Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
af97b310
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
af97b310
编写于
6月 24, 2022
作者:
C
ccrrong
提交者:
GitHub
6月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add slice plugin int32 support (#43808)
* add slice plugin int32 support
上级
eec4e034
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
122 addition
and
30 deletion
+122
-30
paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.cu
+71
-30
python/paddle/fluid/tests/unittests/ir/inference/test_trt_slice_plugin.py
...uid/tests/unittests/ir/inference/test_trt_slice_plugin.py
+51
-0
未找到文件。
paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.cu
浏览文件 @
af97b310
...
...
@@ -28,8 +28,8 @@ namespace tensorrt {
namespace
plugin
{
template
<
typename
T
>
__global__
void
SliceKernel
(
int
num
,
int
dims
,
const
T
*
input
,
const
int
*
offsets_info
,
T
*
output
)
{
__global__
void
SliceKernel
(
int
num
,
int
dims
,
const
T
*
input
,
const
int
*
offsets_info
,
T
*
output
)
{
const
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
extern
__shared__
int
shared_data
[];
...
...
@@ -54,8 +54,10 @@ __global__ void SliceKernel(int num, int dims, const T *input,
}
}
SlicePlugin
::
SlicePlugin
(
std
::
vector
<
int
>
starts
,
std
::
vector
<
int
>
ends
,
std
::
vector
<
int
>
axes
,
bool
with_fp16
)
SlicePlugin
::
SlicePlugin
(
std
::
vector
<
int
>
starts
,
std
::
vector
<
int
>
ends
,
std
::
vector
<
int
>
axes
,
bool
with_fp16
)
:
starts_
(
starts
),
ends_
(
ends
),
axes_
(
axes
)
{
with_fp16_
=
with_fp16
;
}
...
...
@@ -79,10 +81,12 @@ bool SlicePlugin::supportsFormat(
nvinfer1
::
DataType
type
,
nvinfer1
::
PluginFormat
format
)
const
TRT_NOEXCEPT
{
if
(
with_fp16_
)
{
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
||
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
type
==
nvinfer1
::
DataType
::
kHALF
||
type
==
nvinfer1
::
DataType
::
kINT32
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kLINEAR
));
}
else
{
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
||
type
==
nvinfer1
::
DataType
::
kINT32
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kLINEAR
));
}
}
...
...
@@ -99,11 +103,15 @@ nvinfer1::Dims SlicePlugin::getOutputDimensions(
return
out_dims
;
}
int
SlicePlugin
::
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
int
SlicePlugin
::
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
#if IS_TRT_VERSION_LT(8000)
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
#else
void
*
const
*
outputs
,
void
*
workspace
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
#endif
auto
input_dims
=
getInputDims
(
0
);
...
...
@@ -153,8 +161,11 @@ int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
cudaMalloc
(
&
offset_temp_data_
,
3
*
num_dims
*
sizeof
(
int
));
}
cudaMemcpyAsync
(
offset_temp_data_
,
offset_info
.
data
(),
sizeof
(
int
)
*
3
*
num_dims
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
offset_temp_data_
,
offset_info
.
data
(),
sizeof
(
int
)
*
3
*
num_dims
,
cudaMemcpyHostToDevice
,
stream
);
int
threads
=
256
;
int
blocks
=
(
out_num
+
threads
-
1
)
/
threads
;
...
...
@@ -171,9 +182,15 @@ int SlicePlugin::enqueue(int batch_size, const void *const *inputs,
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
SliceKernel
<
half
><<<
blocks
,
threads
,
3
*
num_dims
*
sizeof
(
int
),
stream
>>>
(
out_num
,
num_dims
,
input1
,
offset_temp_data_
,
output
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kINT32
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. Slice-->int32"
;
const
int
*
input1
=
static_cast
<
const
int
*>
(
inputs
[
0
]);
int
*
output
=
static_cast
<
int
*>
(
outputs
[
0
]);
SliceKernel
<
int
><<<
blocks
,
threads
,
3
*
num_dims
*
sizeof
(
int
),
stream
>>>
(
out_num
,
num_dims
,
input1
,
offset_temp_data_
,
output
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Slice TRT Plugin's input type should be float
or half
."
));
"The Slice TRT Plugin's input type should be float
, half or int
."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
@@ -197,7 +214,8 @@ void SlicePlugin::serialize(void *buffer) const TRT_NOEXCEPT {
#if IS_TRT_VERSION_GE(6000)
SlicePluginDynamic
::
SlicePluginDynamic
(
std
::
vector
<
int
>
starts
,
std
::
vector
<
int
>
ends
,
std
::
vector
<
int
>
axes
,
int
decrease_axis
,
std
::
vector
<
int
>
axes
,
int
decrease_axis
,
bool
with_fp16
)
:
starts_
(
starts
),
ends_
(
ends
),
axes_
(
axes
),
decrease_axis_
(
decrease_axis
)
{
with_fp16_
=
with_fp16
;
...
...
@@ -238,7 +256,9 @@ void SlicePluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
}
nvinfer1
::
DimsExprs
SlicePluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
auto
in_dims
=
inputs
[
0
];
nvinfer1
::
DimsExprs
ret
=
in_dims
;
...
...
@@ -264,7 +284,8 @@ nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
for
(
size_t
i
=
0
;
i
<
in_dims
.
nbDims
;
i
++
)
{
if
(
decrease_axis_
==
i
)
continue
;
res
.
d
[
j
++
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kMAX
,
*
expr_builder
.
constant
(
0
),
*
ret
.
d
[
i
]);
*
expr_builder
.
constant
(
0
),
*
ret
.
d
[
i
]);
}
return
res
;
}
...
...
@@ -272,26 +293,33 @@ nvinfer1::DimsExprs SlicePluginDynamic::getOutputDimensions(
}
bool
SlicePluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
pos
,
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
in
.
type
==
nvinfer1
::
DataType
::
kHALF
||
in
.
type
==
nvinfer1
::
DataType
::
kINT32
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kINT32
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
}
...
...
@@ -301,24 +329,28 @@ bool SlicePluginDynamic::supportsFormatCombination(
}
nvinfer1
::
DataType
SlicePluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Slice Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
PADDLE_ENFORCE_EQ
((
input_types
[
0
]
==
nvinfer1
::
DataType
::
kFLOAT
||
input_types
[
0
]
==
nvinfer1
::
DataType
::
kHALF
),
input_types
[
0
]
==
nvinfer1
::
DataType
::
kHALF
||
input_types
[
0
]
==
nvinfer1
::
DataType
::
kINT32
),
true
,
platform
::
errors
::
InvalidArgument
(
"The input type should be half
or floa
t"
));
"The input type should be half
, float or in
t"
));
return
input_types
[
0
];
}
int
SlicePluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
auto
input_dims
=
input_desc
[
0
].
dims
;
...
...
@@ -362,8 +394,11 @@ int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
cudaMalloc
(
&
offset_temp_data_
,
3
*
num_dims
*
sizeof
(
int
));
}
cudaMemcpyAsync
(
offset_temp_data_
,
offset_info_
.
data
(),
sizeof
(
int
)
*
3
*
num_dims
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
offset_temp_data_
,
offset_info_
.
data
(),
sizeof
(
int
)
*
3
*
num_dims
,
cudaMemcpyHostToDevice
,
stream
);
int
threads
=
256
;
int
blocks
=
(
out_num
+
threads
-
1
)
/
threads
;
...
...
@@ -380,9 +415,15 @@ int SlicePluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
SliceKernel
<
half
><<<
blocks
,
threads
,
3
*
num_dims
*
sizeof
(
int
),
stream
>>>
(
out_num
,
num_dims
,
input1
,
offset_temp_data_
,
output
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kINT32
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. Slice-->int32"
;
const
int
*
input1
=
static_cast
<
const
int
*>
(
inputs
[
0
]);
int
*
output
=
static_cast
<
int
*>
(
outputs
[
0
]);
SliceKernel
<
int
><<<
blocks
,
threads
,
3
*
num_dims
*
sizeof
(
int
),
stream
>>>
(
out_num
,
num_dims
,
input1
,
offset_temp_data_
,
output
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Slice TRT Plugin's input type should be float
or half
."
));
"The Slice TRT Plugin's input type should be float
, half or int
."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_slice_plugin.py
浏览文件 @
af97b310
...
...
@@ -108,5 +108,56 @@ class StaticSlicePluginTRTTestFp32(SlicePluginTRTTest):
self
.
enable_trt
=
True
class
SlicePluginTRTTestInt32
(
SlicePluginTRTTest
):
def
setUp
(
self
):
self
.
setUpSliceParams
()
self
.
setUpTensorRTParams
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
3
,
3
,
3
,
3
],
dtype
=
"int32"
)
axes
=
self
.
params_axes
starts
=
self
.
params_starts
ends
=
self
.
params_ends
slice_out
=
fluid
.
layers
.
slice
(
data
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
cast_out
=
fluid
.
layers
.
cast
(
slice_out
,
'float32'
)
out
=
fluid
.
layers
.
batch_norm
(
cast_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
((
3
,
3
,
3
,
3
)).
astype
(
"int32"
),
}
self
.
fetch_list
=
[
out
]
class
StaticSlicePluginTRTTestInt32
(
SlicePluginTRTTest
):
def
setUpTensorRTParams
(
self
):
self
.
trt_parameters
=
SlicePluginTRTTest
.
TensorRTParam
(
1
<<
30
,
32
,
1
,
AnalysisConfig
.
Precision
.
Float32
,
True
,
False
)
self
.
enable_trt
=
True
def
setUp
(
self
):
self
.
setUpSliceParams
()
self
.
setUpTensorRTParams
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
3
,
3
,
3
,
3
],
dtype
=
"int32"
)
axes
=
self
.
params_axes
starts
=
self
.
params_starts
ends
=
self
.
params_ends
slice_out
=
fluid
.
layers
.
slice
(
data
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
cast_out
=
fluid
.
layers
.
cast
(
slice_out
,
'float32'
)
out
=
fluid
.
layers
.
batch_norm
(
cast_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
((
3
,
3
,
3
,
3
)).
astype
(
"int32"
),
}
self
.
fetch_list
=
[
out
]
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录