Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ae4e9075
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae4e9075
编写于
12月 12, 2018
作者:
X
xiaoli.liu@intel.com
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
extract functions for primitive cache
上级
e02a8025
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
178 addition
and
196 deletion
+178
-196
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+178
-196
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
ae4e9075
...
@@ -33,6 +33,35 @@ using platform::GetMKLDNNFormat;
...
@@ -33,6 +33,35 @@ using platform::GetMKLDNNFormat;
template
<
typename
T
>
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
public:
struct
ConvInfo
{
const
paddle
::
framework
::
Tensor
*
input
;
const
paddle
::
framework
::
Tensor
*
bias
;
const
paddle
::
framework
::
Tensor
*
output
;
const
paddle
::
framework
::
Tensor
*
weight
;
std
::
vector
<
int
>*
strides
;
std
::
vector
<
int
>*
paddings
;
std
::
vector
<
int
>*
dilations
;
std
::
vector
<
int
>*
src_tz
;
std
::
vector
<
int
>*
weights_tz
;
std
::
vector
<
int
>*
dst_tz
;
int
g
;
};
struct
MkldnnInfo
{
bool
fuse_relu
;
bool
fuse_residual_conn
;
bool
force_fp32_output
;
bool
is_test
;
const
mkldnn
::
engine
*
mkldnn_engine
;
std
::
vector
<
primitive
>*
pipeline
;
const
std
::
string
*
key_conv_pd
;
std
::
string
*
key
;
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
;
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
};
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
...
@@ -85,7 +114,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -85,7 +114,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"dilation in convolution is not implemented yet"
);
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
std
::
vector
<
int
>
weights_tz
=
...
@@ -127,13 +155,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -127,13 +155,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
need_s8_to_u8
=
true
;
need_s8_to_u8
=
true
;
}
}
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
=
nullptr
;
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
=
nullptr
;
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
=
nullptr
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
=
nullptr
;
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
=
nullptr
;
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
;
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
=
nullptr
;
auto
prim_key
=
key
+
"@conv_p"
;
auto
prim_key
=
key
+
"@conv_p"
;
auto
dst_key
=
key
+
"@dst_mem_p"
;
auto
dst_key
=
key
+
"@dst_mem_p"
;
...
@@ -142,42 +170,38 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -142,42 +170,38 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_reorder_key
=
key
+
"@src_mem_preorder_p"
;
auto
src_reorder_key
=
key
+
"@src_mem_preorder_p"
;
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx
.
GetBlob
(
prim_key
));
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx
.
GetBlob
(
prim_key
));
if
(
conv_p
==
nullptr
){
if
(
conv_p
==
nullptr
){
struct
ConvInfo
convinfo
;
struct
MkldnnInfo
mkldnninfo
;
convinfo
.
strides
=
&
strides
;
convinfo
.
paddings
=
&
paddings
;
convinfo
.
dilations
=
&
dilations
;
convinfo
.
src_tz
=
&
src_tz
;
convinfo
.
weights_tz
=
&
weights_tz
;
convinfo
.
dst_tz
=
&
dst_tz
;
convinfo
.
g
=
g
;
mkldnninfo
.
fuse_relu
=
fuse_relu
;
mkldnninfo
.
fuse_residual_conn
=
fuse_residual_conn
;
mkldnninfo
.
force_fp32_output
=
force_fp32_output
;
mkldnninfo
.
is_test
=
is_test
;
mkldnninfo
.
mkldnn_engine
=
&
mkldnn_engine
;
mkldnninfo
.
handler
=
handler
;
mkldnninfo
.
pipeline
=
&
pipeline
;
mkldnninfo
.
key_conv_pd
=
&
key_conv_pd
;
mkldnninfo
.
key
=
&
key
;
mkldnninfo
.
src_memory_p
=
src_memory_p
;
mkldnninfo
.
user_src_memory_p
=
user_src_memory_p
;
mkldnninfo
.
dst_memory_p
=
dst_memory_p
;
mkldnninfo
.
conv_p
=
conv_p
;
mkldnninfo
.
conv_pd
=
conv_pd
;
if
(
is_INT8
){
if
(
is_INT8
){
CreateINT8Primitive
(
ctx
,
is_test
,
dev_ctx
,
mkldnn_engine
,
input
,
//filter,
CreateINT8Primitive
(
ctx
,
&
dev_ctx
,
input
,
filter
,
bias
,
output
,
&
convinfo
,
&
mkldnninfo
);
bias
,
output
,
strides
,
paddings
,
dilations
,
fuse_relu
,
fuse_residual_conn
,
input_data
,
filter_data
,
src_tz
,
weights_tz
,
g
,
dst_tz
,
key
,
dst_memory_p
,
pipeline
,
key_conv_pd
,
src_memory_p
,
user_src_memory_p
,
conv_p
,
conv_pd
,
handler
,
force_fp32_output
);
}
else
{
}
else
{
CreateFP32Primitive
(
ctx
,
is_test
,
dev_ctx
,
mkldnn_engine
,
input
,
//filter,
CreateFP32Primitive
(
ctx
,
&
dev_ctx
,
input
,
filter
,
bias
,
output
,
&
convinfo
,
&
mkldnninfo
);
bias
,
output
,
strides
,
paddings
,
dilations
,
fuse_relu
,
fuse_residual_conn
,
input_data
,
filter_data
,
src_tz
,
weights_tz
,
g
,
dst_tz
,
key
,
dst_memory_p
,
pipeline
,
key_conv_pd
,
src_memory_p
,
user_src_memory_p
,
conv_p
,
conv_pd
,
handler
);
}
}
//src_memory_p = mkldnninfo.src_memory_p;
//user_src_memory_p = mkldnninfo.user_src_memory_p;
dst_memory_p
=
mkldnninfo
.
dst_memory_p
;
//conv_p = mkldnninfo.conv_p;
}
else
{
}
else
{
auto
src_memory_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_reorder_key
));
auto
src_memory_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_reorder_key
));
src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_key
));
src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_key
));
...
@@ -267,33 +291,18 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -267,33 +291,18 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
private:
private:
void
CreateFP32Primitive
(
void
CreateFP32Primitive
(
paddle
::
framework
::
ExecutionContext
ctx
,
bool
is_test
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
paddle
::
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
paddle
::
platform
::
MKLDNNDeviceContext
*
dev_ctx
,
const
mkldnn
::
engine
&
mkldnn_engine
,
const
paddle
::
framework
::
Tensor
*
input
,
const
paddle
::
framework
::
Tensor
*
filter
,
const
paddle
::
framework
::
Tensor
*
input
,
// const paddle::framework::Tensor* filter,
const
paddle
::
framework
::
Tensor
*
bias
,
paddle
::
framework
::
Tensor
*
output
,
const
paddle
::
framework
::
Tensor
*
bias
,
paddle
::
framework
::
Tensor
*
output
,
std
::
vector
<
int
>
strides
,
std
::
vector
<
int
>
paddings
,
ConvInfo
*
convinfo
,
MkldnnInfo
*
mkldnninfo
)
const
{
std
::
vector
<
int
>
dilations
,
bool
fuse_relu
,
const
T
*
input_data
=
input
->
data
<
T
>
();
bool
fuse_residual_conn
,
const
T
*
input_data
,
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
,
std
::
vector
<
int
>
src_tz
,
std
::
vector
<
int
>
weights_tz
,
int
g
,
std
::
vector
<
int
>
dst_tz
,
const
std
::
string
key
,
std
::
shared_ptr
<
mkldnn
::
memory
>
&
dst_memory_p
,
std
::
vector
<
primitive
>&
pipeline
,
const
std
::
string
&
key_conv_pd
,
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
,
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
,
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
)
const
{
//const T* input_data = input->data<T>();
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
{
*
(
convinfo
->
src_tz
)
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
{
*
(
convinfo
->
weights_tz
)
},
platform
::
MKLDNNGetDataType
<
T
>
(),
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
(
convinfo
->
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* ('any') which lets a primitive (convolution in this case) choose
...
@@ -304,46 +313,51 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -304,46 +313,51 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
platform
::
data_format_to_memory_format
(
data_format
);
platform
::
data_format_to_memory_format
(
data_format
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
*
(
convinfo
->
src_tz
)
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
*
(
convinfo
->
weights_tz
)
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
*
(
convinfo
->
dst_tz
)
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
// create a conv primitive descriptor and save it for usage in backward
if
(
bias
)
{
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
mkldnninfo
->
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
*
convinfo
->
strides
,
*
convinfo
->
paddings
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
*
mkldnninfo
->
mkldnn_engine
,
mkldnninfo
->
fuse_relu
,
mkldnninfo
->
fuse_residual_conn
,
mkldnninfo
->
is_test
);
}
else
{
}
else
{
conv_pd
=
mkldnninfo
->
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
*
convinfo
->
strides
,
*
convinfo
->
paddings
,
*
mkldnninfo
->
mkldnn_engine
,
mkldnninfo
->
fuse_relu
,
mkldnninfo
->
fuse_residual_conn
,
mkldnninfo
->
is_test
);
}
}
// Save conv_pd/src_memory/weights_memory for backward pass
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
dev_ctx
->
SetBlob
(
*
mkldnninfo
->
key_conv_pd
,
mkldnninfo
->
conv_pd
);
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
));
mkldnninfo
->
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
mkldnninfo
->
conv_pd
,
*
dev_ctx
,
*
mkldnninfo
->
mkldnn_engine
,
*
mkldnninfo
->
key
));
// create mkldnn memory from input tensors (data/weights)
// create mkldnn memory from input tensors (data/weights)
user_src_memory_p
=
mkldnninfo
->
user_src_memory_p
=
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
mkldnninfo
->
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
->
AcquireWeightsMemory
(
auto
user_weights_memory_p
=
mkldnninfo
->
handler
->
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
mkldnninfo
->
src_memory_p
=
handler
->
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
mkldnninfo
->
handler
->
AcquireSrcMemoryFromPrimitive
(
mkldnninfo
->
user_src_memory_p
,
*
mkldnninfo
->
pipeline
);
auto
weights_memory_p
=
handler
->
AcquireWeightsMemoryFromPrimitive
(
auto
weights_memory_p
=
mkldnninfo
->
handler
->
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
user_weights_memory_p
,
*
mkldnninfo
->
pipeline
,
mkldnninfo
->
is_test
);
if
(
fuse_residual_conn
)
{
if
(
mkldnninfo
->
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
...
@@ -354,9 +368,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -354,9 +368,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Output and elementwise parameter need to have the "
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
if
(
residual_param
->
format
()
!=
mkldnninfo
->
handler
->
GetDstFormat
())
{
auto
output_data
=
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
mkldnninfo
->
handler
->
GetDstMemorySize
());
auto
residual_data_tz
=
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
auto
residual_data_type
=
...
@@ -364,21 +378,21 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -364,21 +378,21 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
auto
user_residual_memory_p
=
handler
->
AcquireResidualDataMemory
(
auto
user_residual_memory_p
=
mkldnninfo
->
handler
->
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
dst_memory_p
=
handler
->
AcquireDstMemoryFromResidualDataMemory
(
mkldnninfo
->
dst_memory_p
=
mkldnninfo
->
handler
->
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
*
mkldnninfo
->
pipeline
);
}
else
{
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
}
else
{
}
else
{
auto
output_data
=
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
mkldnninfo
->
handler
->
GetDstMemorySize
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
// create convolution op primitive
// create convolution op primitive
...
@@ -387,72 +401,41 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -387,72 +401,41 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
auto
user_bias_memory_p
=
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
mkldnninfo
->
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
auto
bias_memory_p
=
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
);
mkldnninfo
->
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
*
mkldnninfo
->
pipeline
,
mkldnninfo
->
is_test
);
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
mkldnninfo
->
conv_p
=
mkldnninfo
->
handler
->
AcquireConvolution
(
bias_memory_p
,
dst_memory_p
);
mkldnninfo
->
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
mkldnninfo
->
dst_memory_p
);
}
else
{
}
else
{
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
mkldnninfo
->
conv_p
=
mkldnninfo
->
handler
->
AcquireConvolution
(
dst_memory_p
);
mkldnninfo
->
src_memory_p
,
weights_memory_p
,
mkldnninfo
->
dst_memory_p
);
}
}
// push primitive to stream and wait until it's executed
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
mkldnninfo
->
pipeline
->
push_back
(
*
mkldnninfo
->
conv_p
);
};
};
void
CreateINT8Primitive
(
void
CreateINT8Primitive
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
bool
is_test
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
paddle
::
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
paddle
::
platform
::
MKLDNNDeviceContext
*
dev_ctx
,
const
mkldnn
::
engine
&
mkldnn_engine
,
const
paddle
::
framework
::
Tensor
*
input
,
const
paddle
::
framework
::
Tensor
*
filter
,
const
paddle
::
framework
::
Tensor
*
input
,
//const paddle::framework::Tensor* filter,
const
paddle
::
framework
::
Tensor
*
bias
,
paddle
::
framework
::
Tensor
*
output
,
const
paddle
::
framework
::
Tensor
*
bias
,
paddle
::
framework
::
Tensor
*
output
,
std
::
vector
<
int
>
strides
,
std
::
vector
<
int
>
paddings
,
ConvInfo
*
convinfo
,
MkldnnInfo
*
mkldnninfo
)
const
{
std
::
vector
<
int
>
dilations
,
bool
fuse_relu
,
const
T
*
input_data
=
input
->
data
<
T
>
();
bool
fuse_residual_conn
,
const
T
*
input_data
,
const
float
*
filter_data
=
filter
->
data
<
float
>
();
const
float
*
filter_data
,
std
::
vector
<
int
>
src_tz
,
std
::
vector
<
int
>
weights_tz
,
int
g
,
std
::
vector
<
int
>
dst_tz
,
const
std
::
string
key
,
std
::
shared_ptr
<
mkldnn
::
memory
>&
dst_memory_p
,
std
::
vector
<
primitive
>&
pipeline
,
const
std
::
string
&
key_conv_pd
,
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
user_src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
,
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
,
std
::
shared_ptr
<
platform
::
ConvMKLDNNHandler
>
handler
,
bool
force_fp32_output
)
const
{
//const T* input_data = input->data<T>();
bool
is_INT8
=
true
;
bool
is_INT8
=
true
;
auto
scale_in_data
=
ctx
.
Attr
<
float
>
(
"Scale_in"
);
auto
scale_in_data
=
ctx
.
Attr
<
float
>
(
"Scale_in"
);
auto
scale_in_eltwise_data
=
ctx
.
Attr
<
float
>
(
"Scale_in_eltwise"
);
auto
scale_in_eltwise_data
=
ctx
.
Attr
<
float
>
(
"Scale_in_eltwise"
);
auto
scale_weights_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Scale_weights"
);
auto
scale_weights_data
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"Scale_weights"
);
auto
scale_out_data
=
force_fp32_output
?
1.0
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
auto
scale_out_data
=
mkldnninfo
->
force_fp32_output
?
1.0
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
bool
is_multi_channel
=
scale_weights_data
.
size
()
>
1
?
true
:
false
;
bool
is_multi_channel
=
scale_weights_data
.
size
()
>
1
?
true
:
false
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_out_key
=
key
+
"@scale_out"
;
auto
output_shift_scale_key
=
key
+
"@output_shift_scale"
;
auto
sum_scale_key
=
key
+
"@sum_scale"
;
auto
scale_in_eltwise_key
=
key
+
"@scale_in_eltwise"
;
//std::vector<float> scale_in_data;
//std::vector<float> scale_out_data = {1.0f};
//std::vector<float> scale_weights_data;
//std::vector<float> scale_in_eltwise_data;
std
::
vector
<
float
>
output_shift_scale
;
std
::
vector
<
float
>
output_shift_scale
;
float
sum_scale
=
1.0
f
;
float
sum_scale
=
1.0
f
;
int
count
=
is_multi_channel
?
(
convinfo
->
g
>
1
?
(
*
convinfo
->
weights_tz
)[
1
]
*
(
*
convinfo
->
weights_tz
)[
0
]
:
(
*
convinfo
->
weights_tz
)[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
//scale_in_data = {scale_in};
//scale_weights_data.resize(count);
//#pragma omp parallel for if (count > 1)
//for(int i=0; i<count; i++){
//scale_weights_data[i] =*(scale_weights->data<float>() + i);
//}
//if(!force_fp32_output)
//scale_out_data = {*(scale_out->data<float>())};
output_shift_scale
.
resize
(
count
);
output_shift_scale
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
for
(
int
i
=
0
;
i
<
count
;
i
++
){
...
@@ -461,16 +444,15 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -461,16 +444,15 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
else
else
output_shift_scale
[
i
]
=
scale_out_data
/
(
scale_in_data
*
scale_weights_data
[
i
]);
output_shift_scale
[
i
]
=
scale_out_data
/
(
scale_in_data
*
scale_weights_data
[
i
]);
}
}
if
(
fuse_residual_conn
){
if
(
mkldnninfo
->
fuse_residual_conn
){
//scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
sum_scale
=
scale_out_data
/
scale_in_eltwise_data
;
sum_scale
=
scale_out_data
/
scale_in_eltwise_data
;
}
}
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
{
*
convinfo
->
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
{
*
convinfo
->
weights_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
(
(
convinfo
->
g
)
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* ('any') which lets a primitive (convolution in this case) choose
...
@@ -483,123 +465,123 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -483,123 +465,123 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
*
convinfo
->
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
);
*
convinfo
->
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
);
auto
dst_dt
=
fuse_relu
?
auto
dst_dt
=
mkldnninfo
->
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
if
(
force_fp32_output
){
if
(
mkldnninfo
->
force_fp32_output
){
dst_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
float
)));
dst_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
float
)));
}
}
if
(
fuse_residual_conn
){
if
(
mkldnninfo
->
fuse_residual_conn
){
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
if
(
dst_dt
!=
residual_dt
)
if
(
dst_dt
!=
residual_dt
)
dst_dt
=
residual_dt
;
dst_dt
=
residual_dt
;
}
}
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
*
convinfo
->
dst_tz
,
dst_dt
,
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
// create a conv primitive descriptor and save it for usage in backward
if
(
bias
)
{
if
(
bias
)
{
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
mkldnninfo
->
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
*
convinfo
->
strides
,
*
convinfo
->
paddings
,
*
mkldnninfo
->
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
mkldnninfo
->
fuse_relu
,
mkldnninfo
->
fuse_residual_conn
,
output_shift_scale
,
sum_scale
,
is_test
);
output_shift_scale
,
sum_scale
,
mkldnninfo
->
is_test
);
}
else
{
}
else
{
conv_pd
=
mkldnninfo
->
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
*
convinfo
->
strides
,
*
convinfo
->
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
*
mkldnninfo
->
mkldnn_engine
,
mkldnninfo
->
fuse_relu
,
mkldnninfo
->
fuse_residual_conn
,
output_shift_scale
,
sum_scale
,
is_test
);
output_shift_scale
,
sum_scale
,
mkldnninfo
->
is_test
);
}
}
// Save conv_pd/src_memory/weights_memory for backward pass
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
dev_ctx
->
SetBlob
(
*
mkldnninfo
->
key_conv_pd
,
mkldnninfo
->
conv_pd
);
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
));
mkldnninfo
->
handler
.
reset
(
new
platform
::
ConvMKLDNNHandler
(
mkldnninfo
->
conv_pd
,
*
dev_ctx
,
*
mkldnninfo
->
mkldnn_engine
,
*
mkldnninfo
->
key
));
// create mkldnn memory from input tensors (data/weights)
// create mkldnn memory from input tensors (data/weights)
user_src_memory_p
=
mkldnninfo
->
user_src_memory_p
=
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
mkldnninfo
->
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
->
AcquireWeightsMemory
(
auto
user_weights_memory_p
=
mkldnninfo
->
handler
->
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
mkldnninfo
->
src_memory_p
=
handler
->
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
mkldnninfo
->
handler
->
AcquireSrcMemoryFromPrimitive
(
mkldnninfo
->
user_src_memory_p
,
*
mkldnninfo
->
pipeline
);
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
int
mask_reorder
=
is_multi_channel
?
((
convinfo
->
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
weights_memory_p
=
handler
->
AcquireWeightsMemoryFromPrimitive
(
weights_memory_p
=
mkldnninfo
->
handler
->
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
user_weights_memory_p
,
*
mkldnninfo
->
pipeline
,
mkldnninfo
->
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
if
(
fuse_residual_conn
)
{
if
(
mkldnninfo
->
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
PADDLE_ENFORCE_EQ
(
residual_param
->
format
(),
handler
->
GetDstFormat
(),
PADDLE_ENFORCE_EQ
(
residual_param
->
format
(),
mkldnninfo
->
handler
->
GetDstFormat
(),
"Conv input dimension and filter dimension should be the same."
);
"Conv input dimension and filter dimension should be the same."
);
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
}
else
{
}
else
{
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
}
}
else
if
(
!
force_fp32_output
){
}
else
if
(
!
mkldnninfo
->
force_fp32_output
){
if
(
fuse_relu
){
if
(
mkldnninfo
->
fuse_relu
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
mkldnninfo
->
handler
->
GetDstMemorySize
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
}
else
{
}
else
{
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
mkldnninfo
->
handler
->
GetDstMemorySize
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
}
}
else
{
}
else
{
float
*
output_data
=
output
->
mutable_data
<
float
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
float
*
output_data
=
output
->
mutable_data
<
float
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
mkldnninfo
->
handler
->
GetDstMemorySize
());
dst_memory_p
=
mkldnninfo
->
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
float
>
(
output_data
));
mkldnninfo
->
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
float
>
(
output_data
));
}
}
// create convolution op primitive
// create convolution op primitive
std
::
vector
<
float
>
scale_bias_data
;
std
::
vector
<
float
>
scale_bias_data
;
auto
scale_bias_key
=
key
+
"@scale_bias"
;
auto
scale_bias_key
=
*
mkldnninfo
->
key
+
"@scale_bias"
;
if
(
bias
)
{
if
(
bias
)
{
const
float
*
bias_data
=
bias
->
data
<
float
>
();
const
float
*
bias_data
=
bias
->
data
<
float
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
auto
user_bias_memory_p
=
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
mkldnninfo
->
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
convinfo
->
g
>
1
?
(
*
convinfo
->
weights_tz
)[
1
]
*
(
*
convinfo
->
weights_tz
)[
0
]
:
(
*
convinfo
->
weights_tz
)
[
0
])
:
1
;
scale_bias_data
.
resize
(
count
);
scale_bias_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_bias_data
[
i
]
=
scale_in_data
*
scale_weights_data
[
i
];
scale_bias_data
[
i
]
=
scale_in_data
*
scale_weights_data
[
i
];
}
}
bias_memory_p
=
bias_memory_p
=
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
mkldnninfo
->
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
*
mkldnninfo
->
pipeline
,
mkldnninfo
->
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
mkldnninfo
->
conv_p
=
mkldnninfo
->
handler
->
AcquireConvolution
(
mkldnninfo
->
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
bias_memory_p
,
mkldnninfo
->
dst_memory_p
);
}
else
{
}
else
{
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
mkldnninfo
->
conv_p
=
mkldnninfo
->
handler
->
AcquireConvolution
(
mkldnninfo
->
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
mkldnninfo
->
dst_memory_p
);
}
}
// push primitive to stream and wait until it's executed
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
mkldnninfo
->
pipeline
->
push_back
(
*
mkldnninfo
->
conv_p
);
};
};
void
AppendKey
(
std
::
string
&
key
,
mkldnn
::
memory
::
dims
&
input_dims
,
// NOLINT
void
AppendKey
(
std
::
string
&
key
,
mkldnn
::
memory
::
dims
&
input_dims
,
// NOLINT
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录