Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ad4ab5ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad4ab5ac
编写于
2月 26, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove step_input in recurrent_group step_input
上级
f13f1f1c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
62 addition
and
20 deletion
+62
-20
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+50
-11
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+6
-7
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ad4ab5ac
...
...
@@ -3042,7 +3042,8 @@ def recurrent_group(step,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
,
is_generating
=
False
):
is_generating
=
False
,
in_args_converter
=
None
):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
...
...
@@ -3185,7 +3186,10 @@ def recurrent_group(step,
assert
(
is_generating
!=
has_LayerOutput
)
if
in_args_converter
is
None
:
layer_outs
=
step
(
*
in_args
)
else
:
layer_outs
=
step
(
*
in_args_converter
(
*
in_args
)).
to_proto
(
dict
())
if
isinstance
(
layer_outs
,
LayerOutput
):
layer_outs
=
[
layer_outs
]
...
...
python/paddle/v2/layer.py
浏览文件 @
ad4ab5ac
...
...
@@ -73,8 +73,6 @@ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
activation
import
attr
import
data_type
__all__
=
[
...
...
@@ -101,11 +99,10 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
,
step_input
=
None
):
def
__init__
(
self
,
name
,
parent_layers
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
step_input
=
step_input
self
.
__parent_layers__
=
parent_layers
def
to_proto
(
self
,
context
):
...
...
@@ -121,12 +118,13 @@ class Layer(object):
else
:
v1_layer
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layers__
[
layer_name
])
if
layer_name
==
"input"
and
self
.
step_input
is
not
None
:
v1_layer
.
insert
(
0
,
self
.
step_input
)
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
# memory may have the same name with some layer
if
isinstance
(
self
,
MemoryV2
):
if
isinstance
(
self
,
MemoryV2
)
or
isinstance
(
self
,
LayerOutputV2
)
:
return
self
.
to_proto_impl
(
**
kwargs
)
if
self
.
name
not
in
context
:
...
...
@@ -144,7 +142,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
step_input
=
None
,
**
kwargs
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
...
...
@@ -155,7 +153,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
,
step_input
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
if
wrapper
is
not
None
:
...
...
@@ -214,6 +212,48 @@ class MemoryV2(Layer):
return
conf_helps
.
memory
(
name
=
self
.
name
,
size
=
self
.
size
,
**
args
)
class
LayerOutputV2
(
Layer
):
def
__init__
(
self
,
layer_output
):
assert
isinstance
(
layer_output
,
conf_helps
.
LayerOutput
)
self
.
layer_output
=
layer_output
super
(
LayerOutputV2
,
self
).
__init__
(
name
=
layer_output
.
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
):
return
self
.
layer_output
class
RecurrentGroupV2
(
Layer
):
def
__init__
(
self
,
name
,
**
kwargs
):
self
.
__parent_names__
=
[
'input'
]
other_kwargs
=
dict
()
parent_layers
=
dict
()
for
pname
in
self
.
__parent_names__
:
if
kwargs
.
has_key
(
pname
):
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
self
.
__parent_names__
:
other_kwargs
[
key
]
=
kwargs
[
key
]
self
.
__kwargs__
=
other_kwargs
super
(
RecurrentGroupV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
def
to_proto_impl
(
self
,
**
kwargs
):
def
in_args_converter
(
in_args
):
if
not
isinstance
(
in_args
,
collections
.
Sequence
):
in_args
=
[
in_args
]
return
[
LayerOutputV2
(
input
)
for
input
in
in_args
]
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
return
conf_helps
.
recurrent_group
(
name
=
self
.
name
,
in_args_converter
=
in_args_converter
,
**
args
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
...
...
@@ -234,8 +274,7 @@ embedding = __convert_to_v2__(
'embedding_layer'
,
name_prefix
=
'embedding'
,
parent_names
=
[
'input'
])
last_seq
=
__convert_to_v2__
(
'last_seq'
,
name_prefix
=
'last_seq'
,
parent_names
=
[
'input'
])
recurrent_group
=
__convert_to_v2__
(
'recurrent_group'
,
name_prefix
=
'recurrent_layer'
,
parent_names
=
[
'input'
])
recurrent_group
=
RecurrentGroupV2
memory
=
MemoryV2
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
ad4ab5ac
...
...
@@ -63,7 +63,7 @@ class RNNTest(unittest.TestCase):
word_dim
=
8
hidden_dim
=
8
def
test
_old_rnn
():
def
parse
_old_rnn
():
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
...
...
@@ -81,16 +81,15 @@ class RNNTest(unittest.TestCase):
return
str
(
parse_network
(
test
))
def
test
_new_rnn
():
def
parse
_new_rnn
():
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
mem
],
step_input
=
y
,
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
.
to_proto
(
dict
())
return
out
data1
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
integer_value
(
dict_dim
))
...
...
@@ -99,8 +98,8 @@ class RNNTest(unittest.TestCase):
name
=
"rnn"
,
step
=
new_step
,
input
=
embd
)
return
str
(
layer
.
parse_network
(
rnn_layer
))
diff
=
difflib
.
unified_diff
(
test
_old_rnn
().
splitlines
(
1
),
test
_new_rnn
().
splitlines
(
1
))
diff
=
difflib
.
unified_diff
(
parse
_old_rnn
().
splitlines
(
1
),
parse
_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录