Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
af66fcb2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af66fcb2
编写于
10月 24, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
dd0008d5
上级
09e2dd36
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
6 addition
and
62 deletion
+6
-62
develop/doc/_sources/design/optimizer.md.txt
develop/doc/_sources/design/optimizer.md.txt
+1
-15
develop/doc/design/optimizer.html
develop/doc/design/optimizer.html
+1
-15
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/design/optimizer.md.txt
develop/doc_cn/_sources/design/optimizer.md.txt
+1
-15
develop/doc_cn/design/optimizer.html
develop/doc_cn/design/optimizer.html
+1
-15
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/design/optimizer.md.txt
浏览文件 @
af66fcb2
...
@@ -65,20 +65,6 @@ class Optimizer(object):
...
@@ -65,20 +65,6 @@ class Optimizer(object):
def __init__(self):
def __init__(self):
pass
pass
def create_backward_pass(self, loss, parameter_list=None):
"""
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
for parameters in parameter_list
Args:
loss: an variable generated by cost function.
parameter_list: parameters that need to compute gradient and update to optimize the lost.
Returns:
list of (parameters, gradients) pair.
"""
return None
def create_optimization_pass(self, parameters_and_grads):
def create_optimization_pass(self, parameters_and_grads):
"""Add optimization operators to update gradients to variables.
"""Add optimization operators to update gradients to variables.
...
@@ -93,7 +79,7 @@ class Optimizer(object):
...
@@ -93,7 +79,7 @@ class Optimizer(object):
def minimize(self, loss, parameter_list):
def minimize(self, loss, parameter_list):
"""Add operations to minimize `loss` by updating `parameter_list`.
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `
create_backward_pas
s()` and
This method combines interface `
append_backward_op
s()` and
`create_optimization_pass()` into one.
`create_optimization_pass()` into one.
"""
"""
params_grads = self.create_backward_pass(loss, parameter_list)
params_grads = self.create_backward_pass(loss, parameter_list)
...
...
develop/doc/design/optimizer.html
浏览文件 @
af66fcb2
...
@@ -243,20 +243,6 @@
...
@@ -243,20 +243,6 @@
<span
class=
"k"
>
def
</span>
<span
class=
"fm"
>
__init__
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"fm"
>
__init__
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
pass
</span>
<span
class=
"k"
>
pass
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
None
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"sd"
>
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
</span>
<span
class=
"sd"
>
for parameters in parameter_list
</span>
<span
class=
"sd"
>
Args:
</span>
<span
class=
"sd"
>
loss: an variable generated by cost function.
</span>
<span
class=
"sd"
>
parameter_list: parameters that need to compute gradient and update to optimize the lost.
</span>
<span
class=
"sd"
>
Returns:
</span>
<span
class=
"sd"
>
list of (parameters, gradients) pair.
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"bp"
>
None
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_optimization_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameters_and_grads
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_optimization_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameters_and_grads
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
Add optimization operators to update gradients to variables.
</span>
<span
class=
"sd"
>
"""
Add optimization operators to update gradients to variables.
</span>
...
@@ -271,7 +257,7 @@
...
@@ -271,7 +257,7 @@
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
minimize
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
minimize
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
Add operations to minimize `loss` by updating `parameter_list`.
</span>
<span
class=
"sd"
>
"""
Add operations to minimize `loss` by updating `parameter_list`.
</span>
<span
class=
"sd"
>
This method combines interface `
create_backward_pas
s()` and
</span>
<span
class=
"sd"
>
This method combines interface `
append_backward_op
s()` and
</span>
<span
class=
"sd"
>
`create_optimization_pass()` into one.
</span>
<span
class=
"sd"
>
`create_optimization_pass()` into one.
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"n"
>
params_grads
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
self
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
params_grads
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
self
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
)
</span>
...
...
develop/doc/searchindex.js
浏览文件 @
af66fcb2
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/_sources/design/optimizer.md.txt
浏览文件 @
af66fcb2
...
@@ -65,20 +65,6 @@ class Optimizer(object):
...
@@ -65,20 +65,6 @@ class Optimizer(object):
def __init__(self):
def __init__(self):
pass
pass
def create_backward_pass(self, loss, parameter_list=None):
"""
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
for parameters in parameter_list
Args:
loss: an variable generated by cost function.
parameter_list: parameters that need to compute gradient and update to optimize the lost.
Returns:
list of (parameters, gradients) pair.
"""
return None
def create_optimization_pass(self, parameters_and_grads):
def create_optimization_pass(self, parameters_and_grads):
"""Add optimization operators to update gradients to variables.
"""Add optimization operators to update gradients to variables.
...
@@ -93,7 +79,7 @@ class Optimizer(object):
...
@@ -93,7 +79,7 @@ class Optimizer(object):
def minimize(self, loss, parameter_list):
def minimize(self, loss, parameter_list):
"""Add operations to minimize `loss` by updating `parameter_list`.
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `
create_backward_pas
s()` and
This method combines interface `
append_backward_op
s()` and
`create_optimization_pass()` into one.
`create_optimization_pass()` into one.
"""
"""
params_grads = self.create_backward_pass(loss, parameter_list)
params_grads = self.create_backward_pass(loss, parameter_list)
...
...
develop/doc_cn/design/optimizer.html
浏览文件 @
af66fcb2
...
@@ -257,20 +257,6 @@
...
@@ -257,20 +257,6 @@
<span
class=
"k"
>
def
</span>
<span
class=
"fm"
>
__init__
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"fm"
>
__init__
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
pass
</span>
<span
class=
"k"
>
pass
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
None
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"sd"
>
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
</span>
<span
class=
"sd"
>
for parameters in parameter_list
</span>
<span
class=
"sd"
>
Args:
</span>
<span
class=
"sd"
>
loss: an variable generated by cost function.
</span>
<span
class=
"sd"
>
parameter_list: parameters that need to compute gradient and update to optimize the lost.
</span>
<span
class=
"sd"
>
Returns:
</span>
<span
class=
"sd"
>
list of (parameters, gradients) pair.
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"bp"
>
None
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_optimization_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameters_and_grads
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
create_optimization_pass
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameters_and_grads
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
Add optimization operators to update gradients to variables.
</span>
<span
class=
"sd"
>
"""
Add optimization operators to update gradients to variables.
</span>
...
@@ -285,7 +271,7 @@
...
@@ -285,7 +271,7 @@
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
minimize
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
minimize
</span><span
class=
"p"
>
(
</span><span
class=
"bp"
>
self
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
):
</span>
<span
class=
"sd"
>
"""
Add operations to minimize `loss` by updating `parameter_list`.
</span>
<span
class=
"sd"
>
"""
Add operations to minimize `loss` by updating `parameter_list`.
</span>
<span
class=
"sd"
>
This method combines interface `
create_backward_pas
s()` and
</span>
<span
class=
"sd"
>
This method combines interface `
append_backward_op
s()` and
</span>
<span
class=
"sd"
>
`create_optimization_pass()` into one.
</span>
<span
class=
"sd"
>
`create_optimization_pass()` into one.
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"sd"
>
"""
</span>
<span
class=
"n"
>
params_grads
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
self
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
params_grads
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
self
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
create_backward_pass
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
loss
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
parameter_list
</span><span
class=
"p"
>
)
</span>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
af66fcb2
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录