提交 b0a267c0 编写于 作者: A Abhinav Arora 提交者: GitHub

Adding the squared L2 norm operator for L2 regularization (#5030)

* Adding the L2 loss operator for L2 regularization
* Renaming l2_loss op to squared_l2_norm_op
* Addressing code review feedback
上级 b68f2d20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/squared_l2_norm_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SquaredL2NormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
ctx->SetOutputDim("Out", {1});
}
};
class SquaredL2NormGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SquaredL2NormOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) The input of squared_l2_norm op.");
AddOutput("Out", "(Float) The output of squared_l2_norm op.");
AddComment(R"DOC(
SquaredL2Norm Operator.
Computes the squared L2 norm of a tensor.
Out = sum (X ** 2)
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(squared_l2_norm, ops::SquaredL2NormOp, ops::SquaredL2NormOpMaker,
squared_l2_norm_grad, ops::SquaredL2NormGradOp);
REGISTER_OP_CPU_KERNEL(
squared_l2_norm,
ops::SquaredL2NormKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
squared_l2_norm_grad,
ops::SquaredL2NormGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/squared_l2_norm_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
squared_l2_norm,
ops::SquaredL2NormKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
squared_l2_norm_grad,
ops::SquaredL2NormGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
// Out = sum(square(X))
template <typename Place, typename T>
class SquaredL2NormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
const framework::Tensor *X = context.Input<framework::Tensor>("X");
framework::Tensor *Out = context.Output<framework::Tensor>("Out");
Out->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto out = framework::EigenVector<T>::Flatten(*Out);
auto place = context.GetEigenDevice<Place>();
out.device(place) = x.square().sum();
}
};
// dX = X
template <typename Place, typename T>
class SquaredL2NormGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
const framework::Tensor *X = context.Input<framework::Tensor>("X");
const framework::Tensor *dOut =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE(dOut->numel() == 1,
"Squared L2 Norm Gradient should be scalar");
framework::Tensor *dX =
context.Output<framework::Tensor>(framework::GradVarName("X"));
dX->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto dout = framework::EigenVector<T>::Flatten(*dOut);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
Eigen::DSizes<int, 1> x_dsize(X->numel());
dx.device(place) = (dout.broadcast(x_dsize) * x) * static_cast<T>(2.0);
}
};
} // namespace operators
} // namespace paddle
import numpy as np
import unittest
from numpy import linalg as LA
from op_test import OpTest
class TestL2LossOp(OpTest):
"""Test squared_l2_norm
"""
def setUp(self):
self.op_type = "squared_l2_norm"
self.max_relative_error = 0.05
X = np.random.uniform(-1, 1, (13, 19)).astype("float32")
X[np.abs(X) < self.max_relative_error] = 0.1
self.inputs = {'X': X}
self.outputs = {'Out': np.square(LA.norm(X))}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'], 'Out', max_relative_error=self.max_relative_error)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册