Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aeb33958
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aeb33958
编写于
5月 16, 2022
作者:
C
Chen Weihang
提交者:
GitHub
5月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add custom linear backward test (#42740)
上级
5198a497
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
72 addition
and
30 deletion
+72
-30
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
+16
-1
python/paddle/fluid/tests/custom_op/test_custom_linear.py
python/paddle/fluid/tests/custom_op/test_custom_linear.py
+56
-29
未找到文件。
python/paddle/fluid/tests/custom_op/custom_linear_op.cc
浏览文件 @
aeb33958
...
...
@@ -23,6 +23,16 @@ std::vector<paddle::Tensor> PhiLinearForward(const paddle::Tensor& x,
return
{
paddle
::
add
(
paddle
::
matmul
(
x
,
weight
),
bias
)};
}
std
::
vector
<
paddle
::
Tensor
>
PhiLinearBackward
(
const
paddle
::
Tensor
&
x
,
const
paddle
::
Tensor
&
weight
,
const
paddle
::
Tensor
&
bias
,
const
paddle
::
Tensor
&
out_grad
)
{
auto
x_grad
=
paddle
::
matmul
(
out_grad
,
weight
,
false
,
true
);
auto
weight_grad
=
paddle
::
matmul
(
x
,
out_grad
,
true
,
false
);
auto
bias_grad
=
paddle
::
experimental
::
sum
(
out_grad
,
{
0
});
return
{
x_grad
,
weight_grad
,
bias_grad
};
}
std
::
vector
<
std
::
vector
<
int64_t
>>
LinearInferShape
(
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
weight_shape
,
...
...
@@ -86,9 +96,14 @@ std::vector<paddle::DataType> LinearInferDtype(
return
{
x_dtype
};
}
PD_BUILD_OP
(
p
ten
_linear
)
PD_BUILD_OP
(
p
hi
_linear
)
.
Inputs
({
"X"
,
"Weight"
,
"Bias"
})
.
Outputs
({
"Out"
})
.
SetKernelFn
(
PD_KERNEL
(
PhiLinearForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
LinearInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
LinearInferDtype
));
PD_BUILD_GRAD_OP
(
phi_linear
)
.
Inputs
({
"X"
,
"Weight"
,
"Bias"
,
paddle
::
Grad
(
"Out"
)})
.
Outputs
({
paddle
::
Grad
(
"X"
),
paddle
::
Grad
(
"Weight"
),
paddle
::
Grad
(
"Bias"
)})
.
SetKernelFn
(
PD_KERNEL
(
PhiLinearBackward
));
python/paddle/fluid/tests/custom_op/test_custom_linear.py
浏览文件 @
aeb33958
...
...
@@ -40,43 +40,56 @@ custom_ops = load(
verbose
=
True
)
def
linear_dynamic
(
func
,
dtype
,
np_x
,
np_weight
,
np_bias
):
paddle
.
set_device
(
"cpu"
)
x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
dtype
)
weight
=
paddle
.
to_tensor
(
np_weight
,
dtype
=
dtype
)
bias
=
paddle
.
to_tensor
(
np_bias
,
dtype
=
dtype
)
def
linear_dynamic
(
func
,
d
evice
,
d
type
,
np_x
,
np_weight
,
np_bias
):
paddle
.
set_device
(
device
)
x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
dtype
,
stop_gradient
=
False
)
weight
=
paddle
.
to_tensor
(
np_weight
,
dtype
=
dtype
,
stop_gradient
=
False
)
bias
=
paddle
.
to_tensor
(
np_bias
,
dtype
=
dtype
,
stop_gradient
=
False
)
out
=
func
(
x
,
weight
,
bias
)
return
out
.
numpy
()
out
.
backward
()
return
out
.
numpy
(),
x
.
grad
.
numpy
(),
weight
.
grad
.
numpy
(),
bias
.
grad
.
numpy
()
def
linear_static
(
func
,
dtype
,
np_x
,
np_weight
,
np_bias
):
def
linear_static
(
func
,
d
evice
,
d
type
,
np_x
,
np_weight
,
np_bias
):
paddle
.
enable_static
()
paddle
.
set_device
(
"cpu"
)
paddle
.
set_device
(
device
)
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
program_guard
(
static
.
Program
()):
x
=
static
.
data
(
name
=
"x"
,
shape
=
np_x
.
shape
,
dtype
=
dtype
)
x
=
static
.
data
(
name
=
"x"
,
shape
=
[
None
,
np_x
.
shape
[
1
]]
,
dtype
=
dtype
)
weight
=
static
.
data
(
name
=
"weight"
,
shape
=
np_weight
.
shape
,
dtype
=
dtype
)
bias
=
static
.
data
(
name
=
"bias"
,
shape
=
np_bias
.
shape
,
dtype
=
dtype
)
x
.
stop_gradient
=
False
weight
.
stop_gradient
=
False
bias
.
stop_gradient
=
False
out
=
func
(
x
,
weight
,
bias
)
mean_out
=
paddle
.
mean
(
out
)
static
.
append_backward
(
mean_out
)
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
out_v
,
=
exe
.
run
(
static
.
default_main_program
(),
out_v
,
x_grad_v
,
weight_grad_v
,
bias_grad_v
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
"x"
:
np_x
.
astype
(
dtype
),
"weight"
:
np_weight
.
astype
(
dtype
),
"bias"
:
np_bias
.
astype
(
dtype
)
},
fetch_list
=
[
out
.
name
])
fetch_list
=
[
out
.
name
,
x
.
name
+
"@GRAD"
,
weight
.
name
+
"@GRAD"
,
bias
.
name
+
"@GRAD"
])
paddle
.
disable_static
()
return
out_v
return
out_v
,
x_grad_v
,
weight_grad_v
,
bias_grad_v
class
TestCustomLinearJit
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
'float32'
,
'float64'
]
self
.
devices
=
[
'cpu'
]
if
paddle
.
is_compiled_with_cuda
():
self
.
devices
.
append
(
'gpu'
)
self
.
np_x
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_weight
=
np
.
full
([
2
,
4
],
fill_value
=
0.5
,
dtype
=
"float32"
)
self
.
np_bias
=
np
.
ones
([
4
],
dtype
=
"float32"
)
...
...
@@ -88,20 +101,34 @@ class TestCustomLinearJit(unittest.TestCase):
pd_out
))
def
test_static
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
pten_out
=
linear_static
(
custom_ops
.
pten_linear
,
dtype
,
self
.
np_x
,
phi_out
,
phi_x_grad
,
phi_weight_grad
,
phi_bias_grad
=
linear_static
(
custom_ops
.
phi_linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
pd_out
=
linear_static
(
F
.
linear
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
pd_out
,
pd_x_grad
,
pd_weight_grad
,
pd_bias_grad
=
linear_static
(
F
.
linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
pten_out
,
pd_out
,
"pten_out"
)
self
.
check_output
(
phi_out
,
pd_out
,
"out"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_weight_grad
,
pd_weight_grad
,
"weight_grad"
)
self
.
check_output
(
phi_bias_grad
,
pd_bias_grad
,
"bias_grad"
)
def
func_dynamic
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
pten_out
=
linear_dynamic
(
custom_ops
.
pten_linear
,
dtype
,
self
.
np_x
,
phi_out
,
phi_x_grad
,
phi_weight_grad
,
phi_bias_grad
=
linear_dynamic
(
custom_ops
.
phi_linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
pd_out
=
linear_dynamic
(
F
.
linear
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
pd_out
,
pd_x_grad
,
pd_weight_grad
,
pd_bias_grad
=
linear_dynamic
(
F
.
linear
,
device
,
dtype
,
self
.
np_x
,
self
.
np_weight
,
self
.
np_bias
)
self
.
check_output
(
pten_out
,
pd_out
,
"pten_out"
)
self
.
check_output
(
phi_out
,
pd_out
,
"phi_out"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_weight_grad
,
pd_weight_grad
,
"weight_grad"
)
self
.
check_output
(
phi_bias_grad
,
pd_bias_grad
,
"bias_grad"
)
def
test_dynamic
(
self
):
with
_test_eager_guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录