
>
stack
;
for
(
auto
&
node
:
source
)
{
std
::
vector
<
FNode
>
stack
;
stack
.
push_back
(
FNode
{
node
,
false
});
for
(
auto
&
node
:
source
)
{
}
stack
.
push_back
(
FNode
{
node
,
false
});
std
::
unordered_set
<
const
BriefNode
*>
visited
;
}
while
(
!
stack
.
empty
())
{
std
::
unordered_set
<
const
BriefNode
*>
visited
;
auto
fnode
=
stack
.
back
();
while
(
!
stack
.
empty
())
{
stack
.
pop_back
();
auto
fnode
=
stack
.
back
();
stack
.
pop_back
();
if
(
fnode
.
leave
)
{
if
(
leave
&&
!
leave
(
fnode
.
node
))
return
;
if
(
fnode
.
leave
)
{
}
if
(
leave
&&
!
leave
(
fnode
.
node
))
return
;
if
(
visited
.
count
(
fnode
.
node
))
continue
;
}
visited
.
insert
(
fnode
.
node
);
if
(
visited
.
count
(
fnode
.
node
))
continue
;
visited
.
insert
(
fnode
.
node
);
if
(
enter
&&
!
enter
(
fnode
.
node
))
return
;
if
(
enter
&&
!
enter
(
fnode
.
node
))
return
;
if
(
leave
)
stack
.
push_back
(
FNode
{
fnode
.
node
,
true
});
const
std
::
vector
<
BriefNode
*>
iter_nodes
=
if
(
leave
)
stack
.
push_back
(
FNode
{
fnode
.
node
,
true
});
reverse
==
true
?
fnode
.
node
->
inlinks
:
fnode
.
node
->
outlinks
;
const
std
::
vector
<
BriefNode
*>
iter_nodes
=
for
(
const
BriefNode
*
node
:
iter_nodes
)
{
reverse
==
true
?
fnode
.
node
->
inlinks
:
fnode
.
node
->
outlinks
;
if
(
!
visited
.
count
(
node
))
{
for
(
const
BriefNode
*
node
:
iter_nodes
)
{
stack
.
push_back
(
FNode
{
node
,
false
});
if
(
!
visited
.
count
(
node
))
{
}
stack
.
push_back
(
FNode
{
node
,
false
});
}
}
}
}
}
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
ExtractSubGraphs
()
{
// Run the Extract algorithm to find all subgraphs.
std
::
vector
<
std
::
vector
<
Node
*>>
SubgraphDetector
::
ExtractSubGraphs
()
{
std
::
vector
<
Node
*>
marked_nodes
;
// Run the Extract algorithm to find all subgraphs.
// We use brief_node_map to represent the original graph in order to avoid
std
::
vector
<
Node
*>
marked_nodes
;
// changing the original graph.
// We use brief_node_map to represent the original graph in order to avoid
std
::
unordered_map
<
int
,
BriefNode
*>
brief_node_map
;
// changing the original graph.
std
::
unordered_map
<
int
,
BriefNode
*>
brief_node_map
;
std
::
unordered_set
<
int32_t
>
valid_node_ids
;
for
(
auto
*
node
:
graph_
->
Nodes
())
{
std
::
unordered_set
<
int32_t
>
valid_node_ids
;
valid_node_ids
.
insert
(
node
->
id
());
for
(
auto
*
node
:
graph_
->
Nodes
())
{
}
valid_node_ids
.
insert
(
node
->
id
());
}
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
TS
(
*
graph_
))
{
brief_node_map
[
node
.
id
()]
=
new
BriefNode
(
&
node
);
for
(
auto
&
node
:
framework
::
ir
::
GraphTraits
::
TS
(
*
graph_
))
{
if
(
Agent
(
&
node
).
marked
())
{
brief_node_map
[
node
.
id
()]
=
new
BriefNode
(
&
node
);
marked_nodes
.
push_back
(
&
node
);
if
(
Agent
(
&
node
).
marked
())
{
}
marked_nodes
.
push_back
(
&
node
);
}
}
}
// extract sub-graphs in the marked node set, use Union Find algorithm.
node_map_t
node_map
;
// id to ptr
// extract sub-graphs in the marked node set, use Union Find algorithm.
for
(
auto
*
n
:
marked_nodes
)
{
node_map_t
node_map
;
// id to ptr
// n's parent == n.id means it is the ancestor
for
(
auto
*
n
:
marked_nodes
)
{
Agent
(
n
).
set_union_find_parent
(
n
->
id
());
// n's parent == n.id means it is the ancestor
node_map
[
n
->
id
()]
=
n
;
Agent
(
n
).
set_union_find_parent
(
n
->
id
());
}
node_map
[
n
->
id
()]
=
n
;
}
// create breif node map
for
(
auto
&
itr
:
brief_node_map
)
{
// create breif node map
for
(
Node
*
node
:
itr
.
second
->
node
->
inputs
)
{
for
(
auto
&
itr
:
brief_node_map
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
for
(
Node
*
node
:
itr
.
second
->
node
->
inputs
)
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
continue
;
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
}
continue
;
itr
.
second
->
inlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
}
itr
.
second
->
inlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
for
(
Node
*
node
:
itr
.
second
->
node
->
outputs
)
{
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
for
(
Node
*
node
:
itr
.
second
->
node
->
outputs
)
{
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
if
(
!
valid_node_ids
.
count
(
node
->
id
()))
{
continue
;
LOG
(
INFO
)
<<
"invalid node id "
<<
node
->
id
();
}
continue
;
itr
.
second
->
outlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
}
itr
.
second
->
outlinks
.
push_back
(
brief_node_map
.
at
(
node
->
id
()));
}
}
}
for
(
auto
&
itr
:
brief_node_map
)
{
BriefNode
*
brief_node
=
itr
.
second
;
for
(
auto
&
itr
:
brief_node_map
)
{
BriefNode
*
brief_node
=
itr
.
second
;
if
(
!
Agent
(
brief_node
->
node
).
marked
())
{
VLOG
(
4
)
<<
brief_node
->
node
->
id
()
<<
" node not a trt candidate."
;
if
(
!
Agent
(
brief_node
->
node
).
marked
())
{
continue
;
VLOG
(
4
)
<<
brief_node
->
node
->
id
()
<<
" node not a trt candidate."
;
}
continue
;
}
// Our algorithm must guarantee that:
// 1. The graph is always directed acyclic graph(DAG).
// Our algorithm must guarantee that:
// 2. If there is a path in the subgraph from X to Y (X and Y are both
// 1. The graph is always directed acyclic graph(DAG).
// nodes in the subgraph), then all paths from X to Y are in the
// 2. If there is a path in the subgraph from X to Y (X and Y are both
// subgraph.
// nodes in the subgraph), then all paths from X to Y are in the
//
// subgraph.
// In order to achieve the above guarantee.
//
// For adjacent nodes src -> dst.
// In order to achieve the above guarantee.
// 1. Get all dst input nodes except src.
// For adjacent nodes src -> dst.
// 2. Reverse DFS from those input nodes
// 1. Get all dst input nodes except src.
// 3. If there is a path from input nodes to src,
// 2. Reverse DFS from those input nodes
// then the src and dst nodes can not be fused into one node,
// 3. If there is a path from input nodes to src,
// otherwise it can be done.
// then the src and dst nodes can not be fused into one node,
// otherwise it can be done.
while
(
true
)
{
std
::
unordered_set
<
BriefNode
*>
contract_nodes
;
while
(
true
)
{
for
(
auto
*
out
:
brief_node
->
outlinks
)
{
std
::
unordered_set
<
BriefNode
*>
contract_nodes
;
// must be an trt candidate
for
(
auto
*
out
:
brief_node
->
outlinks
)
{
if
(
!
Agent
(
out
->
node
).
marked
())
continue
;
// must be an trt candidate
// get all dst input nodes except src.
if
(
!
Agent
(
out
->
node
).
marked
())
continue
;
std
::
vector
<
BriefNode
*>
source_nodes
;
// get all dst input nodes except src.
for
(
auto
*
n
:
out
->
inlinks
)
{
std
::
vector
<
BriefNode
*>
source_nodes
;
if
(
n
!=
brief_node
)
{
for
(
auto
*
n
:
out
->
inlinks
)
{
source_nodes
.
push_back
(
n
);
if
(
n
!=
brief_node
)
{
}
source_nodes
.
push_back
(
n
);
}
}
}
// Reverse DFS from the source_nodes.
bool
have_excess_path
=
false
;
// Reverse DFS from the source_nodes.
FlexibleDFS
(
source_nodes
,
true
,
nullptr
,
bool
have_excess_path
=
false
;
[
&
have_excess_path
,
brief_node
](
const
BriefNode
*
n
)
{
FlexibleDFS
(
source_nodes
,
true
,
nullptr
,
if
(
n
==
brief_node
)
{
[
&
have_excess_path
,
brief_node
](
const
BriefNode
*
n
)
{
have_excess_path
=
true
;
if
(
n
==
brief_node
)
{
return
false
;
have_excess_path
=
true
;
}
return
false
;
return
true
;
}
});
return
true
;
if
(
have_excess_path
)
continue
;
});
contract_nodes
.
insert
(
out
);
if
(
have_excess_path
)
continue
;
}
contract_nodes
.
insert
(
out
);
if
(
contract_nodes
.
empty
())
break
;
}
if
(
contract_nodes
.
empty
())
break
;
for
(
auto
dst_node
:
contract_nodes
)
{
UnionFindCombine
(
node_map
,
brief_node
->
node
->
id
(),
for
(
auto
dst_node
:
contract_nodes
)
{
dst_node
->
node
->
id
());
UnionFindCombine
(
node_map
,
brief_node
->
node
->
id
(),
UnionContractedNodes
(
brief_node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
dst_node
->
node
->
id
());
UnionContractedNodes
(
brief_node_map
,
brief_node
->
node
->
id
(),
}
dst_node
->
node
->
id
());
}
}
}
}
}
std
::
unordered_map
<
int
/*ancestor*/
,
std
::
vector
<
Node
*>>
clusters
;
for
(
auto
*
n
:
marked_nodes
)
{
std
::
unordered_map
<
int
/*ancestor*/
,
std
::
vector
<
Node
*>>
clusters
;
if
(
n
->
IsOp
())
{
for
(
auto
*
n
:
marked_nodes
)
{
clusters
[
UnionFindGetAncestor
(
node_map
,
Agent
(
n
).
union_find_parent
())]
if
(
n
->
IsOp
())
{
.
push_back
(
n
);
clusters
[
UnionFindGetAncestor
(
node_map
,
Agent
(
n
).
union_find_parent
())]
}
.
push_back
(
n
);
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
result
;
}
std
::
for_each
(
clusters
.
begin
(),
clusters
.
end
(),
std
::
vector
<
std
::
vector
<
Node
*>>
result
;
[
&
](
const
decltype
(
clusters
)
::
value_type
&
it
)
{
std
::
for_each
(
clusters
.
begin
(),
clusters
.
end
(),
result
.
push_back
(
it
.
second
);
[
&
](
const
decltype
(
clusters
)
::
value_type
&
it
)
{
});
result
.
push_back
(
it
.
second
);
});
return
result
;
}
return
result
;
}
void
SubGraphFuser
::
operator
()()
{
ReplaceNodesWithSubGraphs
();
}
void
SubGraphFuser
::
operator
()()
{
ReplaceNodesWithSubGraphs
();
}
void
RemoveIntermediateOutputInSubgraph
(
const
std
::
vector
<
Node
*>
&
subgraph
,
Graph
*
graph
,
void
RemoveIntermediateOutputInSubgraph
(
const
std
::
vector
<
Node
*>
&
subgraph
,
std
::
vector
<
Node
*>
*
outputs
)
{
Graph
*
graph
,
std
::
unordered_set
<
Node
*>
subgraph_set
(
subgraph
.
begin
(),
subgraph
.
end
());
std
::
vector
<
Node
*>
*
outputs
)
{
std
::
unordered_set
<
Node
*>
valid_output
;
std
::
unordered_set
<
Node
*>
subgraph_set
(
subgraph
.
begin
(),
subgraph
.
end
());
std
::
unordered_set
<
Node
*>
valid_output
;
for
(
auto
*
output
:
*
outputs
)
{
int
num_used
=
0
;
for
(
auto
*
output
:
*
outputs
)
{
for
(
auto
*
node
:
output
->
outputs
)
{
int
num_used
=
0
;
if
(
!
subgraph_set
.
count
(
node
))
++
num_used
;
for
(
auto
*
node
:
output
->
outputs
)
{
if
(
num_used
>
0
)
valid_output
.
insert
(
output
);
if
(
!
subgraph_set
.
count
(
node
))
++
num_used
;
}
if
(
num_used
>
0
)
valid_output
.
insert
(
output
);
}
}
}
// In use for ngraph subgraph pass for parallel executor,
// this will remove all nodes, bypass this and let ngraph
// In use for ngraph subgraph pass for parallel executor,
// subgraph pass to process outputs
// this will remove all nodes, bypass this and let ngraph
if
(
FLAGS_use_ngraph
&&
valid_output
.
size
()
==
0
)
return
;
// subgraph pass to process outputs
if
(
FLAGS_use_ngraph
&&
valid_output
.
size
()
==
0
)
return
;
outputs
->
assign
(
valid_output
.
begin
(),
valid_output
.
end
());
}
outputs
->
assign
(
valid_output
.
begin
(),
valid_output
.
end
());
}
void
DetachDeletedNodes
(
framework
::
ir
::
Graph
*
graph
)
{
std
::
unordered_set
<
const
Node
*>
nodes
;
void
DetachDeletedNodes
(
framework
::
ir
::
Graph
*
graph
)
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
std
::
unordered_set
<
const
Node
*>
nodes
;
if
(
Agent
(
node
).
deleted
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
node
->
inputs
.
clear
();
if
(
Agent
(
node
).
deleted
())
{
node
->
outputs
.
clear
();
node
->
inputs
.
clear
();
}
node
->
outputs
.
clear
();
}
}
}
}
}
void
SubGraphFuser
::
ReplaceNodesWithSubGraphs
()
{
auto
subgraphs
=
SubgraphDetector
(
graph_
,
node_inside_subgraph_teller_
)();
void
SubGraphFuser
::
ReplaceNodesWithSubGraphs
()
{
for
(
auto
&
subgraph
:
subgraphs
)
{
auto
subgraphs
=
SubgraphDetector
(
graph_
,
node_inside_subgraph_teller_
)();
if
(
subgraph
.
size
()
<=
(
size_t
)
min_subgraph_size_
)
continue
;
for
(
auto
&
subgraph
:
subgraphs
)
{
std
::
unordered_set
<
Node
*>
subgraph_uniq
(
subgraph
.
begin
(),
subgraph
.
end
());
if
(
subgraph
.
size
()
<=
(
size_t
)
min_subgraph_size_
)
continue
;
// replace this sub-graph with the first node. Two steps: 1. Create a Block
std
::
unordered_set
<
Node
*>
subgraph_uniq
(
subgraph
.
begin
(),
subgraph
.
end
());
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph
// replace this sub-graph with the first node. Two steps: 1. Create a Block
// as deleted. 3. Replace the deleted node with the new Block Node.
// Node that contains this subgraph 2. Mark the nodes inside the sub-graph
framework
::
OpDesc
empty_desc
;
// as deleted. 3. Replace the deleted node with the new Block Node.
empty_desc
.
SetType
(
name_
);
framework
::
OpDesc
empty_desc
;
auto
*
block_node
=
graph_
->
CreateOpNode
(
&
empty_desc
);
empty_desc
.
SetType
(
name_
);
Agent
(
block_node
).
set_subgraph
({});
auto
*
block_node
=
graph_
->
CreateOpNode
(
&
empty_desc
);
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
Agent
(
block_node
).
set_subgraph
({});
block_node
->
inputs
=
std
::
move
(
io
.
first
);
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
block_node
->
outputs
=
std
::
move
(
io
.
second
);
block_node
->
inputs
=
std
::
move
(
io
.
first
);
block_node
->
outputs
=
std
::
move
(
io
.
second
);
RemoveIntermediateOutputInSubgraph
(
subgraph
,
graph_
,
&
block_node
->
outputs
);
RemoveIntermediateOutputInSubgraph
(
subgraph
,
graph_
,
&
block_node
->
outputs
);
for
(
auto
*
node
:
subgraph
)
{
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
for
(
auto
*
node
:
subgraph
)
{
// pass.
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
Agent
(
node
).
set_deleted
(
true
);
// pass.
Agent
(
block_node
).
subgraph
()
->
push_back
(
node
);
Agent
(
node
).
set_deleted
(
true
);
}
Agent
(
block_node
).
subgraph
()
->
push_back
(
node
);
}
// Change all the sub-graph's inputs and outputs corresponding inlink and
// outlink to this sub-graph node.
// Change all the sub-graph's inputs and outputs corresponding inlink and
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
Node
*>
&
nodes
)
{
// outlink to this sub-graph node.
for
(
auto
*&
n
:
nodes
)
{
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
Node
*>
&
nodes
)
{
if
(
subgraph_uniq
.
count
(
n
))
{
for
(
auto
*&
n
:
nodes
)
{
n
=
block_node
;
if
(
subgraph_uniq
.
count
(
n
))
{
}
n
=
block_node
;
}
}
std
::
unordered_set
<
Node
*>
uniq
(
nodes
.
begin
(),
nodes
.
end
());
}
nodes
.
assign
(
uniq
.
begin
(),
uniq
.
end
());
std
::
unordered_set
<
Node
*>
uniq
(
nodes
.
begin
(),
nodes
.
end
());
};
nodes
.
assign
(
uniq
.
begin
(),
uniq
.
end
());
for
(
auto
*
i
:
block_node
->
inputs
)
{
};
inlink_or_outlink_cleaner
(
i
->
outputs
);
for
(
auto
*
i
:
block_node
->
inputs
)
{
}
inlink_or_outlink_cleaner
(
i
->
outputs
);
for
(
auto
*&
o
:
block_node
->
outputs
)
{
}
inlink_or_outlink_cleaner
(
o
->
inputs
);
for
(
auto
*&
o
:
block_node
->
outputs
)
{
}
inlink_or_outlink_cleaner
(
o
->
inputs
);
}
}
// DetachDeletedNodes(graph_);
}
FilterRedundantOutputOfSubGraph
(
graph_
);
// DetachDeletedNodes(graph_);
}
FilterRedundantOutputOfSubGraph
(
graph_
);
}
inline
bool
CheckNodeIndegreeEquals
(
const
Node
&
node
,
size_t
n
)
{
return
node
.
inputs
.
size
()
==
n
;
inline
bool
CheckNodeIndegreeEquals
(
const
Node
&
node
,
size_t
n
)
{
}
return
node
.
inputs
.
size
()
==
n
;
}
}
// namespace ir
}
// namespace framework
}
// namespace analysis
}
// namespace paddle
}
// namespace inference
}
// namespace paddle
paddle/fluid/
inference/analysis/ir_passes
/subgraph_detector.h
→
paddle/fluid/
framework/ir
/subgraph_detector.h
浏览文件 @
b1401fb7
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
/*
#pragma once
* This file defines the the class to partition a graph.
*/
#include <string>
#include <vector>
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include <string>
#include "paddle/fluid/framework/ir/node.h"
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
#include "paddle/fluid/framework/ir/graph_traits.h"
namespace
framework
{
#include "paddle/fluid/framework/ir/node.h"
namespace
ir
{
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/helper.h"
const
char
kIsFunctionNode
[]
=
"__is_function_node__"
;
const
char
kFunctionNodeSubGraph
[]
=
"__function_node_sub_graph__"
;
namespace
paddle
{
const
char
kSubgraphSplitterMarkerAttrName
[]
=
namespace
inference
{
"_sub_graph_splitter_inside_sub_graph"
;
namespace
analysis
{
/*
using
framework
::
ir
::
Graph
;
* Detect the nodes in a sub-graph that meet some conditions. This class doesn't
using
framework
::
ir
::
NodesTSIterator
;
* modify the graph.
*/
const
char
kIsFunctionNode
[]
=
"__is_function_node__"
;
class
SubgraphDetector
{
const
char
kFunctionNodeSubGraph
[]
=
"__function_node_sub_graph__"
;
public:
const
char
kSubgraphSplitterMarkerAttrName
[]
=
// Tell whether a node is inside a sub-graph.
"_sub_graph_splitter_inside_sub_graph"
;
using
NodeInsideSubgraphTeller
=
std
::
function
<
bool
(
const
Node
*
)
>
;
/*
SubgraphDetector
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
)
* Detect the nodes in a sub-graph that meet some conditions. This class doesn't
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
)
{}
* modify the graph.
*/
std
::
vector
<
std
::
vector
<
Node
*>>
operator
()();
class
SubgraphDetector
{
public:
protected:
// Tell whether a node is inside a sub-graph.
// Mark the nodes inside the accepted sub-graph using
using
NodeInsideSubgraphTeller
=
// node_inside_subgraph_teller.
std
::
function
<
bool
(
const
framework
::
ir
::
Node
*
)
>
;
void
MarkNodesInsideSubGraph
();
SubgraphDetector
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
)
// Merge the marked nodes into sub-graphs and return the sub-graphs.
:
graph_
(
graph
),
node_inside_subgraph_teller_
(
teller
)
{}
std
::
vector
<
std
::
vector
<
Node
*>>
ExtractSubGraphs
();
std
::
vector
<
std
::
vector
<
framework
::
ir
::
Node
*>>
operator
()();
private:
Graph
*
graph_
;
protected:
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
// Mark the nodes inside the accepted sub-graph using
};
// node_inside_subgraph_teller.
void
MarkNodesInsideSubGraph
();
/*
* SubGraphFuser - Replace some nodes with the sub-graph node they are inside.
// Merge the marked nodes into sub-graphs and return the sub-graphs.
* To some extent, the TensorRT engine is just a fusion op for a model.
std
::
vector
<
std
::
vector
<
framework
::
ir
::
Node
*>>
ExtractSubGraphs
();
*/
class
SubGraphFuser
{
private:
public:
Graph
*
graph_
;
using
NodeInsideSubgraphTeller
=
SubgraphDetector
::
NodeInsideSubgraphTeller
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
};
SubGraphFuser
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
,
int
min_subgraph_size
,
std
::
string
name
=
"anakin_engine"
)
/*
:
graph_
(
graph
),
* SubGraphFuser - Replace some nodes with the sub-graph node they are inside.
node_inside_subgraph_teller_
(
teller
),
* To some extent, the TensorRT engine is just a fusion op for a model.
min_subgraph_size_
{
min_subgraph_size
},
*/
name_
{
name
}
{}
class
SubGraphFuser
{
public:
// The main method which run all the logic.
using
NodeInsideSubgraphTeller
=
SubgraphDetector
::
NodeInsideSubgraphTeller
;
void
operator
()();
SubGraphFuser
(
Graph
*
graph
,
const
NodeInsideSubgraphTeller
&
teller
,
protected:
int
min_subgraph_size
,
std
::
string
name
=
"anakin_engine"
)
// Remove the nodes inside sub-graphs and replace with the SubGraphNode.
:
graph_
(
graph
),
void
ReplaceNodesWithSubGraphs
();
node_inside_subgraph_teller_
(
teller
),
min_subgraph_size_
{
min_subgraph_size
},
private:
name_
{
name
}
{}
Graph
*
graph_
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
// The main method which run all the logic.
int
min_subgraph_size_
;
void
operator
()();
const
std
::
string
name_
;
};
protected:
// Remove the nodes inside sub-graphs and replace with the SubGraphNode.
struct
NodeWrapper
{
void
ReplaceNodesWithSubGraphs
();
bool
deleted
{
false
};
bool
marked
{
false
};
private:
int
union_find_parent
{
-
1
};
Graph
*
graph_
;
std
::
vector
<
Node
*>
subgraph
;
NodeInsideSubgraphTeller
node_inside_subgraph_teller_
;
};
int
min_subgraph_size_
;
const
std
::
string
name_
;
/*
};
* ir::Node agent for subgraph detector.
*/
struct
NodeWrapper
{
struct
Agent
{
bool
deleted
{
false
};
explicit
Agent
(
Node
*
x
)
:
x_
(
x
)
{}
bool
marked
{
false
};
int
union_find_parent
{
-
1
};
NodeWrapper
&
wrapper
()
{
std
::
vector
<
framework
::
ir
::
Node
*>
subgraph
;
if
(
!
x_
->
IsWrappedBy
<
NodeWrapper
>
())
{
};
x_
->
WrappedBy
<
NodeWrapper
>
(
new
NodeWrapper
);
}
/*
return
x_
->
template
Wrapper
<
NodeWrapper
>();
* ir::Node agent for subgraph detector.
}
*/
struct
Agent
{
bool
deleted
()
{
return
wrapper
().
deleted
;
}
explicit
Agent
(
framework
::
ir
::
Node
*
x
)
:
x_
(
x
)
{}
void
set_deleted
(
bool
x
)
{
wrapper
().
deleted
=
x
;
}
NodeWrapper
&
wrapper
()
{
bool
marked
()
{
return
wrapper
().
marked
;
}
if
(
!
x_
->
IsWrappedBy
<
NodeWrapper
>
())
{
void
set_marked
(
bool
x
)
{
wrapper
().
marked
=
x
;
}
x_
->
WrappedBy
<
NodeWrapper
>
(
new
NodeWrapper
);
}
void
set_subgraph
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
x
)
{
return
x_
->
template
Wrapper
<
NodeWrapper
>();
wrapper
().
subgraph
=
x
;
}
}
bool
deleted
()
{
return
wrapper
().
deleted
;
}
int
union_find_parent
()
{
return
wrapper
().
union_find_parent
;
}
void
set_deleted
(
bool
x
)
{
wrapper
().
deleted
=
x
;
}
void
set_union_find_parent
(
int
v
)
{
wrapper
().
union_find_parent
=
v
;
}
bool
marked
()
{
return
wrapper
().
marked
;
}
std
::
vector
<
Node
*>
*
subgraph
()
{
return
&
wrapper
().
subgraph
;
}
void
set_marked
(
bool
x
)
{
wrapper
().
marked
=
x
;
}
std
::
vector
<
Node
*>
&
inputs
()
{
return
x_
->
inputs
;
}
std
::
vector
<
Node
*>
&
outputs
()
{
return
x_
->
outputs
;
}
void
set_subgraph
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
x
)
{
wrapper
().
subgraph
=
x
;
private:
}
Node
*
x_
;
};
int
union_find_parent
()
{
return
wrapper
().
union_find_parent
;
}
void
set_union_find_parent
(
int
v
)
{
wrapper
().
union_find_parent
=
v
;
}
// The nodes those have no input will be treated as start points.
static
std
::
vector
<
Node
*>
ExtractStartPoints
(
const
Graph
&
g
)
{
std
::
vector
<
framework
::
ir
::
Node
*>
*
subgraph
()
{
return
&
wrapper
().
subgraph
;
}
std
::
vector
<
Node
*>
result
;
std
::
vector
<
framework
::
ir
::
Node
*>
&
inputs
()
{
return
x_
->
inputs
;
}
for
(
auto
*
node
:
g
.
Nodes
())
{
std
::
vector
<
framework
::
ir
::
Node
*>
&
outputs
()
{
return
x_
->
outputs
;
}
if
(
node
->
inputs
.
empty
())
{
result
.
push_back
(
node
);
private:
}
framework
::
ir
::
Node
*
x_
;
}
};
return
result
;
}
// The nodes those have no input will be treated as start points.
static
std
::
vector
<
framework
::
ir
::
Node
*>
ExtractStartPoints
(
const
Graph
&
g
)
{
static
iterator_range
<
NodesTSIterator
>
TopologicalSort
(
const
Graph
&
g
)
{
std
::
vector
<
framework
::
ir
::
Node
*>
result
;
auto
start_points
=
ExtractStartPoints
(
g
);
for
(
auto
*
node
:
g
.
Nodes
())
{
PADDLE_ENFORCE_GT
(
if
(
node
->
inputs
.
empty
())
{
start_points
.
size
(),
0U
,
result
.
push_back
(
node
);
platform
::
errors
::
InvalidArgument
(
}
"Expected the number of graph's start points >= 1. Expected %d."
,
}
start_points
.
size
()));
return
result
;
NodesTSIterator
x
(
start_points
);
}
return
iterator_range
<
NodesTSIterator
>
(
NodesTSIterator
(
start_points
),
NodesTSIterator
());
static
iterator_range
<
NodesTSIterator
>
TopologicalSort
(
const
Graph
&
g
)
{
}
auto
start_points
=
ExtractStartPoints
(
g
);
PADDLE_ENFORCE
(
!
start_points
.
empty
());
}
// namespace ir
NodesTSIterator
x
(
start_points
);
}
// namespace framework
return
iterator_range
<
NodesTSIterator
>
(
NodesTSIterator
(
start_points
),
}
// namespace paddle
NodesTSIterator
());
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
b1401fb7
...
@@ -24,7 +24,6 @@
...
@@ -24,7 +24,6 @@
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
paddle
{
...
...
paddle/fluid/inference/analysis/ir_passes/CMakeLists.txt
浏览文件 @
b1401fb7
cc_library
(
subgraph_detector SRCS subgraph_detector.cc subgraph_util.cc DEPS proto_desc
)
cc_library
(
subgraph_util SRCS subgraph_util.cc DEPS subgraph_detector
)
if
(
WITH_TESTING
)
add_dependencies
(
subgraph_detector gtest
)
endif
()
if
(
WITH_GPU AND TENSORRT_FOUND
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
cc_library
(
tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass.cc DEPS subgraph_
detector
tensorrt_op_teller
)
cc_library
(
tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass.cc DEPS subgraph_
util
tensorrt_op_teller
)
set
(
analysis_deps
${
analysis_deps
}
set
(
analysis_deps
${
analysis_deps
}
subgraph_
detector
tensorrt_subgraph_pass
subgraph_
util
tensorrt_subgraph_pass
CACHE INTERNAL
""
)
CACHE INTERNAL
""
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
...
@@ -16,10 +13,10 @@ if (WITH_GPU AND TENSORRT_FOUND)
...
@@ -16,10 +13,10 @@ if (WITH_GPU AND TENSORRT_FOUND)
endif
()
endif
()
if
(
ANAKIN_SUBGRAPH
)
if
(
ANAKIN_SUBGRAPH
)
cc_library
(
anakin_subgraph_pass SRCS anakin_subgraph_pass.cc DEPS subgraph_
detector
anakin_op_teller
)
cc_library
(
anakin_subgraph_pass SRCS anakin_subgraph_pass.cc DEPS subgraph_
util
anakin_op_teller
)
set
(
analysis_deps
${
analysis_deps
}
set
(
analysis_deps
${
analysis_deps
}
subgraph_
detector
anakin_subgraph_pass
subgraph_
util
anakin_subgraph_pass
CACHE INTERNAL
""
)
CACHE INTERNAL
""
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
set
(
pass_file
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
)
...
...
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
浏览文件 @
b1401fb7
...
@@ -22,11 +22,11 @@
...
@@ -22,11 +22,11 @@
#include <vector>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#include "paddle/fluid/inference/anakin/op_teller.h"
#include "paddle/fluid/inference/anakin/op_teller.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -50,7 +50,7 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
...
@@ -50,7 +50,7 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
return
anakin
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
return
anakin
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
};
};
SubGraphFuser
fuser
(
graph
,
teller
,
6
/* min_subgraph_size */
);
framework
::
ir
::
SubGraphFuser
fuser
(
graph
,
teller
,
6
/* min_subgraph_size */
);
fuser
();
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
std
::
vector
<
std
::
string
>
graph_param_names
=
...
@@ -61,17 +61,18 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
...
@@ -61,17 +61,18 @@ void analysis::AnakinSubgraphPass::ApplyImpl(
std
::
vector
<
std
::
string
>
repetitive_params
;
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateAnakinOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
CreateAnakinOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
}
}
}
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
framework
::
ir
::
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
nodes2remove
.
insert
(
node
);
}
}
}
}
...
@@ -96,11 +97,11 @@ std::string GenerateAnakinEngineKey(const std::set<std::string> &engine_inputs,
...
@@ -96,11 +97,11 @@ std::string GenerateAnakinEngineKey(const std::set<std::string> &engine_inputs,
}
}
void
AnakinSubgraphPass
::
CreateAnakinOp
(
void
AnakinSubgraphPass
::
CreateAnakinOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
framework
::
ir
::
Node
*
node
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
framework
::
ProgramDesc
*
program_desc
=
framework
::
ProgramDesc
*
program_desc
=
...
@@ -164,7 +165,7 @@ void AnakinSubgraphPass::CreateAnakinOp(
...
@@ -164,7 +165,7 @@ void AnakinSubgraphPass::CreateAnakinOp(
graph_var_map
[
node
->
Name
()]
=
node
;
graph_var_map
[
node
->
Name
()]
=
node
;
}
}
}
}
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph_nodes
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
// variables and the output variables of the subgraph.
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
b1401fb7
...
@@ -17,8 +17,8 @@
...
@@ -17,8 +17,8 @@
#include <set>
#include <set>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
...
@@ -40,9 +40,9 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
...
@@ -40,9 +40,9 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
return
tensorrt
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
return
tensorrt
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
};
};
SubGraphFuser
fuser
(
graph
,
teller
,
framework
::
ir
::
SubGraphFuser
fuser
(
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
,
graph
,
teller
,
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
,
"tensorrt_engine"
);
"tensorrt_engine"
);
fuser
();
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
std
::
vector
<
std
::
string
>
graph_param_names
=
...
@@ -52,18 +52,19 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
...
@@ -52,18 +52,19 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
std
::
vector
<
std
::
string
>
repetitive_params
;
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
if
(
node
->
IsOp
()
&&
!
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateTensorRTOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
CreateTensorRTOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
}
}
}
}
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
std
::
unordered_set
<
const
Node
*>
nodes2remove
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
Agent
(
node
).
deleted
())
{
if
(
node
->
IsOp
()
&&
framework
::
ir
::
Agent
(
node
).
deleted
())
{
nodes2remove
.
insert
(
node
);
nodes2remove
.
insert
(
node
);
}
}
}
}
...
@@ -88,11 +89,11 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
...
@@ -88,11 +89,11 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
}
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
framework
::
ir
::
Node
*
node
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
framework
::
ProgramDesc
*
program_desc
=
framework
::
ProgramDesc
*
program_desc
=
...
@@ -161,7 +162,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
...
@@ -161,7 +162,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
if
(
precision_mode
==
AnalysisConfig
::
Precision
::
kHalf
)
enable_fp16
=
true
;
if
(
precision_mode
==
AnalysisConfig
::
Precision
::
kHalf
)
enable_fp16
=
true
;
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
use_calib_mode
=
Get
<
bool
>
(
"use_calib_mode"
);
auto
use_calib_mode
=
Get
<
bool
>
(
"use_calib_mode"
);
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
auto
&
subgraph_nodes
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
// variables and the output variables of the subgraph.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录