Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ae867a84
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ae867a84
编写于
6月 22, 2022
作者:
H
Haohongxiang
提交者:
GitHub
6月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] Fix bugs of supporting ProcessGroupNCCL on DCU (#43682)
* fix bugs * update * update * update * code style * code style check
上级
292b7254
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
523 addition
and
248 deletion
+523
-248
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-1
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+121
-55
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+401
-192
未找到文件。
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
ae867a84
...
...
@@ -129,7 +129,7 @@ endif()
if
(
NOT ON_INFER
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup eager_reducer
)
if
(
WITH_NCCL
)
if
(
WITH_NCCL
OR WITH_RCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_nccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
ae867a84
...
...
@@ -31,7 +31,7 @@ limitations under the License. */
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"
#if defined(PADDLE_WITH_NCCL)
#if defined(PADDLE_WITH_NCCL)
|| defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif
...
...
@@ -61,11 +61,15 @@ std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
>
process_group
,
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_parameters
)
{
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_parameters
)
{
auto
params
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
return
std
::
make_shared
<
distributed
::
EagerReducer
>
(
params
,
group_indices
,
is_sparse_gradient
,
process_group
,
group_size_limits
,
find_unused_parameters
);
return
std
::
make_shared
<
distributed
::
EagerReducer
>
(
params
,
group_indices
,
is_sparse_gradient
,
process_group
,
group_size_limits
,
find_unused_parameters
);
}
#if defined(PADDLE_WITH_GLOO)
...
...
@@ -111,7 +115,8 @@ void BindDistributed(py::module *m) {
.
def
(
"name"
,
&
distributed
::
ProcessGroup
::
GetBackendName
)
.
def
(
"allreduce"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
distributed
::
ReduceOp
op
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
AllreduceOptions
opts
;
...
...
@@ -121,12 +126,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
AllReduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"broadcast"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
source_rank
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
distributed
::
BroadcastOptions
opts
;
...
...
@@ -136,7 +143,8 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Broadcast
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
...
...
@@ -151,7 +159,8 @@ void BindDistributed(py::module *m) {
.
def
(
"send"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
...
...
@@ -159,12 +168,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Send
(
tensors
,
dst
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
...
...
@@ -172,12 +183,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Recv
(
tensors
,
src
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_gather"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
...
...
@@ -189,12 +202,14 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllGather
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"alltoall"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
...
...
@@ -206,13 +221,16 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllToAll
(
in_tensors
,
out_tensors
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"reduce"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
int
dst
,
distributed
::
ReduceOp
op
)
{
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
int
dst
,
distributed
::
ReduceOp
op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
distributed
::
ReduceOptions
opts
;
opts
.
reduce_op
=
op
;
...
...
@@ -222,14 +240,17 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Reduce
(
tensors
,
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"scatter"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
int
src
)
{
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
int
src
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
distributed
::
ScatterOptions
opts
;
...
...
@@ -242,17 +263,25 @@ void BindDistributed(py::module *m) {
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
Scatter
(
in_tensors
,
out_tensors
,
opts
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL)
#if defined(PADDLE_WITH_
RCCL) || defined(PADDLE_WITH_
NCCL)
py
::
class_
<
distributed
::
ProcessGroupNCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupNCCL
>>
(
*
m
,
"ProcessGroupNCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CUDAPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CUDAPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
...
...
@@ -261,29 +290,53 @@ void BindDistributed(py::module *m) {
py
::
class_
<
distributed
::
ProcessGroupHeter
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHeter
>>
(
*
m
,
"ProcessGroupHeter"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
#if defined(PADDLE_WITH_ASCEND_CL)
const
platform
::
NPUPlace
&
,
#else
const
platform
::
CUDAPlace
&
,
#endif
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
py
::
class_
<
distributed
::
ProcessGroupHCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHCCL
>>
(
*
m
,
"ProcessGroupHCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
NPUPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
NPUPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
...
...
@@ -291,22 +344,29 @@ void BindDistributed(py::module *m) {
py
::
class_
<
distributed
::
ProcessGroup
::
Task
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
::
Task
>>
(
*
m
,
"task"
)
.
def
(
"is_completed"
,
&
distributed
::
ProcessGroup
::
Task
::
IsCompleted
)
.
def
(
"wait"
,
&
distributed
::
ProcessGroup
::
Task
::
Wait
,
.
def
(
"wait"
,
&
distributed
::
ProcessGroup
::
Task
::
Wait
,
py
::
arg
(
"timeout"
)
=
kWaitTimeout
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"synchronize"
,
&
distributed
::
ProcessGroup
::
Task
::
Synchronize
,
.
def
(
"synchronize"
,
&
distributed
::
ProcessGroup
::
Task
::
Synchronize
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_GLOO)
py
::
class_
<
ProcessGroupGloo
,
std
::
shared_ptr
<
ProcessGroupGloo
>>
(
*
m
,
"ProcessGroupGloo"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CPUPlace
&
,
int
,
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
CPUPlace
&
,
int
,
std
::
shared_ptr
<
GlooOptions
>
&>
(),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
py
::
init
([](
const
std
::
shared_ptr
<
paddle
::
distributed
::
Store
>
&
store
,
int
rank
,
int
world_size
,
const
platform
::
CPUPlace
&
place
,
int
gid
)
{
int
rank
,
int
world_size
,
const
platform
::
CPUPlace
&
place
,
int
gid
)
{
auto
opts
=
GlooOptions
::
create
();
char
*
ifname
=
getenv
(
GLOO_SOCKET_IFNAME_ENV
.
c_str
());
if
(
ifname
&&
strlen
(
ifname
)
>
1
)
{
...
...
@@ -315,11 +375,14 @@ void BindDistributed(py::module *m) {
}
else
{
opts
->
device
=
ProcessGroupGloo
::
createDefaultDevice
();
}
return
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
rank
,
world_size
,
place
,
gid
,
opts
);
return
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
rank
,
world_size
,
place
,
gid
,
opts
);
}),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def_static
(
"create_default_device"
,
&
ProcessGroupGloo
::
createDefaultDevice
);
...
...
@@ -327,21 +390,23 @@ void BindDistributed(py::module *m) {
m
->
def
(
"eager_assign_group_by_size"
,
[](
py
::
handle
py_tensors
,
std
::
vector
<
bool
>
is_sparse_gradient
,
[](
py
::
handle
py_tensors
,
std
::
vector
<
bool
>
is_sparse_gradient
,
std
::
vector
<
size_t
>
group_size_limits
,
std
::
vector
<
int64_t
>
tensor_indices
)
{
auto
tensors
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
return
distributed
::
Eager_AssignGroupBySize
(
tensors
,
is_sparse_gradient
,
group_size_limits
,
tensor_indices
);
},
py
::
arg
(
"tensors"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"tensors"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"group_size_limits"
)
=
std
::
vector
<
size_t
>
{
25
*
1024
*
1024
},
py
::
arg
(
"tensor_indices"
)
=
std
::
vector
<
int64_t
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
class_
<
distributed
::
EagerReducer
,
std
::
shared_ptr
<
distributed
::
EagerReducer
>>
(
*
m
,
"EagerReducer"
,
R"DOC()DOC"
)
std
::
shared_ptr
<
distributed
::
EagerReducer
>>
(
*
m
,
"EagerReducer"
,
R"DOC()DOC"
)
.
def
(
py
::
init
(
&
CreateEagerReducer
))
.
def
(
"prepare_for_backward"
,
...
...
@@ -349,7 +414,8 @@ void BindDistributed(py::module *m) {
auto
params
=
CastPyArg2VectorOfTensor
(
py_tensors
.
ptr
(),
0
);
self
.
PrepareForBackward
(
params
);
},
py
::
arg
(
"tensors"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
arg
(
"tensors"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
}
}
// end namespace pybind
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
ae867a84
...
...
@@ -149,7 +149,8 @@ Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
VLOG
(
6
)
<<
"Call GetSliceIndexFromTensor in Eager"
;
paddle
::
experimental
::
Tensor
tensor
=
CastPyArg2Tensor
(
obj
,
0
);
PADDLE_ENFORCE_EQ
(
tensor
.
initialized
(),
true
,
tensor
.
initialized
(),
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"We can only support initialized tensor in slice, however we got "
"uninitialized tensor %s, please check your code."
,
...
...
@@ -167,7 +168,8 @@ bool PyCheckTensor(PyObject* obj) {
return
PyObject_IsInstance
(
obj
,
reinterpret_cast
<
PyObject
*>
(
p_tensor_type
));
}
static
PyObject
*
tensor_method_numpy
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_numpy
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
&
api
=
pybind11
::
detail
::
npy_api
::
get
();
...
...
@@ -179,8 +181,11 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_FLOAT_
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_FLOAT_
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -199,8 +204,12 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
}
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
tensor_dims
.
size
(),
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
tensor_dims
.
size
(),
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -210,8 +219,12 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
py_dims
[
0
]
=
0
;
py_strides
[
0
]
=
0
;
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
numpy_dtype
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -233,7 +246,9 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
paddle
::
memory
::
Copy
(
place
,
reinterpret_cast
<
void
*>
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
),
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
}
else
{
VLOG
(
6
)
<<
"Getting DenseTensor's numpy value"
;
auto
dense_tensor
=
...
...
@@ -242,11 +257,18 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
paddle
::
memory
::
Copy
(
place
,
reinterpret_cast
<
void
*>
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
),
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
place
,
dense_tensor
->
data
(),
sizeof_dtype
*
numel
);
}
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA)
|| defined(PADDLE_WITH_HIP)
}
else
if
(
self
->
tensor
.
is_gpu
())
{
#if defined(PADDLE_WITH_CUDA)
gpuMemcpyKind
kind
=
cudaMemcpyDeviceToHost
;
#elif defined(PADDLE_WITH_HIP)
gpuMemcpyKind
kind
=
hipMemcpyDeviceToHost
;
#endif
if
(
self
->
tensor
.
is_selected_rows
())
{
VLOG
(
6
)
<<
"Getting SelectedRows's numpy value"
;
auto
*
selected_rows
=
...
...
@@ -254,19 +276,21 @@ static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
auto
*
dense_tensor
=
static_cast
<
paddle
::
framework
::
LoDTensor
*>
(
selected_rows
->
mutable_value
());
paddle
::
platform
::
GpuMemcpySync
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
paddle
::
framework
::
DataTypeSize
(
dense_tensor
->
dtype
())
*
dense_tensor
->
numel
(),
cudaMemcpyDeviceToHost
);
kind
);
}
else
{
VLOG
(
6
)
<<
"Getting DenseTensor's numpy value"
;
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
self
->
tensor
.
impl
());
paddle
::
platform
::
GpuMemcpySync
(
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
pybind11
::
detail
::
array_proxy
(
array
)
->
data
,
dense_tensor
->
data
(),
paddle
::
framework
::
DataTypeSize
(
dense_tensor
->
dtype
())
*
dense_tensor
->
numel
(),
cudaMemcpyDeviceToHost
);
kind
);
}
#endif
}
else
{
...
...
@@ -294,8 +318,11 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
PyObject
*
array
=
api
.
PyArray_NewFromDescr_
(
api
.
PyArray_Type_
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_UNICODE_
),
1
,
py_dims
,
py_strides
,
nullptr
,
api
.
PyArray_DescrFromType_
(
pybind11
::
detail
::
npy_api
::
NPY_UNICODE_
),
1
,
py_dims
,
py_strides
,
nullptr
,
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_ALIGNED_
|
pybind11
::
detail
::
npy_api
::
NPY_ARRAY_WRITEABLE_
,
nullptr
);
...
...
@@ -334,7 +361,9 @@ static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
curr_unicode_len
);
}
py
::
array
array
(
py
::
dtype
(
"U"
+
std
::
to_string
(
max_unicode_length
)),
tensor_dims
,
{},
py_array_data
);
tensor_dims
,
{},
py_array_data
);
return
array
.
release
().
ptr
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
...
...
@@ -384,7 +413,8 @@ static void IncreaseTensorReferenceCountUntilCopyComplete(
gc
->
DirectClearCallback
(
callback
);
}
static
PyObject
*
tensor_method__copy_to
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__copy_to
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
place
=
CastPyArg2Place
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
...
...
@@ -401,7 +431,8 @@ static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_cpu
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_cpu
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
cp_tensor
=
self
->
tensor
.
copy_to
(
phi
::
CPUPlace
(),
true
);
...
...
@@ -434,7 +465,8 @@ static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_copy_
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_copy_
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
src_tensor
=
...
...
@@ -465,7 +497,8 @@ static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_retain_grads
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_retain_grads
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
egr
::
Controller
::
Instance
().
HasGrad
())
{
...
...
@@ -482,7 +515,8 @@ static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_clear_gradient
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_clear_gradient
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"ClearGradient "
<<
self
->
tensor
.
name
();
...
...
@@ -543,7 +577,8 @@ static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__zero_grads
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__zero_grads
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"ZeroGrads "
<<
self
->
tensor
.
name
();
...
...
@@ -586,12 +621,14 @@ static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__share_buffer_to
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__share_buffer_to
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
dst_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -616,7 +653,8 @@ static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
*
dst_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -640,7 +678,8 @@ static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
*
src_ptr
=
&
(
reinterpret_cast
<
TensorObject
*>
(
PyTuple_GET_ITEM
(
args
,
0
))
->
tensor
);
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -657,7 +696,8 @@ static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
EAGER_TRY
paddle
::
experimental
::
Tensor
src_tensor
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
PADDLE_ENFORCE_EQ
(
src_tensor
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
src_tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized! please initialize "
"src tensor before share_buffer_with to other."
,
...
...
@@ -671,11 +711,13 @@ static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_detach
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_detach
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized!"
,
self
->
tensor
.
name
()));
...
...
@@ -745,15 +787,24 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
// if index is a list, list_select_flag will be true
bool
list_select_flag
=
false
;
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
initialized
(),
true
,
self
->
tensor
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"tensor %s has not been initialized, we can only slice initialized "
"tensor please init it first with numpy or other tensor."
,
self
->
tensor
.
name
()));
auto
tensor
=
static_cast
<
phi
::
DenseTensor
*>
(
self
->
tensor
.
impl
().
get
());
ParseIndexingSlice
(
tensor
,
_index
,
&
slice_axes
,
&
slice_starts
,
&
slice_ends
,
&
slice_strides
,
&
decrease_axis
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
ParseIndexingSlice
(
tensor
,
_index
,
&
slice_axes
,
&
slice_starts
,
&
slice_ends
,
&
slice_strides
,
&
decrease_axis
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
auto
out
=
slice_axes
.
empty
()
&&
!
list_select_flag
?
self
->
tensor
...
...
@@ -782,9 +833,12 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
decrease_axis
.
end
());
if
(
op_type
==
"slice"
)
{
out
=
slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes_tmp
,
slice_starts
,
slice_ends
,
infer_flags_tmp
,
decrease_axis_tmp
);
out
=
slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes_tmp
,
slice_starts
,
slice_ends
,
infer_flags_tmp
,
decrease_axis_tmp
);
}
else
if
(
op_type
==
"strided_slice"
)
{
out
=
strided_slice_final_state_dygraph_function
(
self
->
tensor
,
slice_axes
,
slice_starts
,
slice_ends
,
slice_strides
);
...
...
@@ -839,27 +893,29 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
select_index
.
set_impl
(
idx_tensor
);
auto
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
egr
::
Controller
::
Instance
().
GetExpectedPlace
());
paddle
::
framework
::
TensorFromVector
(
list_select_idxs
,
*
dev_ctx
,
idx_tensor
.
get
());
paddle
::
framework
::
TensorFromVector
(
list_select_idxs
,
*
dev_ctx
,
idx_tensor
.
get
());
framework
::
AttributeMap
attrs
=
{{
"dim"
,
0
}};
out
=
index_select_final_state_dygraph_function
(
self
->
tensor
,
select_index
,
0
);
out
=
index_select_final_state_dygraph_function
(
self
->
tensor
,
select_index
,
0
);
}
return
ToPyObject
(
out
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__getitem_from_offset
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__getitem_from_offset
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
ptr
=
static_cast
<
phi
::
DenseTensor
*>
(
self
->
tensor
.
impl
().
get
());
PADDLE_ENFORCE_NOT_NULL
(
ptr
,
platform
::
errors
::
InvalidArgument
(
"%s is not a DenseTensor."
,
self
->
tensor
.
name
()));
PADDLE_ENFORCE_NOT_NULL
(
ptr
,
platform
::
errors
::
InvalidArgument
(
"%s is not a DenseTensor."
,
self
->
tensor
.
name
()));
const
auto
&
tensor
=
*
ptr
;
PADDLE_ENFORCE_EQ
(
tensor
.
IsInitialized
(),
true
,
tensor
.
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor of %s is Empty, please check if it has no data."
,
self
->
tensor
.
name
()));
...
...
@@ -877,27 +933,33 @@ static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
}
size_t
offset
=
0
;
if
(
PyTuple_Size
(
args
)
==
0
)
{
PADDLE_ENFORCE_EQ
(
numel
,
1
,
PADDLE_ENFORCE_EQ
(
numel
,
1
,
platform
::
errors
::
InvalidArgument
(
"only one element tensors can be converted to Python "
"scalars when no input coordinates"
));
}
else
if
(
PyTuple_Size
(
args
)
==
1
)
{
offset
=
CastPyArg2AttrLong
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
PADDLE_ENFORCE_LT
(
offset
,
numel
,
offset
,
numel
,
platform
::
errors
::
InvalidArgument
(
"index %d is out of bounds for size %d"
,
offset
,
numel
));
}
else
{
PADDLE_ENFORCE_EQ
(
PyTuple_Size
(
args
),
dims
.
size
(),
PADDLE_ENFORCE_EQ
(
PyTuple_Size
(
args
),
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"incorrect number of indices for Tensor"
));
for
(
Py_ssize_t
i
=
0
;
i
<
PyTuple_Size
(
args
);
++
i
)
{
size_t
index
=
CastPyArg2AttrLong
(
PyTuple_GET_ITEM
(
args
,
i
),
i
);
PADDLE_ENFORCE_LT
(
index
,
dims
[
i
],
index
,
dims
[
i
],
platform
::
errors
::
InvalidArgument
(
"index %d is out fo bounds for axis %d with size %d"
,
index
,
i
,
"index %d is out fo bounds for axis %d with size %d"
,
index
,
i
,
dims
[
i
]));
offset
+=
index
*
strides
[
i
];
}
...
...
@@ -929,14 +991,19 @@ static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
py_strides[0] = 1; \
auto& api = pybind11::detail::npy_api::get(); \
PyObject* array = api.PyArray_NewFromDescr_( \
api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype), 1, \
py_dims, py_strides, nullptr, \
api.PyArray_Type_, \
api.PyArray_DescrFromType_(numpy_dtype), \
1, \
py_dims, \
py_strides, \
nullptr, \
pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ | \
pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_, \
nullptr); \
std::memcpy( \
reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
static_cast<void*>(&b), sizeof(b)); \
static_cast<void*>(&b), \
sizeof(b)); \
return array; \
}
...
...
@@ -991,9 +1058,17 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
infer_flags
,
list_select_idxs
;
// if index is a list, list_select_flag will be true
bool
list_select_flag
=
false
;
ParseIndexingSlice
(
self_tensor
,
index_ptr
,
&
axes
,
&
starts
,
&
ends
,
&
steps
,
&
decrease_axes
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
ParseIndexingSlice
(
self_tensor
,
index_ptr
,
&
axes
,
&
starts
,
&
ends
,
&
steps
,
&
decrease_axes
,
&
none_axes
,
&
infer_flags
,
&
list_select_idxs
,
&
list_select_flag
);
framework
::
AttributeMap
attrs
=
{{
"axes"
,
axes
},
{
"starts"
,
starts
},
...
...
@@ -1058,16 +1133,22 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
value
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
#else
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
value
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
#endif
}
else
{
SetTensorFromPyArray
(
static_cast
<
phi
::
DenseTensor
*>
(
value_tensor_tmp
.
impl
().
get
()),
value
,
value_tensor_tmp
.
place
(),
false
);
value
,
value_tensor_tmp
.
place
(),
false
);
}
value_tensor
=
value_tensor_tmp
;
...
...
@@ -1117,8 +1198,8 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
// Release gil and do tracing
py
::
gil_scoped_release
release
;
// use inplace set_value_ operator
self
->
tensor
=
set_value__dygraph_function
(
self
->
tensor
,
value_tensor
,
{},
{},
{},
attrs
);
self
->
tensor
=
set_value__dygraph_function
(
self
->
tensor
,
value_tensor
,
{},
{},
{},
attrs
);
}
if
(
PyCheckTensor
(
value_obj
))
{
// pass the stop_gradient from value to tensor.
...
...
@@ -1144,15 +1225,19 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
}
if
(
!
self
->
tensor
.
initialized
())
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CUDAPlace
(
0
)),
false
);
#else
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
platform
::
Place
(
platform
::
CPUPlace
()),
false
);
#endif
}
else
{
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
self
->
tensor
.
place
(),
false
);
SetTensorFromPyArray
(
self_tensor
,
self_numpy
,
self
->
tensor
.
place
(),
false
);
}
}
RETURN_PY_NONE
...
...
@@ -1160,7 +1245,8 @@ static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_register_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_register_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
int64_t
hook_id
;
...
...
@@ -1187,7 +1273,8 @@ static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
auto
accumulation_grad_node
=
std
::
dynamic_pointer_cast
<
egr
::
GradNodeAccumulation
>
(
grad_node
);
hook_id
=
accumulation_grad_node
->
RegisterGradientHook
(
rank_info
.
first
,
rank_info
.
second
,
rank_info
.
first
,
rank_info
.
second
,
std
::
make_shared
<
PyTensorHook
>
(
hook_func
));
}
else
{
...
...
@@ -1200,14 +1287,16 @@ static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
PyObject
*
hook_func
=
PyTuple_GET_ITEM
(
args
,
0
);
hook_id
=
grad_node
->
RegisterGradientHook
(
rank_info
.
first
,
rank_info
.
second
,
rank_info
.
first
,
rank_info
.
second
,
std
::
make_shared
<
PyTensorHook
>
(
hook_func
));
}
return
ToPyObject
(
hook_id
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_remove_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_remove_grad_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
6
)
<<
"Remove the registered hook for tensor: "
<<
self
->
tensor
.
name
();
...
...
@@ -1220,14 +1309,16 @@ static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_register_reduce_hook
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_register_reduce_hook
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"Register reduce hook for tensor: "
<<
self
->
tensor
.
name
();
std
::
shared_ptr
<
egr
::
GradNodeBase
>
grad_node
=
egr
::
EagerUtils
::
grad_node
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
),
true
,
PADDLE_ENFORCE_EQ
(
egr
::
egr_utils_api
::
IsLeafTensor
(
self
->
tensor
),
true
,
platform
::
errors
::
InvalidArgument
(
"Only can register backward hook for leaf Tensor."
));
PADDLE_ENFORCE_EQ
(
...
...
@@ -1253,7 +1344,8 @@ static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__set_grad_type
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__set_grad_type
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
var_type
=
pybind
::
CastPyArg2ProtoType
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
...
...
@@ -1269,7 +1361,8 @@ static PyObject* tensor__set_grad_type(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__clear
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__clear
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
self
->
tensor
.
reset
();
...
...
@@ -1278,26 +1371,31 @@ static PyObject* tensor__clear(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__copy_gradient_from
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__copy_gradient_from
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
src
=
CastPyArg2Tensor
(
PyTuple_GET_ITEM
(
args
,
0
),
0
);
if
(
self
->
tensor
.
initialized
())
{
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
dtype
(),
src
.
dtype
(),
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
dtype
(),
src
.
dtype
(),
platform
::
errors
::
PreconditionNotMet
(
"Tensor %s has different data type with Tensor %s"
,
self
->
tensor
.
name
(),
src
.
name
()));
self
->
tensor
.
name
(),
src
.
name
()));
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
impl
()
->
type_info
().
id
(),
src
.
impl
()
->
type_info
().
id
(),
platform
::
errors
::
PreconditionNotMet
(
"Tensor %s has different type with Tensor %s, Tensor "
"ShareGradientDataWith cannot be performed!"
,
self
->
tensor
.
name
(),
src
.
name
()));
self
->
tensor
.
name
(),
src
.
name
()));
}
VLOG
(
6
)
<<
"Tensor copy gradient from: "
<<
src
.
name
();
auto
*
p_grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
if
(
p_grad
)
{
PADDLE_ENFORCE_EQ
(
src
.
initialized
(),
true
,
PADDLE_ENFORCE_EQ
(
src
.
initialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized"
,
src
.
name
()));
p_grad
->
set_impl
(
src
.
impl
());
...
...
@@ -1307,7 +1405,8 @@ static PyObject* tensor__copy_gradient_from(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_set_vocab
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_set_vocab
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
using
Vocab
=
std
::
unordered_map
<
std
::
wstring
,
int
>
;
...
...
@@ -1337,7 +1436,8 @@ static PyObject* tensor_method_get_map_tensor(TensorObject* self,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE_EQ
(
egr
::
IsVariableCompatTensor
(
self
->
tensor
),
true
,
egr
::
IsVariableCompatTensor
(
self
->
tensor
),
true
,
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for VariableCompatTensor"
));
using
Vocab
=
std
::
unordered_map
<
std
::
wstring
,
int
>
;
...
...
@@ -1417,7 +1517,8 @@ static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_dense
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_dense
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1427,7 +1528,8 @@ static PyObject* tensor_method_is_dense(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1438,7 +1540,8 @@ static PyObject* tensor_method_is_sparse(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1448,7 +1551,8 @@ static PyObject* tensor_method_is_sparse_coo(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
if
(
!
self
->
tensor
.
defined
())
{
...
...
@@ -1458,7 +1562,8 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
csr_tensor
=
self
->
tensor
.
to_sparse_csr
();
...
...
@@ -1472,7 +1577,8 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
uint32_t
inplace_version
=
self
->
tensor
.
current_inplace_version
();
...
...
@@ -1481,7 +1587,8 @@ static PyObject* tensor__inplace_version(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
uint32_t
element_size
=
framework
::
DataTypeSize
(
self
->
tensor
.
dtype
());
...
...
@@ -1510,7 +1617,8 @@ static PyObject* tensor_method_is_selected_rows(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_rows
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method_get_rows
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_selected_rows
(),
...
...
@@ -1522,7 +1630,8 @@ static PyObject* tensor_method_get_rows(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_methon_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_methon_element_size
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
return
ToPyObject
(
paddle
::
experimental
::
SizeOf
(
self
->
tensor
.
dtype
()));
...
...
@@ -1550,11 +1659,13 @@ static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method__share_memory
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__share_memory
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
#ifndef _WIN32
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
platform
::
errors
::
InvalidArgument
(
"Sharing memory only support CPU Tensor currently"
));
// 1. get LoDTensor
...
...
@@ -1571,8 +1682,11 @@ static PyObject* tensor_method__share_memory(TensorObject* self, PyObject* args,
const
std
::
string
&
ipc_name
=
shared_writer_holder
->
ipc_name
();
memory
::
allocation
::
MemoryMapFdSet
::
Instance
().
Insert
(
ipc_name
);
// 4. copy data & reset holder
memory
::
Copy
(
platform
::
CPUPlace
(),
shared_writer_holder
->
ptr
(),
platform
::
CPUPlace
(),
data_ptr
,
data_size
);
memory
::
Copy
(
platform
::
CPUPlace
(),
shared_writer_holder
->
ptr
(),
platform
::
CPUPlace
(),
data_ptr
,
data_size
);
t
->
ResetHolder
(
shared_writer_holder
);
return
ToPyObject
(
t
);
#else
...
...
@@ -1584,12 +1698,14 @@ static PyObject* tensor_method__share_memory(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__offset
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__offset
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
auto
t
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
self
->
tensor
.
impl
());
PADDLE_ENFORCE_EQ
(
t
->
IsInitialized
(),
true
,
t
->
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensor %s has not been initialized!"
,
self
->
tensor
.
name
()));
...
...
@@ -1597,12 +1713,14 @@ static PyObject* tensor__offset(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__grad_name
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__grad_name
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1610,12 +1728,14 @@ static PyObject* tensor__grad_name(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__grad_value
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__grad_value
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1635,12 +1755,14 @@ static PyObject* tensor__grad_value(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__unset_fake_empty
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor__unset_fake_empty
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
paddle
::
experimental
::
Tensor
*
grad
=
egr
::
EagerUtils
::
mutable_grad
(
self
->
tensor
);
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
PADDLE_ENFORCE_EQ
(
grad
!=
nullptr
,
true
,
platform
::
errors
::
InvalidArgument
(
"Detected NULL grad. Please check if you have manually "
"cleared the grad inside autograd_meta"
));
...
...
@@ -1656,15 +1778,18 @@ static PyObject* tensor__unset_fake_empty(TensorObject* self, PyObject* args,
}
#if defined(PADDLE_WITH_CUDA)
static
PyObject
*
tensor_method__uva
(
TensorObject
*
self
,
PyObject
*
args
,
static
PyObject
*
tensor_method__uva
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
VLOG
(
4
)
<<
"Running in tensor_method__uva."
;
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
is_dense_tensor
(),
true
,
PADDLE_ENFORCE_EQ
(
self
->
tensor
.
is_dense_tensor
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Unified virtual addressing only support "
"DenseTensor currently."
));
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
self
->
tensor
.
place
()),
true
,
platform
::
errors
::
InvalidArgument
(
"Unified virtual addressing only support "
"CPU Tensor currently."
));
...
...
@@ -1692,130 +1817,211 @@ static PyObject* tensor_method__is_string_tensor_hold_allocation(
}
PyMethodDef
variable_methods
[]
=
{
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_initialized"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_initialized
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_dense_tensor_hold_allocation"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_dense_tensor_hold_allocation
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__copy_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"copy_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_copy_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__copy_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"copy_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_copy_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"reconstruct_from_"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_reconstruct_from_
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"retain_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_retain_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"clear_gradient"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_clear_gradient
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_dense"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_dense
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_zero_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__zero_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_buffer_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_buffer_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"retain_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_retain_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"clear_gradient"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_clear_gradient
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_dense"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_dense
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_zero_grads"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__zero_grads
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_buffer_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_buffer_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_shared_buffer_with"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__is_shared_buffer_with
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_underline_tensor_to"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__share_underline_tensor_to
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_shared_underline_tensor_with"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__is_shared_underline_tensor_with
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"detach"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_detach
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"detach"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_detach
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_underline_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_selected_rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_underline_selected_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_getitem_index_not_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__getitem_index_not_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_getitem_from_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__getitem_from_offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"__setitem_eager_tensor__"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__setitem_eager_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_register_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_register_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_remove_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_remove_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_remove_grad_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_remove_grad_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_register_backward_hook"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_register_reduce_hook
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_set_grad_type"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__set_grad_type
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_clear"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__clear
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_set_grad_type"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__set_grad_type
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_clear"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__clear
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_copy_gradient_from"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__copy_gradient_from
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/** the methods to adapt old dygraph, will be removed in the future **/
{
"set_string_list"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_string_list
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"set_vocab"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_vocab
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"set_vocab"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_set_vocab
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"get_map_tensor"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_map_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"values"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"values"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_bump_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__bump_inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_selected_rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_selected_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_methon_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"rows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_rows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_methon_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_reset_grad_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__reset_grad_inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_memory"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__share_memory
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_name"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_name
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_value"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_value
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_unset_fake_empty"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__unset_fake_empty
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_share_memory"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__share_memory
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_offset"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__offset
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_name"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_name
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_grad_value"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__grad_value
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_unset_fake_empty"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__unset_fake_empty
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
#if defined(PADDLE_WITH_CUDA)
{
"_tensor_uva"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__uva
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_tensor_uva"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__uva
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
#endif
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
@@ -1823,14 +2029,17 @@ PyMethodDef variable_methods[] = {
PyMethodDef
string_tensor_variable_methods
[]
=
{
{
"numpy"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_numpy_for_string_tensor
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_initialized"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_initialized
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_is_string_tensor_hold_allocation"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method__is_string_tensor_hold_allocation
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
// TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录