提交 af030088 编写于 作者: W Wojciech Uss 提交者: Tao Luo

Add cpu_quantize_placement_pass for C-API quantization (#16265)

* Add cpu_quantize_placement_pass for C-API quantization

test=develop

* added a comment on required pass attributes

test=develop
上级 dbb92ee4
......@@ -46,6 +46,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library(graph_to_program_pass base)
pass_library(graph_viz_pass base)
pass_library(lock_free_optimize_pass base)
pass_library(cpu_quantize_placement_pass base)
pass_library(cpu_quantize_pass inference)
pass_library(cpu_quantize_squash_pass inference)
pass_library(fc_fuse_pass inference)
......@@ -104,6 +105,7 @@ cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS g
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)
cc_test(test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto)
cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass)
cc_test(test_cpu_quantize_placement_pass SRCS cpu_quantize_placement_pass_tester.cc DEPS cpu_quantize_placement_pass)
cc_test(test_cpu_quantize_pass SRCS cpu_quantize_pass_tester.cc DEPS cpu_quantize_pass naive_executor)
cc_test(test_cpu_quantize_squash_pass SRCS cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor)
if(NOT WIN32)
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h"
#include <string>
#include <unordered_set>
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> CPUQuantizePlacementPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
VLOG(3) << "Marks operators which are to be quantized.";
const auto& excluded_ids_list =
Get<std::unordered_set<int>>("quantize_excluded_op_ids");
const auto& op_types_list =
Get<std::unordered_set<std::string>>("quantize_enabled_op_types");
for (const Node* n : graph->Nodes()) {
if (n->IsOp()) {
if (std::find(excluded_ids_list.begin(), excluded_ids_list.end(),
n->id()) != excluded_ids_list.end())
continue;
auto* op = n->Op();
if (op->HasAttr("use_quantizer") || op->HasProtoAttr("use_quantizer")) {
if (op_types_list.empty()) {
op->SetAttr("use_quantizer", true);
} else if (std::find(op_types_list.begin(), op_types_list.end(),
n->Name()) != op_types_list.end()) {
op->SetAttr("use_quantizer", true);
}
}
}
}
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(cpu_quantize_placement_pass,
paddle::framework::ir::CPUQuantizePlacementPass)
// a vector of operator type names to be quantized ("conv2d" etc.)
.RequirePassAttr("quantize_enabled_op_types")
// a vector of operator ids that are to be excluded from quantization
.RequirePassAttr("quantize_excluded_op_ids");
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* Specifies which operators should be quantized.
*/
class CPUQuantizePlacementPass : public Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/cpu_quantize_placement_pass.h"
#include <gtest/gtest.h>
#include <boost/logic/tribool.hpp>
namespace paddle {
namespace framework {
namespace ir {
void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
boost::tribool use_quantizer) {
auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type);
if (!boost::indeterminate(use_quantizer))
op->SetAttr("use_quantizer", use_quantizer);
if (type == "conv2d") {
op->SetAttr("name", name);
op->SetInput("Input", {inputs[0]});
op->SetInput("Filter", {inputs[1]});
op->SetInput("Bias", {inputs[2]});
} else if (type == "relu") {
op->SetInput("X", inputs);
} else if (type == "concat") {
op->SetAttr("axis", 1);
op->SetInput("X", {inputs[0], inputs[1]});
} else if (type == "pool2d") {
op->SetInput("X", {inputs[0]});
} else {
FAIL() << "Unexpected operator type.";
}
op->SetOutput("Out", {outputs[0]});
}
// operator use_quantizer
// ---------------------------------------
// (a,b)->concat->c none
// (c,weights,bias)->conv->f false
// f->relu->g none
// g->pool->h false
// (h,weights2,bias2)->conv->k false
// k->pool->l false
ProgramDesc BuildProgramDesc() {
ProgramDesc prog;
for (auto& v :
std::vector<std::string>({"a", "b", "c", "weights", "bias", "f", "g",
"h", "weights2", "bias2", "k", "l"})) {
auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "weights" || v == "bias") {
var->SetPersistable(true);
}
}
SetOp(&prog, "concat", "concat1", {"a", "b"}, {"c"}, boost::indeterminate);
SetOp(&prog, "conv2d", "conv1", {"c", "weights", "bias"}, {"f"}, false);
SetOp(&prog, "relu", "relu1", {"f"}, {"g"}, boost::indeterminate);
SetOp(&prog, "pool2d", "pool1", {"g"}, {"h"}, false);
SetOp(&prog, "conv2d", "conv2", {"h", "weights2", "bias2"}, {"k"}, false);
SetOp(&prog, "pool2d", "pool2", {"k"}, {"l"}, false);
return prog;
}
void MainTest(std::initializer_list<std::string> quantize_enabled_op_types,
std::initializer_list<int> quantize_excluded_op_ids,
unsigned expected_use_quantizer_true_count) {
auto prog = BuildProgramDesc();
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
auto pass = PassRegistry::Instance().Get("cpu_quantize_placement_pass");
pass->Set("quantize_enabled_op_types",
new std::unordered_set<std::string>(quantize_enabled_op_types));
pass->Set("quantize_excluded_op_ids",
new std::unordered_set<int>(quantize_excluded_op_ids));
graph = pass->Apply(std::move(graph));
unsigned use_quantizer_true_count = 0;
for (auto* node : graph->Nodes()) {
if (node->IsOp()) {
auto* op = node->Op();
if (op->HasAttr("use_quantizer") &&
boost::get<bool>(op->GetAttr("use_quantizer"))) {
++use_quantizer_true_count;
}
}
}
EXPECT_EQ(use_quantizer_true_count, expected_use_quantizer_true_count);
}
TEST(QuantizerPlacementPass, enabled_pool) { MainTest({"pool2d"}, {}, 2); }
TEST(QuantizerPlacementPass, enabled_conv_excluded_one) {
MainTest({"conv2d"}, {4}, 1);
}
TEST(QuantizerPlacementPass, excluded_none) {
// 2 conv + 2 pool
MainTest({}, {}, 4);
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(cpu_quantize_placement_pass);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册