Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b106c424
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b106c424
编写于
9月 27, 2022
作者:
W
wanghuancoder
提交者:
GitHub
9月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] refine gil use (#46452)
* refine gil use
上级
a02eb143
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
487 addition
and
428 deletion
+487
-428
paddle/fluid/eager/pylayer/py_layer_node.cc
paddle/fluid/eager/pylayer/py_layer_node.cc
+5
-0
paddle/fluid/eager/pylayer/py_layer_node.h
paddle/fluid/eager/pylayer/py_layer_node.h
+1
-1
paddle/fluid/pybind/eager_functions.cc
paddle/fluid/pybind/eager_functions.cc
+420
-391
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+61
-36
未找到文件。
paddle/fluid/eager/pylayer/py_layer_node.cc
浏览文件 @
b106c424
...
@@ -27,6 +27,11 @@
...
@@ -27,6 +27,11 @@
#include "pybind11/pytypes.h"
#include "pybind11/pytypes.h"
namespace
egr
{
namespace
egr
{
GradNodePyLayer
::~
GradNodePyLayer
()
{
pybind11
::
gil_scoped_acquire
gil
;
Py_XDECREF
(
ctx_
);
}
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
kSlotSmallVectorSize
>
GradNodePyLayer
::
operator
()(
GradNodePyLayer
::
operator
()(
...
...
paddle/fluid/eager/pylayer/py_layer_node.h
浏览文件 @
b106c424
...
@@ -34,7 +34,7 @@ class GradNodePyLayer : public GradNodeBase {
...
@@ -34,7 +34,7 @@ class GradNodePyLayer : public GradNodeBase {
Py_INCREF
(
ctx_
);
Py_INCREF
(
ctx_
);
}
}
~
GradNodePyLayer
()
override
{
Py_XDECREF
(
ctx_
);
}
;
~
GradNodePyLayer
()
override
;
virtual
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
virtual
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
kSlotSmallVectorSize
>
...
...
paddle/fluid/pybind/eager_functions.cc
浏览文件 @
b106c424
...
@@ -107,12 +107,18 @@ static PyObject* eager_api_scale(PyObject* self,
...
@@ -107,12 +107,18 @@ static PyObject* eager_api_scale(PyObject* self,
PyObject
*
kwargs
)
{
PyObject
*
kwargs
)
{
EAGER_TRY
EAGER_TRY
// TODO(jiabin): Sync Tensor and Variable here when we support
// TODO(jiabin): Sync Tensor and Variable here when we support
paddle
::
experimental
::
Tensor
ret
=
egr
::
scale
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
,
auto
&
tensor
=
CastPyArg2AttrFloat
(
PyTuple_GET_ITEM
(
args
,
1
),
1
),
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
;
CastPyArg2AttrFloat
(
PyTuple_GET_ITEM
(
args
,
2
),
2
),
float
scale
=
CastPyArg2AttrFloat
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
),
float
bias
=
CastPyArg2AttrFloat
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
4
),
4
));
bool
bias_after_scale
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
bool
trace_backward
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
4
),
4
);
paddle
::
experimental
::
Tensor
ret
;
{
eager_gil_scoped_release
guard
;
ret
=
egr
::
scale
(
tensor
,
scale
,
bias
,
bias_after_scale
,
trace_backward
);
}
return
ToPyObject
(
ret
);
return
ToPyObject
(
ret
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -123,11 +129,10 @@ static PyObject* eager_api_run_backward(PyObject* self,
...
@@ -123,11 +129,10 @@ static PyObject* eager_api_run_backward(PyObject* self,
EAGER_TRY
EAGER_TRY
auto
tensors
=
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
auto
tensors
=
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
auto
grad_tensors
=
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
auto
grad_tensors
=
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
bool
retain_graph
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
{
{
eager_gil_scoped_release
guard
;
eager_gil_scoped_release
guard
;
egr
::
Backward
(
tensors
,
egr
::
Backward
(
tensors
,
grad_tensors
,
retain_graph
);
grad_tensors
,
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
2
),
2
));
}
}
RETURN_PY_NONE
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
...
@@ -156,8 +161,8 @@ static PyObject* eager_api_run_partial_grad(PyObject* self,
...
@@ -156,8 +161,8 @@ static PyObject* eager_api_run_partial_grad(PyObject* self,
only_inputs
,
only_inputs
,
allow_unused
,
allow_unused
,
no_grad_vars
);
no_grad_vars
);
}
VLOG
(
1
)
<<
" in eager_api_run_partial_grad, after runing egr::Grad"
;
VLOG
(
1
)
<<
" in eager_api_run_partial_grad, after runing egr::Grad"
;
}
return
ToPyObject
(
result
,
true
/* return_py_none_if_not_initialize */
);
return
ToPyObject
(
result
,
true
/* return_py_none_if_not_initialize */
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -173,11 +178,14 @@ static PyObject* eager_api_tensor_copy(PyObject* self,
...
@@ -173,11 +178,14 @@ static PyObject* eager_api_tensor_copy(PyObject* self,
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
bool
blocking
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
bool
blocking
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
{
eager_gil_scoped_release
guard
;
dst
=
src
.
copy_to
(
place
,
blocking
);
dst
=
src
.
copy_to
(
place
,
blocking
);
egr
::
EagerUtils
::
autograd_meta
(
&
dst
)
->
SetStopGradient
(
egr
::
EagerUtils
::
autograd_meta
(
&
dst
)
->
SetStopGradient
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
src
))
->
StopGradient
());
egr
::
EagerUtils
::
autograd_meta
(
&
(
src
))
->
StopGradient
());
egr
::
EagerUtils
::
autograd_meta
(
&
dst
)
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
dst
)
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
src
))
->
Persistable
());
egr
::
EagerUtils
::
autograd_meta
(
&
(
src
))
->
Persistable
());
}
RETURN_PY_NONE
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -378,7 +386,11 @@ static PyObject* eager_api_jit_function_call(PyObject* self,
...
@@ -378,7 +386,11 @@ static PyObject* eager_api_jit_function_call(PyObject* self,
CastPyArg2JitFunction
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
CastPyArg2JitFunction
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
std
::
vector
<
paddle
::
experimental
::
Tensor
>
ins
=
std
::
vector
<
paddle
::
experimental
::
Tensor
>
ins
=
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
CastPyArg2VectorOfTensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
std
::
vector
<
paddle
::
experimental
::
Tensor
>
outs
=
(
*
function
)(
ins
);
std
::
vector
<
paddle
::
experimental
::
Tensor
>
outs
;
{
eager_gil_scoped_release
guard
;
outs
=
(
*
function
)(
ins
);
}
return
ToPyObject
(
outs
);
return
ToPyObject
(
outs
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -391,10 +403,13 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
...
@@ -391,10 +403,13 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
CastPyArg2CustomOpKernelContext
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
CastPyArg2CustomOpKernelContext
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
std
::
string
op_type
=
CastPyArg2AttrString
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
std
::
string
op_type
=
CastPyArg2AttrString
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
bool
trace_backward
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
bool
trace_backward
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
{
eager_gil_scoped_release
guard
;
VLOG
(
7
)
<<
"Get things for python for Custom Op: "
<<
op_type
VLOG
(
7
)
<<
"Get things for python for Custom Op: "
<<
op_type
<<
", trace_backward is: "
<<
trace_backward
;
<<
", trace_backward is: "
<<
trace_backward
;
auto
meta_info_map
=
egr
::
Controller
::
Instance
().
GetOpMetaInfoMap
();
auto
meta_info_map
=
egr
::
Controller
::
Instance
().
GetOpMetaInfoMap
();
PADDLE_ENFORCE_NE
(
meta_info_map
.
find
(
op_type
),
PADDLE_ENFORCE_NE
(
meta_info_map
.
find
(
op_type
),
meta_info_map
.
end
(),
meta_info_map
.
end
(),
paddle
::
platform
::
errors
::
NotFound
(
paddle
::
platform
::
errors
::
NotFound
(
"Can't find %s in Eager OpMetaInfoMap which should be "
"Can't find %s in Eager OpMetaInfoMap which should be "
...
@@ -454,8 +469,8 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
...
@@ -454,8 +469,8 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
if
(
slot_map
[
0
][
0
].
find
(
i
)
!=
slot_map
[
0
][
0
].
end
())
{
if
(
slot_map
[
0
][
0
].
find
(
i
)
!=
slot_map
[
0
][
0
].
end
())
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
slot_map
[
0
][
0
][
i
]);
grad_node
->
SetGradOutMeta
(
in_tensors
,
slot_map
[
0
][
0
][
i
]);
}
else
{
}
else
{
grad_node
->
SetGradOutMeta
(
in_tensors
,
grad_node
->
SetGradOutMeta
(
ins_auto_grad_metas
.
size
()
-
1
-
no_grad_cnt
);
in_tensors
,
ins_auto_grad_metas
.
size
()
-
1
-
no_grad_cnt
);
no_grad_cnt
++
;
no_grad_cnt
++
;
}
}
}
}
...
@@ -502,6 +517,7 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
...
@@ -502,6 +517,7 @@ static PyObject* eager_api_run_costum_op(PyObject* self,
}
}
grad_node
->
SetAttrs
(
attrs
);
grad_node
->
SetAttrs
(
attrs
);
}
}
}
RETURN_PY_NONE
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -514,6 +530,9 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
...
@@ -514,6 +530,9 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
auto
non_zero_elements
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
auto
non_zero_elements
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
auto
dense_shape
=
CastPyArg2VectorOfInt
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
auto
dense_shape
=
CastPyArg2VectorOfInt
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
auto
stop_gradient
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
auto
stop_gradient
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
paddle
::
experimental
::
Tensor
tensor
;
{
eager_gil_scoped_release
guard
;
PADDLE_ENFORCE
(
non_zero_indices
.
is_dense_tensor
(),
PADDLE_ENFORCE
(
non_zero_indices
.
is_dense_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
paddle
::
platform
::
errors
::
Fatal
(
"the non-zero indices must be a DenseTensor."
));
"the non-zero indices must be a DenseTensor."
));
...
@@ -524,12 +543,11 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
...
@@ -524,12 +543,11 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
non_zero_indices
.
impl
());
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
non_zero_indices
.
impl
());
auto
dense_elements
=
auto
dense_elements
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
non_zero_elements
.
impl
());
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
non_zero_elements
.
impl
());
// TODO(zhangkaihuo): After creating SparseCooTensor, call coalesced() to sort
// TODO(zhangkaihuo): After creating SparseCooTensor, call coalesced() to
//
and merge duplicate indices
// sort
and merge duplicate indices
std
::
shared_ptr
<
phi
::
SparseCooTensor
>
coo_tensor
=
std
::
shared_ptr
<
phi
::
SparseCooTensor
>
coo_tensor
=
std
::
make_shared
<
phi
::
SparseCooTensor
>
(
std
::
make_shared
<
phi
::
SparseCooTensor
>
(
*
dense_indices
,
*
dense_elements
,
phi
::
make_ddim
(
dense_shape
));
*
dense_indices
,
*
dense_elements
,
phi
::
make_ddim
(
dense_shape
));
paddle
::
experimental
::
Tensor
tensor
;
tensor
.
set_impl
(
coo_tensor
);
tensor
.
set_impl
(
coo_tensor
);
auto
name
=
auto
name
=
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"generated_tensor"
);
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"generated_tensor"
);
...
@@ -542,6 +560,7 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
...
@@ -542,6 +560,7 @@ static PyObject* eager_api_sparse_coo_tensor(PyObject* self,
autograd_meta
->
SetGradNode
(
autograd_meta
->
SetGradNode
(
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
(
autograd_meta
));
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
(
autograd_meta
));
}
}
}
return
ToPyObject
(
tensor
);
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -555,6 +574,9 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
...
@@ -555,6 +574,9 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
auto
non_zero_elements
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
auto
non_zero_elements
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
2
),
2
);
auto
dense_shape
=
CastPyArg2VectorOfInt
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
auto
dense_shape
=
CastPyArg2VectorOfInt
(
PyTuple_GET_ITEM
(
args
,
3
),
3
);
auto
stop_gradient
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
4
),
4
);
auto
stop_gradient
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
4
),
4
);
paddle
::
experimental
::
Tensor
tensor
;
{
eager_gil_scoped_release
guard
;
PADDLE_ENFORCE
(
non_zero_crows
.
is_dense_tensor
(),
PADDLE_ENFORCE
(
non_zero_crows
.
is_dense_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
paddle
::
platform
::
errors
::
Fatal
(
"the compressed non-zero rows must be a DenseTensor."
));
"the compressed non-zero rows must be a DenseTensor."
));
...
@@ -576,7 +598,6 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
...
@@ -576,7 +598,6 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
*
dense_cols
,
*
dense_cols
,
*
dense_elements
,
*
dense_elements
,
phi
::
make_ddim
(
dense_shape
));
phi
::
make_ddim
(
dense_shape
));
paddle
::
experimental
::
Tensor
tensor
;
tensor
.
set_impl
(
csr_tensor
);
tensor
.
set_impl
(
csr_tensor
);
auto
name
=
auto
name
=
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"generated_tensor"
);
egr
::
Controller
::
Instance
().
GenerateUniqueName
(
"generated_tensor"
);
...
@@ -589,6 +610,7 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
...
@@ -589,6 +610,7 @@ static PyObject* eager_api_sparse_csr_tensor(PyObject* self,
autograd_meta
->
SetGradNode
(
autograd_meta
->
SetGradNode
(
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
(
autograd_meta
));
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
(
autograd_meta
));
}
}
}
return
ToPyObject
(
tensor
);
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -626,6 +648,8 @@ static PyObject* eager_api_async_read(PyObject* self,
...
@@ -626,6 +648,8 @@ static PyObject* eager_api_async_read(PyObject* self,
auto
&
buffer
=
GetTensorFromArgs
(
"async_read"
,
"buffer"
,
args
,
3
,
false
);
auto
&
buffer
=
GetTensorFromArgs
(
"async_read"
,
"buffer"
,
args
,
3
,
false
);
auto
&
offset
=
GetTensorFromArgs
(
"async_read"
,
"offset"
,
args
,
4
,
false
);
auto
&
offset
=
GetTensorFromArgs
(
"async_read"
,
"offset"
,
args
,
4
,
false
);
auto
&
count
=
GetTensorFromArgs
(
"async_read"
,
"count"
,
args
,
5
,
false
);
auto
&
count
=
GetTensorFromArgs
(
"async_read"
,
"count"
,
args
,
5
,
false
);
{
eager_gil_scoped_release
guard
;
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
src
.
is_gpu_pinned
(),
src
.
is_gpu_pinned
(),
true
,
true
,
...
@@ -683,7 +707,8 @@ static PyObject* eager_api_async_read(PyObject* self,
...
@@ -683,7 +707,8 @@ static PyObject* eager_api_async_read(PyObject* self,
"`src` and `buffer` should have same tensor shape, "
"`src` and `buffer` should have same tensor shape, "
"except for the first dimension."
));
"except for the first dimension."
));
for
(
int
i
=
1
;
i
<
src_tensor
.
dims
().
size
();
i
++
)
{
for
(
int
i
=
1
;
i
<
src_tensor
.
dims
().
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
src_tensor
.
dims
()[
i
],
PADDLE_ENFORCE_EQ
(
src_tensor
.
dims
()[
i
],
dst_tensor
->
dims
()[
i
],
dst_tensor
->
dims
()[
i
],
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"`src` and `dst` should have the same tensor shape, "
"`src` and `dst` should have the same tensor shape, "
...
@@ -724,27 +749,27 @@ static PyObject* eager_api_async_read(PyObject* self,
...
@@ -724,27 +749,27 @@ static PyObject* eager_api_async_read(PyObject* self,
for
(
int64_t
i
=
0
;
i
<
count_tensor
.
numel
();
i
++
)
{
for
(
int64_t
i
=
0
;
i
<
count_tensor
.
numel
();
i
++
)
{
numel
+=
count_data
[
i
];
numel
+=
count_data
[
i
];
}
}
PADDLE_ENFORCE_LE
(
PADDLE_ENFORCE_LE
(
numel
+
index_tensor
.
numel
(),
numel
+
index_tensor
.
numel
(),
buffer_tensor
->
dims
()[
0
],
buffer_tensor
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"Buffer tensor size is too small."
));
platform
::
errors
::
InvalidArgument
(
PADDLE_ENFORCE_LE
(
"Buffer tensor size is too small."
));
numel
+
index_tensor
.
numel
(),
PADDLE_ENFORCE_LE
(
numel
+
index_tensor
.
numel
(),
dst_tensor
->
dims
()[
0
],
dst_tensor
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"Target tensor size is too small."
));
platform
::
errors
::
InvalidArgument
(
"Target tensor size is too small."
));
int64_t
src_offset
,
dst_offset
=
0
,
c
;
int64_t
src_offset
,
dst_offset
=
0
,
c
;
auto
*
src_data
=
src_tensor
.
data
<
float
>
();
auto
*
src_data
=
src_tensor
.
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
offset_tensor
.
numel
();
i
++
)
{
for
(
int64_t
i
=
0
;
i
<
offset_tensor
.
numel
();
i
++
)
{
src_offset
=
offset_data
[
i
],
c
=
count_data
[
i
];
src_offset
=
offset_data
[
i
],
c
=
count_data
[
i
];
PADDLE_ENFORCE_LE
(
PADDLE_ENFORCE_LE
(
src_offset
+
c
,
src_offset
+
c
,
src_tensor
.
dims
()[
0
],
src_tensor
.
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"Invalid offset or count index."
));
platform
::
errors
::
InvalidArgument
(
PADDLE_ENFORCE_LE
(
"Invalid offset or count index."
));
dst_offset
+
c
,
PADDLE_ENFORCE_LE
(
dst_offset
+
c
,
dst_tensor
->
dims
()[
0
],
dst_tensor
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"Invalid offset or count index."
));
platform
::
errors
::
InvalidArgument
(
"Invalid offset or count index."
));
cudaMemcpyAsync
(
dst_data
+
(
dst_offset
*
size
),
cudaMemcpyAsync
(
dst_data
+
(
dst_offset
*
size
),
src_data
+
(
src_offset
*
size
),
src_data
+
(
src_offset
*
size
),
c
*
size
*
sizeof
(
float
),
c
*
size
*
sizeof
(
float
),
...
@@ -753,10 +778,10 @@ static PyObject* eager_api_async_read(PyObject* self,
...
@@ -753,10 +778,10 @@ static PyObject* eager_api_async_read(PyObject* self,
dst_offset
+=
c
;
dst_offset
+=
c
;
}
}
}
else
{
}
else
{
PADDLE_ENFORCE_LE
(
PADDLE_ENFORCE_LE
(
index_tensor
.
numel
(),
index_tensor
.
numel
(),
buffer_tensor
->
dims
()[
0
],
buffer_tensor
->
dims
()[
0
],
platform
::
errors
::
InvalidArgument
(
"Buffer tensor size is too small."
));
platform
::
errors
::
InvalidArgument
(
"Buffer tensor size is too small."
));
}
}
// Select the index data to the buffer
// Select the index data to the buffer
...
@@ -784,6 +809,7 @@ static PyObject* eager_api_async_read(PyObject* self,
...
@@ -784,6 +809,7 @@ static PyObject* eager_api_async_read(PyObject* self,
index_tensor
.
numel
()
*
size
*
sizeof
(
float
),
index_tensor
.
numel
()
*
size
*
sizeof
(
float
),
cudaMemcpyHostToDevice
,
cudaMemcpyHostToDevice
,
stream
);
stream
);
}
RETURN_PY_NONE
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -796,6 +822,8 @@ static PyObject* eager_api_async_write(PyObject* self,
...
@@ -796,6 +822,8 @@ static PyObject* eager_api_async_write(PyObject* self,
auto
&
dst
=
GetTensorFromArgs
(
"async_write"
,
"dst"
,
args
,
1
,
false
);
auto
&
dst
=
GetTensorFromArgs
(
"async_write"
,
"dst"
,
args
,
1
,
false
);
auto
&
offset
=
GetTensorFromArgs
(
"async_write"
,
"offset"
,
args
,
2
,
false
);
auto
&
offset
=
GetTensorFromArgs
(
"async_write"
,
"offset"
,
args
,
2
,
false
);
auto
&
count
=
GetTensorFromArgs
(
"async_write"
,
"count"
,
args
,
3
,
false
);
auto
&
count
=
GetTensorFromArgs
(
"async_write"
,
"count"
,
args
,
3
,
false
);
{
eager_gil_scoped_release
guard
;
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
src
.
is_gpu
(),
src
.
is_gpu
(),
true
,
true
,
...
@@ -847,7 +875,8 @@ static PyObject* eager_api_async_write(PyObject* self,
...
@@ -847,7 +875,8 @@ static PyObject* eager_api_async_write(PyObject* self,
"`src` and `dst` should have the same tensor shape, "
"`src` and `dst` should have the same tensor shape, "
"except for the first dimension."
));
"except for the first dimension."
));
for
(
int
i
=
1
;
i
<
src_tensor
.
dims
().
size
();
i
++
)
{
for
(
int
i
=
1
;
i
<
src_tensor
.
dims
().
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
src_tensor
.
dims
()[
i
],
PADDLE_ENFORCE_EQ
(
src_tensor
.
dims
()[
i
],
dst_tensor
->
dims
()[
i
],
dst_tensor
->
dims
()[
i
],
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
"`src` and `dst` should have the same tensor shape, "
"`src` and `dst` should have the same tensor shape, "
...
@@ -879,6 +908,7 @@ static PyObject* eager_api_async_write(PyObject* self,
...
@@ -879,6 +908,7 @@ static PyObject* eager_api_async_write(PyObject* self,
stream
);
stream
);
src_offset
+=
c
;
src_offset
+=
c
;
}
}
}
RETURN_PY_NONE
RETURN_PY_NONE
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -929,7 +959,6 @@ static PyObject* eager_api_to_uva_tensor(PyObject* self,
...
@@ -929,7 +959,6 @@ static PyObject* eager_api_to_uva_tensor(PyObject* self,
"float64, int8, int16, int32, int64,"
"float64, int8, int16, int32, int64,"
"please check your input or input array data type."
));
"please check your input or input array data type."
));
}
}
return
ToPyObject
(
*
(
new_tensor
.
get
()));
return
ToPyObject
(
*
(
new_tensor
.
get
()));
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
b106c424
...
@@ -156,6 +156,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
...
@@ -156,6 +156,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
}
}
if
(
self
->
tensor
.
is_cpu
()
||
self
->
tensor
.
is_gpu_pinned
())
{
if
(
self
->
tensor
.
is_cpu
()
||
self
->
tensor
.
is_gpu_pinned
())
{
eager_gil_scoped_release
guard
;
platform
::
CPUPlace
place
;
platform
::
CPUPlace
place
;
if
(
self
->
tensor
.
is_selected_rows
())
{
if
(
self
->
tensor
.
is_selected_rows
())
{
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
...
@@ -186,6 +187,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
...
@@ -186,6 +187,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
}
else
if
(
self
->
tensor
.
is_gpu
())
{
}
else
if
(
self
->
tensor
.
is_gpu
())
{
eager_gil_scoped_release
guard
;
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA)
gpuMemcpyKind
kind
=
cudaMemcpyDeviceToHost
;
gpuMemcpyKind
kind
=
cudaMemcpyDeviceToHost
;
#elif defined(PADDLE_WITH_HIP)
#elif defined(PADDLE_WITH_HIP)
...
@@ -244,6 +246,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
...
@@ -244,6 +246,7 @@ static PyObject* tensor_method_numpy(TensorObject* self,
#endif
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#ifdef PADDLE_WITH_CUSTOM_DEVICE
}
else
if
(
self
->
tensor
.
is_custom_device
())
{
}
else
if
(
self
->
tensor
.
is_custom_device
())
{
eager_gil_scoped_release
guard
;
if
(
self
->
tensor
.
is_selected_rows
())
{
if
(
self
->
tensor
.
is_selected_rows
())
{
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
auto
*
selected_rows
=
auto
*
selected_rows
=
...
@@ -311,8 +314,8 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
...
@@ -311,8 +314,8 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
const
auto
*
st_ptr
=
string_tensor
->
data
();
const
auto
*
st_ptr
=
string_tensor
->
data
();
auto
numel
=
self
->
tensor
.
numel
();
auto
numel
=
self
->
tensor
.
numel
();
auto
tensor_dims
=
self
->
tensor
.
shape
();
auto
tensor_dims
=
self
->
tensor
.
shape
();
// Get the max unicode length of StringTensor to create numpy unicode
string
// Get the max unicode length of StringTensor to create numpy unicode
// array.
//
string
array.
auto
*
longest_pstring
=
std
::
max_element
(
auto
*
longest_pstring
=
std
::
max_element
(
st_ptr
,
st_ptr
+
numel
,
[](
const
auto
&
a
,
const
auto
&
b
)
{
st_ptr
,
st_ptr
+
numel
,
[](
const
auto
&
a
,
const
auto
&
b
)
{
auto
a_unicode_len
=
auto
a_unicode_len
=
...
@@ -394,7 +397,10 @@ static PyObject* tensor_method__copy_to(TensorObject* self,
...
@@ -394,7 +397,10 @@ static PyObject* tensor_method__copy_to(TensorObject* self,
EAGER_TRY
EAGER_TRY
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
bool
blocking
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
bool
blocking
=
CastPyArg2AttrBoolean
(
PyTuple_GET_ITEM
(
args
,
1
),
1
);
auto
cp_tensor
=
self
->
tensor
.
copy_to
(
place
,
blocking
);
paddle
::
experimental
::
Tensor
cp_tensor
;
{
eager_gil_scoped_release
guard
;
cp_tensor
=
self
->
tensor
.
copy_to
(
place
,
blocking
);
if
(
!
blocking
)
{
if
(
!
blocking
)
{
IncreaseTensorReferenceCountUntilCopyComplete
(
self
->
tensor
,
place
);
IncreaseTensorReferenceCountUntilCopyComplete
(
self
->
tensor
,
place
);
}
}
...
@@ -402,6 +408,7 @@ static PyObject* tensor_method__copy_to(TensorObject* self,
...
@@ -402,6 +408,7 @@ static PyObject* tensor_method__copy_to(TensorObject* self,
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
->
SetPersistable
(
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
}
return
ToPyObject
(
cp_tensor
);
return
ToPyObject
(
cp_tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -410,11 +417,15 @@ static PyObject* tensor_method_cpu(TensorObject* self,
...
@@ -410,11 +417,15 @@ static PyObject* tensor_method_cpu(TensorObject* self,
PyObject
*
args
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
PyObject
*
kwargs
)
{
EAGER_TRY
EAGER_TRY
auto
cp_tensor
=
self
->
tensor
.
copy_to
(
phi
::
CPUPlace
(),
true
);
paddle
::
experimental
::
Tensor
cp_tensor
;
{
eager_gil_scoped_release
guard
;
cp_tensor
=
self
->
tensor
.
copy_to
(
phi
::
CPUPlace
(),
true
);
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
->
SetStopGradient
(
true
);
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
->
SetStopGradient
(
true
);
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
egr
::
EagerUtils
::
autograd_meta
(
&
cp_tensor
)
->
SetPersistable
(
->
SetPersistable
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
Persistable
());
}
return
ToPyObject
(
cp_tensor
);
return
ToPyObject
(
cp_tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -450,6 +461,7 @@ static PyObject* tensor_method_copy_(TensorObject* self,
...
@@ -450,6 +461,7 @@ static PyObject* tensor_method_copy_(TensorObject* self,
VLOG
(
6
)
<<
"Start Copy Tensor "
<<
src_tensor
.
name
()
<<
" to "
VLOG
(
6
)
<<
"Start Copy Tensor "
<<
src_tensor
.
name
()
<<
" to "
<<
self
->
tensor
.
name
();
<<
self
->
tensor
.
name
();
if
(
!
self
->
tensor
.
initialized
())
{
if
(
!
self
->
tensor
.
initialized
())
{
eager_gil_scoped_release
guard
;
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
))
->
SetStopGradient
(
->
SetStopGradient
(
egr
::
EagerUtils
::
autograd_meta
(
&
(
src_tensor
))
->
StopGradient
());
egr
::
EagerUtils
::
autograd_meta
(
&
(
src_tensor
))
->
StopGradient
());
...
@@ -461,6 +473,7 @@ static PyObject* tensor_method_copy_(TensorObject* self,
...
@@ -461,6 +473,7 @@ static PyObject* tensor_method_copy_(TensorObject* self,
}
}
}
else
{
}
else
{
if
(
src_tensor
.
initialized
())
{
if
(
src_tensor
.
initialized
())
{
eager_gil_scoped_release
guard
;
self
->
tensor
.
copy_
(
src_tensor
,
self
->
tensor
.
place
(),
blocking
);
self
->
tensor
.
copy_
(
src_tensor
,
self
->
tensor
.
place
(),
blocking
);
}
}
}
}
...
@@ -476,7 +489,9 @@ static PyObject* tensor_method_clone(TensorObject* self,
...
@@ -476,7 +489,9 @@ static PyObject* tensor_method_clone(TensorObject* self,
PyObject
*
args
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
PyObject
*
kwargs
)
{
EAGER_TRY
EAGER_TRY
paddle
::
experimental
::
Tensor
out
;
{
eager_gil_scoped_release
guard
;
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
self
->
tensor
.
initialized
(),
true
,
true
,
...
@@ -485,7 +500,8 @@ static PyObject* tensor_method_clone(TensorObject* self,
...
@@ -485,7 +500,8 @@ static PyObject* tensor_method_clone(TensorObject* self,
"uninitialized tensor %s, please check your code."
,
"uninitialized tensor %s, please check your code."
,
self
->
tensor
.
name
()));
self
->
tensor
.
name
()));
auto
out
=
assign_ad_func
(
self
->
tensor
);
out
=
assign_ad_func
(
self
->
tensor
);
}
return
ToPyObject
(
out
);
return
ToPyObject
(
out
);
EAGER_CATCH_AND_THROW_RETURN_NULL
EAGER_CATCH_AND_THROW_RETURN_NULL
}
}
...
@@ -495,6 +511,7 @@ static PyObject* tensor_retain_grads(TensorObject* self,
...
@@ -495,6 +511,7 @@ static PyObject* tensor_retain_grads(TensorObject* self,
PyObject
*
kwargs
)
{
PyObject
*
kwargs
)
{
EAGER_TRY
EAGER_TRY
if
(
egr
::
Controller
::
Instance
().
HasGrad
())
{
if
(
egr
::
Controller
::
Instance
().
HasGrad
())
{
eager_gil_scoped_release
guard
;
auto
meta
=
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
));
auto
meta
=
egr
::
EagerUtils
::
autograd_meta
(
&
(
self
->
tensor
));
if
(
!
meta
->
GetMutableGradNode
())
{
if
(
!
meta
->
GetMutableGradNode
())
{
VLOG
(
6
)
<<
"Make grad node of tensor: "
<<
self
->
tensor
.
name
()
VLOG
(
6
)
<<
"Make grad node of tensor: "
<<
self
->
tensor
.
name
()
...
@@ -535,6 +552,7 @@ static PyObject* tensor_clear_gradient(TensorObject* self,
...
@@ -535,6 +552,7 @@ static PyObject* tensor_clear_gradient(TensorObject* self,
}
}
if
(
grad
->
impl
())
{
if
(
grad
->
impl
())
{
eager_gil_scoped_release
guard
;
if
(
grad
->
is_selected_rows
())
{
if
(
grad
->
is_selected_rows
())
{
auto
selected_rows
=
auto
selected_rows
=
std
::
dynamic_pointer_cast
<
phi
::
SelectedRows
>
(
grad
->
impl
());
std
::
dynamic_pointer_cast
<
phi
::
SelectedRows
>
(
grad
->
impl
());
...
@@ -577,6 +595,7 @@ static PyObject* tensor__zero_grads(TensorObject* self,
...
@@ -577,6 +595,7 @@ static PyObject* tensor__zero_grads(TensorObject* self,
VLOG
(
4
)
<<
"ZeroGrads "
<<
self
->
tensor
.
name
();
VLOG
(
4
)
<<
"ZeroGrads "
<<
self
->
tensor
.
name
();
if
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
))
{
if
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
))
{
eager_gil_scoped_release
guard
;
// Add RetainGrad as PostHook to AccumulationNode
// Add RetainGrad as PostHook to AccumulationNode
paddle
::
experimental
::
Tensor
*
grad
=
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
...
@@ -595,6 +614,7 @@ static PyObject* tensor__zero_grads(TensorObject* self,
...
@@ -595,6 +614,7 @@ static PyObject* tensor__zero_grads(TensorObject* self,
}
}
}
}
}
else
{
}
else
{
eager_gil_scoped_release
guard
;
auto
meta
=
egr
::
EagerUtils
::
unsafe_autograd_meta
(
self
->
tensor
);
auto
meta
=
egr
::
EagerUtils
::
unsafe_autograd_meta
(
self
->
tensor
);
if
(
meta
->
MutableGrad
()
->
initialized
())
{
if
(
meta
->
MutableGrad
()
->
initialized
())
{
if
(
meta
->
MutableGrad
()
->
is_dense_tensor
())
{
if
(
meta
->
MutableGrad
()
->
is_dense_tensor
())
{
...
@@ -855,6 +875,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
...
@@ -855,6 +875,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
decrease_axis
.
end
());
decrease_axis
.
end
());
if
(
op_type
==
"slice"
)
{
if
(
op_type
==
"slice"
)
{
eager_gil_scoped_release
guard
;
out
=
slice_ad_func
(
self
->
tensor
,
out
=
slice_ad_func
(
self
->
tensor
,
slice_axes_tmp
,
slice_axes_tmp
,
slice_starts
,
slice_starts
,
...
@@ -862,6 +883,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
...
@@ -862,6 +883,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
infer_flags_tmp
,
infer_flags_tmp
,
decrease_axis_tmp
);
decrease_axis_tmp
);
}
else
if
(
op_type
==
"strided_slice"
)
{
}
else
if
(
op_type
==
"strided_slice"
)
{
eager_gil_scoped_release
guard
;
out
=
strided_slice_ad_func
(
out
=
strided_slice_ad_func
(
self
->
tensor
,
slice_axes
,
slice_starts
,
slice_ends
,
slice_strides
);
self
->
tensor
,
slice_axes
,
slice_starts
,
slice_ends
,
slice_strides
);
}
else
{
}
else
{
...
@@ -886,6 +908,9 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
...
@@ -886,6 +908,9 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
none_axes
.
pop_back
();
none_axes
.
pop_back
();
}
}
if
(
!
none_axes
.
empty
())
{
if
(
!
none_axes
.
empty
())
{
paddle
::
experimental
::
Tensor
new_out
;
{
eager_gil_scoped_release
guard
;
// Deal with cases that decrease_axes is not empty
// Deal with cases that decrease_axes is not empty
// For example:
// For example:
// # x.shape: (2,3,4)
// # x.shape: (2,3,4)
...
@@ -899,15 +924,15 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
...
@@ -899,15 +924,15 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
}
}
axis
-=
len
;
axis
-=
len
;
}
}
paddle
::
experimental
::
Tensor
new_out
;
new_out
=
unsqueeze_ad_func
(
out
,
none_axes
);
new_out
=
unsqueeze_ad_func
(
out
,
none_axes
);
}
return
ToPyObject
(
new_out
);
return
ToPyObject
(
new_out
);
}
}
}
}
// the index is a list
// the index is a list
if
(
list_select_flag
)
{
if
(
list_select_flag
)
{
eager_gil_scoped_release
guard
;
auto
select_index
=
paddle
::
experimental
::
Tensor
(
auto
select_index
=
paddle
::
experimental
::
Tensor
(
egr
::
Controller
::
Instance
().
GenerateUniqueName
());
egr
::
Controller
::
Instance
().
GenerateUniqueName
());
auto
idx_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
();
auto
idx_tensor
=
std
::
make_shared
<
phi
::
DenseTensor
>
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录