Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b0cca48e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0cca48e
编写于
1月 25, 2022
作者:
H
Haohongxiang
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] Support param groups in grad_clip (#39175)
* support param groups in grad_clip * update * modify for review
上级
faf517b2
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
49 addition
and
21 deletion
+49
-21
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
...optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
+10
-7
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
...optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
+7
-0
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py
...istributed/fleet/meta_parallel/sharding/sharding_utils.py
+4
-7
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
+8
-0
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage2_offload.py
+6
-7
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py
...dle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py
+14
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
浏览文件 @
b0cca48e
...
@@ -49,8 +49,6 @@ class HybridParallelClipGrad:
...
@@ -49,8 +49,6 @@ class HybridParallelClipGrad:
@
imperative_base
.
no_grad
@
imperative_base
.
no_grad
def
_dygraph_clip
(
self
,
params_grads
):
def
_dygraph_clip
(
self
,
params_grads
):
params_and_grads
=
[]
sum_square_dist_fp16
=
[]
sum_square_dist_fp16
=
[]
sum_square_dist_fp32
=
[]
sum_square_dist_fp32
=
[]
sum_square_not_dist_fp16
=
[]
sum_square_not_dist_fp16
=
[]
...
@@ -153,15 +151,14 @@ class HybridParallelClipGrad:
...
@@ -153,15 +151,14 @@ class HybridParallelClipGrad:
if
g
is
None
:
if
g
is
None
:
continue
continue
if
getattr
(
p
,
'need_clip'
,
True
)
is
False
:
if
getattr
(
p
,
'need_clip'
,
True
)
is
False
:
params_and_grads
.
append
((
p
,
g
))
continue
continue
if
p
.
dtype
==
paddle
.
float16
:
if
p
.
dtype
==
paddle
.
float16
:
new_grad
=
layers
.
elementwise_mul
(
x
=
g
,
y
=
clip_var_fp16
)
g
.
scale_
(
clip_var_fp16
)
else
:
else
:
new_grad
=
layers
.
elementwise_mul
(
x
=
g
,
y
=
clip_var
)
g
.
scale_
(
clip_var
)
p
arams_and_grads
.
append
((
p
,
new_grad
)
)
p
.
_reset_grad_inplace_version
(
True
)
return
params_
and_
grads
return
params_grads
def
__getattr__
(
self
,
item
):
def
__getattr__
(
self
,
item
):
return
getattr
(
self
.
_clip
,
item
)
return
getattr
(
self
.
_clip
,
item
)
...
@@ -201,6 +198,12 @@ class HybridParallelOptimizer:
...
@@ -201,6 +198,12 @@ class HybridParallelOptimizer:
else
:
else
:
self
.
_inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
self
.
_inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
self
.
_inner_opt
.
_grad_clip
,
hcg
)
self
.
_inner_opt
.
_grad_clip
,
hcg
)
if
self
.
_inner_opt
.
_parameter_list
and
isinstance
(
self
.
_inner_opt
.
_parameter_list
[
0
],
dict
):
for
item
in
self
.
_inner_opt
.
_param_groups
:
if
"grad_clip"
in
item
.
keys
():
item
[
"grad_clip"
]
=
HybridParallelClipGrad
(
self
.
_inner_opt
.
_grad_clip
,
hcg
)
@
imperative_base
.
no_grad
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
@
framework
.
dygraph_only
...
...
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
浏览文件 @
b0cca48e
...
@@ -109,6 +109,13 @@ class ShardingOptimizerStage2(Optimizer):
...
@@ -109,6 +109,13 @@ class ShardingOptimizerStage2(Optimizer):
self
.
_optim
.
_grad_clip
=
ShardingClipGrad
(
self
.
_optim
.
_grad_clip
,
self
.
_optim
.
_grad_clip
=
ShardingClipGrad
(
self
.
_optim
.
_grad_clip
,
paddle
.
get_device
(),
paddle
.
get_device
(),
self
.
group
)
self
.
group
)
if
self
.
_optim
.
_parameter_list
and
isinstance
(
self
.
_optim
.
_parameter_list
[
0
],
dict
):
for
item
in
self
.
_optim
.
_param_groups
:
if
"grad_clip"
in
item
.
keys
():
item
[
"grad_clip"
]
=
ShardingClipGrad
(
self
.
_optim
.
_grad_clip
,
paddle
.
get_device
(),
self
.
group
)
if
offload
:
if
offload
:
assert
self
.
_pfp16
,
"Only support offload strategy while using
\'
Adam
\'
,
\'
AdamW
\'
and
\'
Momentum
\'
optimizer with AMP/Pure FP16"
assert
self
.
_pfp16
,
"Only support offload strategy while using
\'
Adam
\'
,
\'
AdamW
\'
and
\'
Momentum
\'
optimizer with AMP/Pure FP16"
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py
浏览文件 @
b0cca48e
...
@@ -57,8 +57,6 @@ class ShardingClipGrad:
...
@@ -57,8 +57,6 @@ class ShardingClipGrad:
@
imperative_base
.
no_grad
@
imperative_base
.
no_grad
def
_dygraph_clip
(
self
,
params_grads
):
def
_dygraph_clip
(
self
,
params_grads
):
params_and_grads
=
[]
sum_square_fp16
=
[]
sum_square_fp16
=
[]
sum_square_fp32
=
[]
sum_square_fp32
=
[]
...
@@ -114,15 +112,14 @@ class ShardingClipGrad:
...
@@ -114,15 +112,14 @@ class ShardingClipGrad:
if
g
is
None
:
if
g
is
None
:
continue
continue
if
getattr
(
p
,
'need_clip'
,
True
)
is
False
:
if
getattr
(
p
,
'need_clip'
,
True
)
is
False
:
params_and_grads
.
append
((
p
,
g
))
continue
continue
if
p
.
dtype
==
paddle
.
float16
:
if
p
.
dtype
==
paddle
.
float16
:
new_grad
=
layers
.
elementwise_mul
(
x
=
g
,
y
=
clip_var_fp16
)
g
.
scale_
(
clip_var_fp16
)
else
:
else
:
new_grad
=
layers
.
elementwise_mul
(
x
=
g
,
y
=
clip_var
)
g
.
scale_
(
clip_var
)
p
arams_and_grads
.
append
((
p
,
new_grad
)
)
p
.
_reset_grad_inplace_version
(
True
)
return
params_
and_
grads
return
params_grads
def
__getattr__
(
self
,
item
):
def
__getattr__
(
self
,
item
):
return
getattr
(
self
.
_clip
,
item
)
return
getattr
(
self
.
_clip
,
item
)
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
浏览文件 @
b0cca48e
...
@@ -159,10 +159,13 @@ def test_dp_stage2():
...
@@ -159,10 +159,13 @@ def test_dp_stage2():
mlp2
=
MLP
()
mlp2
=
MLP
()
mlp3
=
MLP
()
mlp3
=
MLP
()
mlp4
=
MLP
()
mlp4
=
MLP
()
mlp5
=
MLP
()
mlp1
.
set_state_dict
(
state_dict
)
mlp1
.
set_state_dict
(
state_dict
)
mlp2
.
set_state_dict
(
state_dict
)
mlp2
.
set_state_dict
(
state_dict
)
mlp3
.
set_state_dict
(
state_dict
)
mlp3
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
mlp4
.
set_state_dict
(
state_dict
)
mlp5
.
set_state_dict
(
state_dict
)
dp_params
=
train_mlp
(
dp_params
=
train_mlp
(
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
)
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
)
stage2_params
=
train_mlp
(
stage2_params
=
train_mlp
(
...
@@ -181,6 +184,11 @@ def test_dp_stage2():
...
@@ -181,6 +184,11 @@ def test_dp_stage2():
rtol
=
1e-5
,
rtol
=
1e-5
,
atol
=
1e-5
)
atol
=
1e-5
)
stage2_params
=
train_mlp
(
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
True
)
for
i
in
range
(
len
(
dp_params
)):
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
)
return
return
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
浏览文件 @
b0cca48e
...
@@ -49,7 +49,7 @@ def train_mlp(model, offload=False):
...
@@ -49,7 +49,7 @@ def train_mlp(model, offload=False):
optimizer
=
ShardingOptimizerStage2
(
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
offload
=
offload
)
params
=
model
.
parameters
(),
optim
=
optimizer
,
offload
=
offload
)
model
=
ShardingStage2
(
model
=
ShardingStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
Tru
e
)
model
,
optimizer
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
Fals
e
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
reader_decorator
(
linear_size
),
batch_size
=
batch_size
,
drop_last
=
True
)
reader_decorator
(
linear_size
),
batch_size
=
batch_size
,
drop_last
=
True
)
...
@@ -98,12 +98,11 @@ def test_sharding_stage2_offload():
...
@@ -98,12 +98,11 @@ def test_sharding_stage2_offload():
mlp_offload_params
=
train_mlp
(
mlp_offload
,
offload
=
True
)
mlp_offload_params
=
train_mlp
(
mlp_offload
,
offload
=
True
)
for
i
in
range
(
len
(
mlp_params
)):
for
i
in
range
(
len
(
mlp_params
)):
for
j
in
range
(
len
(
mlp_offload_params
)):
if
mlp_params
[
i
].
name
==
mlp_offload_params
[
j
].
name
:
np
.
testing
.
assert_allclose
(
np
.
testing
.
assert_allclose
(
mlp_params
[
i
].
numpy
(),
mlp_params
[
i
].
numpy
(),
mlp_offload_params
[
j
].
numpy
(),
mlp_offload_params
[
i
].
numpy
(),
rtol
=
1e-6
)
rtol
=
5e-3
,
atol
=
5e-3
)
return
return
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py
浏览文件 @
b0cca48e
...
@@ -31,5 +31,19 @@ class TestPPClipGrad(TestDistPPTraning):
...
@@ -31,5 +31,19 @@ class TestPPClipGrad(TestDistPPTraning):
return
scheduler
,
optimizer
return
scheduler
,
optimizer
class
TestPPClipGradParamGroup
(
TestDistPPTraning
):
def
build_optimizer
(
self
,
model
):
grad_clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
0.5
)
scheduler
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
scheduler
,
grad_clip
=
grad_clip
,
parameters
=
[{
"params"
:
model
.
parameters
()
}])
return
scheduler
,
optimizer
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录