Recurrent Layer Group
+
+
memory
+
+
+paddle.trainer_config_helpers.layers.
memory
( name , size , is_seq=False , boot_layer=None , boot_bias=None , boot_bias_active_type=None , boot_with_const_id=None )
+The memory layers is a layer cross each time step. Reference this output
+as previous time step layer name
‘s output.
+The default memory is zero in first time step, previous time step’s
+output in the rest time steps.
+If boot_bias, the first time step value is this bias and
+with activation.
+If boot_with_const_id, then the first time stop is a IndexSlot, the
+Arguments.ids()[0] is this cost_id
.
+If boot_layer is not null, the memory is just the boot_layer’s output.
+Set is_seq
is true boot layer is sequence.
+The same name layer in recurrent group will set memory on each time
+step.
+
+
+
+
+Parameters:
+name (basestring ) – memory’s name.
+size (int ) – size of memory.
+is_seq (bool ) – is sequence for boot_layer
+boot_layer (LayerOutput|None ) – boot layer of memory.
+boot_bias (ParameterAttribute|None ) – boot layer’s bias
+boot_bias_active_type (BaseActivation ) – boot layer’s active type.
+boot_with_const_id (int ) – boot layer’s id.
+
+
+
+Returns: LayerOutput object which is a memory.
+
+
+Return type: LayerOutput
+
+
+
+
+
+
+
recurrent_group
@@ -2647,6 +2690,7 @@ It is used by recurrent layer group.
Recurrent Layer Group
+memory
recurrent_group
beam_search
get_output_layer
diff --git a/doc/ui/api/trainer_config_helpers/layers_index.html b/doc/ui/api/trainer_config_helpers/layers_index.html
index 0740512a8b3db7ce9fe51e45583bc83cf9810c15..4b825430a0afbba56e78691b8e7eacda546e4e41 100644
--- a/doc/ui/api/trainer_config_helpers/layers_index.html
+++ b/doc/ui/api/trainer_config_helpers/layers_index.html
@@ -114,6 +114,7 @@ var _hmt = _hmt || [];
Recurrent Layer Group
+memory
recurrent_group
beam_search
get_output_layer
diff --git a/doc_cn/.buildinfo b/doc_cn/.buildinfo
index fc2ad92e9f6e2e04e778695c81e30b318e6208ee..273d212eccd95533509f805ac6c18c2a21d32383 100644
--- a/doc_cn/.buildinfo
+++ b/doc_cn/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 70a318b9e7a63a79aedc16f559247671
+config: 8f9e3b6337374f468cc7e48534c4662a
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png b/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png
new file mode 100644
index 0000000000000000000000000000000000000000..55ca643c25832d8065aa210aba221028e54d091f
Binary files /dev/null and b/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png differ
diff --git a/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png.map b/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png.map
new file mode 100644
index 0000000000000000000000000000000000000000..34b27c1157bb5962dcc5eae274c1e9aaeb2b50c9
--- /dev/null
+++ b/doc_cn/_images/graphviz-9be6aad37f57c60f4b971dde0ef44ce27179cf9a.png.map
@@ -0,0 +1,2 @@
+
+
diff --git a/doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt b/doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5282bbbcb82d00f5aed7b784d2bd44f9ec33fa42
--- /dev/null
+++ b/doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt
@@ -0,0 +1,66 @@
+# 支持双层序列作为输入的Layer
+
+## 概述
+
+在自然语言处理任务中,序列是一种常见的数据类型。一个独立的词语,可以看作是一个非序列输入,或者,我们称之为一个0层的序列;由词语构成的句子,是一个单层序列;若干个句子构成一个段落,是一个双层的序列。
+
+双层序列是一个嵌套的序列,它的每一个元素,又是一个单层的序列。这是一种非常灵活的数据组织方式,帮助我们构造一些复杂的输入信息。
+
+我们可以按照如下层次定义非序列,单层序列,以及双层序列。
+
++ 0层序列:一个独立的元素,类型可以是PaddlePaddle支持的任意输入数据类型
++ 单层序列:排成一列的多个元素,每个元素是一个0层序列,元素之间的顺序是重要的输入信息
++ 双层序列:排成一列的多个元素,每个元素是一个单层序列,称之为双层序列的一个子序列(subseq),subseq的每个元素是一个0层序列
+
+
+在 PaddlePaddle中,下面这些Layer能够接受双层序列作为输入,完成相应的计算。
+## pooling_layer
+
+pooling_layer的使用示例如下,详细见配置API 。
+```python
+seq_pool = pooling_layer(input=layer,
+ pooling_type=AvgPooling(),
+ agg_level=AggregateLevel.EACH_SEQUENCE)
+```
+- `pooling_type` 目前支持两种,分别是:MaxPooling()和AvgPooling()。
+- `agg_level=AggregateLevel.TIMESTEP`时(默认值):
+ - 作用:双层序列经过运算变成一个0层序列,或单层序列经过运算变成一个0层序列
+ - 输入:一个双层序列,或一个单层序列
+ - 输出:一个0层序列,即整个输入序列(单层或双层)的平均值(或最大值)
+- `agg_level=AggregateLevel.EACH_SEQUENCE`时:
+ - 作用:一个双层序列经过运算变成一个单层序列
+ - 输入:必须是一个双层序列
+ - 输出:一个单层序列,序列的每个元素是原来双层序列每个subseq元素的平均值(或最大值)
+
+## last_seq 和 first_seq
+
+last_seq的使用示例如下(first_seq类似),详细见配置API 。
+```python
+last = last_seq(input=layer,
+ agg_level=AggregateLevel.EACH_SEQUENCE)
+```
+- `agg_level=AggregateLevel.TIMESTEP`时(默认值):
+ - 作用:一个双层序列经过运算变成一个0层序列,或一个单层序列经过运算变成一个0层序列
+ - 输入:一个双层序列或一个单层序列
+ - 输出:一个0层序列,即整个输入序列(双层或者单层)最后一个,或第一个元素。
+- `agg_level=AggregateLevel.EACH_SEQUENCE`时:
+ - 作用:一个双层序列经过运算变成一个单层序列
+ - 输入:必须是一个双层序列
+ - 输出:一个单层序列,其中每个元素是双层序列中每个subseq最后一个(或第一个)元素。
+
+## expand_layer
+
+expand_layer的使用示例如下,详细见配置API 。
+```python
+expand = expand_layer(input=layer1,
+ expand_as=layer2,
+ expand_level=ExpandLevel.FROM_TIMESTEP)
+```
+- `expand_level=ExpandLevel.FROM_TIMESTEP`时(默认值):
+ - 作用:一个0层序列经过运算扩展成一个单层序列,或者一个双层序列
+ - 输入:layer1必须是一个0层序列,是待扩展的数据;layer2可以是一个单层序列,或者是一个双层序列,提供扩展的长度信息
+ - 输出:一个单层序列,或一个双层序列,输出序列的类型(双层序列,或单层序列)和序列中含有元素的数目同 layer2一致。若输出是单层序列,单层序列的每个元素(0层序列),都是对layer1元素的拷贝;若输出是双层序列,双层序列每个subseq中每个元素(0层序列),都是对layer1元素的拷贝
+- `expand_level=ExpandLevel.FROM_SEQUENCE`时:
+ - 作用:一个单层序列经过运算扩展成一个双层序列
+ - 输入:layer1必须是一个单层序列,是待扩展的数据;layer2必须是一个双层序列,提供扩展的长度信息
+ - 输出:一个双层序列,序列中含有元素的数目同layer2一致。要求单层序列含有元素的数目(0层序列),和双层序列含有subseq 的数目一致。单层序列第i个元素(0层序列),被扩展为一个单层序列,构成了输出双层序列的第i个subseq。
\ No newline at end of file
diff --git a/doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt b/doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
new file mode 100644
index 0000000000000000000000000000000000000000..979fe13e2ecbdef908b127a44a4e20542fdf2deb
--- /dev/null
+++ b/doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
@@ -0,0 +1,267 @@
+# 双层RNN配置与示例
+
+我们在`paddle/gserver/tests/test_RecurrentGradientMachine`单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。
+
+## 示例1:双进双出,subseq间无memory
+
+配置:单层RNN(`sequence_layer_group`)和双层RNN(`sequence_nest_layer_group`),语义完全相同。
+
+### 读取双层序列的方法
+
+首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式):
+
+- 单层序列的数据(`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
+
+```text
+2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
+2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
+2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
+2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
+2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
+2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
+2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
+2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
+2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
+2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
+```
+
+- 双层序列的数据(`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
+
+```text
+2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
+2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
+
+2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
+2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
+2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
+
+2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
+2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
+
+2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
+2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
+2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
+```
+
+其次,我们看一下单双层序列的不同dataprovider(见`sequenceGen.py`):
+
+- 单层序列的dataprovider如下:
+ - word_slot是integer_value_sequence类型,代表单层序列。
+ - label是integer_value类型,代表一个向量。
+
+```python
+def hook(settings, dict_file, **kwargs):
+ settings.word_dict = dict_file
+ settings.input_types = [integer_value_sequence(len(settings.word_dict)),
+ integer_value(3)]
+
+@provider(init_hook=hook)
+def process(settings, file_name):
+ with open(file_name, 'r') as fdata:
+ for line in fdata:
+ label, comment = line.strip().split('\t')
+ label = int(''.join(label.split()))
+ words = comment.split()
+ word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
+ yield word_slot, label
+```
+
+- 双层序列的dataprovider如下:
+ - word_slot是integer_value_sub_sequence类型,代表双层序列。
+ - label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
+ - 关于dataprovider中input_types的详细用法,参见PyDataProvider2。
+
+```python
+def hook2(settings, dict_file, **kwargs):
+ settings.word_dict = dict_file
+ settings.input_types = [integer_value_sub_sequence(len(settings.word_dict)),
+ integer_value_sequence(3)]
+
+@provider(init_hook=hook2)
+def process2(settings, file_name):
+ with open(file_name) as fdata:
+ label_list = []
+ word_slot_list = []
+ for line in fdata:
+ if (len(line)) > 1:
+ label,comment = line.strip().split('\t')
+ label = int(''.join(label.split()))
+ words = comment.split()
+ word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
+ label_list.append(label)
+ word_slot_list.append(word_slot)
+ else:
+ yield word_slot_list, label_list
+ label_list = []
+ word_slot_list = []
+```
+
+### 模型中的配置
+
+首先,我们看一下单层序列的配置(见`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
+
+```python
+settings(batch_size=5)
+
+data = data_layer(name="word", size=dict_dim)
+
+emb = embedding_layer(input=data, size=word_dim)
+
+# (lstm_input + lstm) is equal to lstmemory
+with mixed_layer(size=hidden_dim*4) as lstm_input:
+ lstm_input += full_matrix_projection(input=emb)
+
+lstm = lstmemory_group(input=lstm_input,
+ size=hidden_dim,
+ act=TanhActivation(),
+ gate_act=SigmoidActivation(),
+ state_act=TanhActivation(),
+ lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
+
+lstm_last = last_seq(input=lstm)
+
+with mixed_layer(size=label_dim,
+ act=SoftmaxActivation(),
+ bias_attr=True) as output:
+ output += full_matrix_projection(input=lstm_last)
+
+outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
+
+```
+其次,我们看一下语义相同的双层序列配置(见`sequence_nest_layer_group.conf`),并对其详细分析:
+
+- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
+- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
+- lstmemory:
+ - 单层序列过了一个mixed_layer和lstmemory_group。
+ - 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
+- last_seq:
+ - 单层序列直接取了最后一个元素
+ - 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
+ - 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
+
+```python
+settings(batch_size=2)
+
+data = data_layer(name="word", size=dict_dim)
+
+emb_group = embedding_layer(input=data, size=word_dim)
+
+# (lstm_input + lstm) is equal to lstmemory
+def lstm_group(lstm_group_input):
+ with mixed_layer(size=hidden_dim*4) as group_input:
+ group_input += full_matrix_projection(input=lstm_group_input)
+
+ lstm_output = lstmemory_group(input=group_input,
+ name="lstm_group",
+ size=hidden_dim,
+ act=TanhActivation(),
+ gate_act=SigmoidActivation(),
+ state_act=TanhActivation(),
+ lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
+ return lstm_output
+
+lstm_nest_group = recurrent_group(input=SubsequenceInput(emb_group),
+ step=lstm_group,
+ name="lstm_nest_group")
+# hasSubseq ->(seqlastins) seq
+lstm_last = last_seq(input=lstm_nest_group, agg_level=AggregateLevel.EACH_SEQUENCE)
+
+# seq ->(expand) hasSubseq
+lstm_expand = expand_layer(input=lstm_last, expand_as=emb_group, expand_level=ExpandLevel.FROM_SEQUENCE)
+
+# hasSubseq ->(average) seq
+lstm_average = pooling_layer(input=lstm_expand,
+ pooling_type=AvgPooling(),
+ agg_level=AggregateLevel.EACH_SEQUENCE)
+
+with mixed_layer(size=label_dim,
+ act=SoftmaxActivation(),
+ bias_attr=True) as output:
+ output += full_matrix_projection(input=lstm_average)
+
+outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
+```
+## 示例2:双进双出,subseq间有memory
+
+配置:单层RNN(`sequence_rnn.conf`),双层RNN(`sequence_nest_rnn.conf`和`sequence_nest_rnn_readonly_memory.conf`),语义完全相同。
+
+### 读取双层序列的方法
+
+我们看一下单双层序列的不同数据组织形式和dataprovider(见`rnn_data_provider.py`)
+```python
+data = [
+ [[[1, 3, 2], [4, 5, 2]], 0],
+ [[[0, 2], [2, 5], [0, 1, 2]], 1],
+]
+
+@provider(input_types=[integer_value_sub_sequence(10),
+ integer_value(3)])
+def process_subseq(settings, file_name):
+ for d in data:
+ yield d
+
+@provider(input_types=[integer_value_sequence(10),
+ integer_value(3)])
+def process_seq(settings, file_name):
+ for d in data:
+ seq = []
+```
+- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
+- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
+- 单双层序列的label都分别是0和1
+
+### 模型中的配置
+
+我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
+
+- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
+
+```python
+def step(y):
+ mem = memory(name="rnn_state", size=hidden_dim)
+ return fc_layer(input=[y, mem],
+ size=hidden_dim,
+ act=TanhActivation(),
+ bias_attr=True,
+ name="rnn_state")
+
+out = recurrent_group(step=step, input=emb)
+```
+- 双层序列,外层memory是一个元素:
+ - 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
+ - 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
+
+```python
+def outer_step(x):
+ outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
+ def inner_step(y):
+ inner_mem = memory(name="inner_rnn_state",
+ size=hidden_dim,
+ boot_layer=outer_mem)
+ return fc_layer(input=[y, inner_mem],
+ size=hidden_dim,
+ act=TanhActivation(),
+ bias_attr=True,
+ name="inner_rnn_state")
+
+ inner_rnn_output = recurrent_group(
+ step=inner_step,
+ input=x)
+ last = last_seq(input=inner_rnn_output, name="outer_rnn_state")
+
+ return inner_rnn_output
+
+out = recurrent_group(step=outer_step, input=SubsequenceInput(emb))
+```
+- 双层序列,外层memory是单层序列:
+ - 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
+ - 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。
+
+## 示例3:双进双出,输入不等长
+
+TBD
+
+## 示例4:beam_search的生成
+
+TBD
\ No newline at end of file
diff --git a/doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt b/doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7a553054c80392946ba5b16cc31bcaea18cfc977
--- /dev/null
+++ b/doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt
@@ -0,0 +1,96 @@
+# Recurrent Group教程
+
+## 概述
+
+序列数据是自然语言处理任务面对的一种主要输入数据类型。
+
+一句话是由词语构成的序列,多句话进一步构成了段落。因此,段落可以看作是一个嵌套的双层的序列,这个序列的每个元素又是一个序列。
+
+双层序列是PaddlePaddle支持的一种非常灵活的数据组织方式,帮助我们更好地描述段落、多轮对话等更为复杂的语言数据。基于双层序列输入,我们可以设计搭建一个灵活的、层次化的RNN,分别从词语和句子级别编码输入数据,同时也能够引入更加复杂的记忆机制,更好地完成一些复杂的语言理解任务。
+
+在PaddlePaddle中,`recurrent_group`是一种任意复杂的RNN单元,用户只需定义RNN在一个时间步内完成的计算,PaddlePaddle负责完成信息和误差在时间序列上的传播。
+
+更进一步,`recurrent_group`同样可以扩展到双层序列的处理上。通过两个嵌套的`recurrent_group`分别定义子句级别和词语级别上需要完成的运算,最终实现一个层次化的复杂RNN。
+
+目前,在PaddlePaddle中,能够对双向序列进行处理的有`recurrent_group`和部分Layer,具体可参考文档:支持双层序列作为输入的Layer 。
+
+## 相关概念
+
+### 基本原理
+`recurrent_group` 是PaddlePaddle支持的一种任意复杂的RNN单元。使用者只需要关注于设计RNN在一个时间步之内完成的计算,PaddlePaddle负责完成信息和梯度在时间序列上的传播。
+
+PaddlePaddle中,`recurrent_group`的一个简单调用如下:
+
+``` python
+recurrent_group(step, input, reverse)
+```
+- step:一个可调用的函数,定义一个时间步之内RNN单元完成的计算
+- input:输入,必须是一个单层序列,或者一个双层序列
+- reverse:是否以逆序处理输入序列
+
+使用`recurrent_group`的核心是设计step函数的计算逻辑。step函数内部可以自由组合PaddlePaddle支持的各种layer,完成任意的运算逻辑。`recurrent_group` 的输入(即input)会成为step函数的输入,由于step 函数只关注于RNN一个时间步之内的计算,在这里`recurrent_group`替我们完成了原始输入数据的拆分。
+
+### 输入
+`recurrent_group`处理的输入序列主要分为以下三种类型:
+
+- **数据输入**:一个双层序列进入`recurrent_group`会被拆解为一个单层序列,一个单层序列进入`recurrent_group`会被拆解为非序列,然后交给step函数,这一过程对用户是完全透明的。可以有以下两种:1)通过data_layer拿到的用户输入;2)其它layer的输出。
+
+- **只读Memory输入**:`StaticInput` 定义了一个只读的Memory,由`StaticInput`指定的输入不会被`recurrent_group`拆解,`recurrent_group` 循环展开的每个时间步总是能够引用所有输入,可以是一个非序列,或者一个单层序列。
+
+- **序列生成任务的输入**:`GeneratedInput`只用于在序列生成任务中指定输入数据。
+
+### 输入示例
+
+序列生成任务大多遵循encoder-decoer架构,encoder和decoder可以是能够处理序列的任意神经网络单元,而RNN是最流行的选择。
+
+给定encoder输出和当前词,decoder每次预测产生下一个最可能的词语。在这种结构中,decoder接受两个输入:
+
+- 要生成的目标序列:是decoder的数据输入,也是decoder循环展开的依据,`recurrent_group`会对这类输入进行拆解。
+
+- encoder输出,可以是一个非序列,或者一个单层序列:是一个unbounded memory,decoder循环展开的每一个时间步会引用全部结果,不应该被拆解,这种类型的输入必须通过`StaticInput`指定。关于Unbounded Memory的更多讨论请参考论文 [Neural Turning Machine](https://arxiv.org/abs/1410.5401)。
+
+在序列生成任务中,decoder RNN总是引用上一时刻预测出的词的词向量,作为当前时刻输入。`GeneratedInput`自动完成这一过程。
+
+### 输出
+`step`函数必须返回一个或多个Layer的输出,这个Layer的输出会作为整个`recurrent_group` 最终的输出结果。在输出的过程中,`recurrent_group` 会将每个时间步的输出拼接,这个过程对用户也是透明的。
+
+### memory
+memory只能在`recurrent_group`中定义和使用。memory不能独立存在,必须指向一个PaddlePaddle定义的Layer。引用memory得到这layer上一时刻输出,因此,可以将memory理解为一个时延操作。
+
+可以显示地指定一个layer的输出用于初始化memory。不指定时,memory默认初始化为0。
+
+## 双层RNN介绍
+`recurrent_group`帮助我们完成对输入序列的拆分,对输出的合并,以及计算逻辑在序列上的循环展开。
+
+利用这种特性,两个嵌套的`recurrent_group`能够处理双层序列,实现词语和句子两个级别的双层RNN结构。
+
+- 单层(word-level)RNN:每个状态(state)对应一个词(word)。
+- 双层(sequence-level)RNN:一个双层RNN由多个单层RNN组成,每个单层RNN(即双层RNN的每个状态)对应一个子句(subseq)。
+
+为了描述方便,下文以NLP任务为例,将含有子句(subseq)的段落定义为一个双层序列,将含有词语的句子定义为一个单层序列,那么0层序列即为一个词语。
+
+## 双层RNN的使用
+
+### 训练流程的使用方法
+使用 `recurrent_group`需要遵循以下约定:
+
+- **单进单出**:输入和输出都是单层序列。
+ - 如果有多个输入,不同输入序列含有的词语数必须严格相等。
+ - 输出一个单层序列,输出序列的词语数和输入序列一致。
+ - memory:在step函数中定义 memory指向一个layer,通过引用memory得到这个layer上一个时刻输出,形成recurrent 连接。memory的is_seq参数必须为false。如果没有定义memory,每个时间步之内的运算是独立的。
+ - boot_layer:memory的初始状态,默认初始状为0,memory的is_seq参数必须为false。
+
+- **双进双出**:输入和输出都是双层序列。
+ - 如果有多个输入序列,不同输入含有的子句(subseq)数必须严格相等,但子句含有的词语数可以不相等。
+ - 输出一个双层序列,子句(subseq)数、子句的单词数和指定的一个输入序列一致,默认为第一个输入。
+ - memory:在step函数中定义memory,指向一个layer,通过引用memory得到这个layer上一个时刻的输出,形成recurrent连接。定义在外层`recurrent_group` step函数中的memory,能够记录上一个subseq 的状态,可以是一个单层序列(只作为read-only memory),也可以是一个词语。如果没有定义memory,那么 subseq 之间的运算是独立的。
+ - boot_layer:memory 初始状态,可以是一个单层序列(只作为read-only memory)或一个向量。默认不设置,即初始状态为0。
+
+- **双进单出**:目前还未支持,会报错"In hierachical RNN, all out links should be from sequences now"。
+
+
+### 生成流程的使用方法
+使用`beam_search`需要遵循以下约定:
+
+- 单层RNN:从一个word生成下一个word。
+- 双层RNN:即把单层RNN生成后的subseq给拼接成一个新的双层seq。从语义上看,也不存在一个subseq直接生成下一个subseq的情况。
\ No newline at end of file
diff --git a/doc_cn/_sources/faq/index.txt b/doc_cn/_sources/faq/index.txt
new file mode 100644
index 0000000000000000000000000000000000000000..283607957ce63099a61d220478728654e993fe9a
--- /dev/null
+++ b/doc_cn/_sources/faq/index.txt
@@ -0,0 +1,169 @@
+####################
+PaddlePaddle常见问题
+####################
+
+.. contents::
+
+1. 如何减少PaddlePaddle的内存占用
+---------------------------------
+
+神经网络的训练本身是一个非常消耗内存和显存的工作。经常会消耗数十G的内存和数G的显存。
+PaddlePaddle的内存占用主要分为如下几个方面\:
+
+* DataProvider缓冲池内存 (只针对内存)
+* 神经元激活内存 (针对内存和显存)
+* 参数内存 (针对内存和显存)
+* 其他内存杂项
+
+这其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,
+这些内存就不考虑如何缩减了。
+
+其他的内存的减少方法依次为
+
+
+减少DataProvider缓冲池内存
+++++++++++++++++++++++++++
+
+PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即
+
+.. graphviz::
+
+ digraph {
+ rankdir=LR;
+ 数据文件 -> 内存池 -> PaddlePaddle训练
+ }
+
+所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这
+个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的,
+那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
+
+.. literalinclude:: reduce_min_pool_size.py
+
+这样做可以极大的减少内存占用,并且可能会加速训练过程。 详细文档参考 `这里
+<../ui/data_provider/pydataprovider2.html#provider>`_ 。
+
+神经元激活内存
+++++++++++++++
+
+神经网络在训练的时候,会对每一个激活暂存一些数据,包括激活,參差等等。
+在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系,
+一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含
+的时间步信息成正比。
+
+所以,做法可以有两种。他们是
+
+* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。
+* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200,
+ 但是突然有一个10000长的序列,就很容易导致内存超限。特别是在LSTM等RNN中。
+
+参数内存
+++++++++
+
+PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。
+例如如果使用 :code:`adadelta` 算法,则需要使用参数规模大约5倍的内存。 如果参数保存下来的
+文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。
+
+可以考虑使用一些优化算法,例如 :code:`momentum`。
+
+2. 如何加速PaddlePaddle的训练速度
+---------------------------------
+
+PaddlePaddle是神经网络训练平台,加速PaddlePaddle训练有如下几个方面\:
+
+* 减少数据载入的耗时
+* 加速训练速度
+* 利用更多的计算资源
+
+减少数据载入的耗时
+++++++++++++++++++
+
+使用 :code:`pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
+:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
+
+.. literalinclude:: reduce_min_pool_size.py
+
+同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
+
+
+加速训练速度
+++++++++++++
+
+PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True`
+
+这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\:
+
+使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\:
+
+.. literalinclude:: word2vec_dataprovider.py
+
+这个任务的配置为\:
+
+.. literalinclude:: word2vec_config.py
+
+更多关于sparse训练的内容请参考 `sparse训练的文档 `_
+
+利用更多的计算资源
+++++++++++++++++++
+
+利用更多的计算资源可以分为一下几个方式来进行\:
+
+* 单机CPU训练
+ * 使用多线程训练。设置命令行参数 :code:`trainer_count`,即可以设置参与训练的线程数量。使用方法为 :code:`paddle train --trainer_count=4`
+* 单机GPU训练
+ * 使用显卡训练。设置命令行参数 :code:`use_gpu`。 使用方法为 :code:`paddle train --use_gpu=true`
+ * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count`。使用 :code:`--use_gpu=True` 开启GPU训练,使用 :code:`trainer_count` 指定显卡数量。使用方法为 :code:`paddle train --use_gpu=true --trainer_count=4`
+* 多机训练
+ * 使用多机训练的方法也比较简单,需要先在每个节点启动 :code:`paddle pserver`,在使用 :code:`paddle train --pservers=192.168.100.1,192.168.100.2` 来指定每个pserver的ip地址
+ * 具体的多机训练方法参考 `多机训练 `_ 文档。
+
+
+3. 遇到“非法指令”或者是“illegal instruction”
+--------------------------------------------
+
+paddle在进行计算的时候为了提升计算性能,使用了avx指令。部分老的cpu型号无法支持这样的指令。通常来说执行下grep avx /proc/cpuinfo看看是否有输出即可知道是否支持。(另:用此方法部分虚拟机可能检测到支持avx指令但是实际运行会挂掉,请当成是不支持,看下面的解决方案)
+
+解决办法是\:
+
+* 使用 NO_AVX的 `安装包 <../build_and_install/index.html>`_ 或者 `Docker image <../build_and_install/install/docker_install.html>`_
+* 或者,使用 :code:`-DWITH_AVX=OFF` 重新编译PaddlePaddle。
+
+
+4. 如何选择SGD算法的学习率
+--------------------------
+
+在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。
+
+通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。
+
+如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。
+
+
+5. 如何初始化参数
+-----------------
+
+默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\:
+
+* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)`
+* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)`
+
+比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。
+
+.. code-block:: python
+
+ hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0),
+ bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0))
+
+上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。
+
+6. 如何共享参数
+---------------
+
+PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是想要共享的参数使用同样的 :code:`ParamAttr` 对象。
+
+简单的全连接网络,参数共享的配置示例为\:
+
+.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py
+
+这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
+
+
diff --git a/doc_cn/_sources/index.txt b/doc_cn/_sources/index.txt
index 6cf5588b5b34f5e80ea4c70cc364d4c6c42cce3d..d2d50fbdb47f27ad5ad8d22215a9f0993145430f 100644
--- a/doc_cn/_sources/index.txt
+++ b/doc_cn/_sources/index.txt
@@ -3,6 +3,7 @@ PaddlePaddle文档
使用指南
--------
+
* `快速入门 `_
* `编译与安装 `_
* `用户接口 `_
@@ -16,4 +17,13 @@ PaddlePaddle文档
算法教程
--------
-* `RNN配置 <../doc/algorithm/rnn/rnn.html>`_
+
+* `Recurrent Group教程 `_
+* `单层RNN示例 <../doc/algorithm/rnn/rnn.html>`_
+* `双层RNN示例 `_
+* `支持双层序列作为输入的Layer `_
+
+常见问题
+--------
+
+* `常见问题 `_
diff --git a/doc_cn/algorithm/rnn/hierarchical-layer.html b/doc_cn/algorithm/rnn/hierarchical-layer.html
new file mode 100644
index 0000000000000000000000000000000000000000..1799f0a800259f2f1fc46f632e0edd85c284deb5
--- /dev/null
+++ b/doc_cn/algorithm/rnn/hierarchical-layer.html
@@ -0,0 +1,196 @@
+
+
+
+
+
+
+
+
+
+ 支持双层序列作为输入的Layer — PaddlePaddle documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
支持双层序列作为输入的Layer
+
+
概述
+
在自然语言处理任务中,序列是一种常见的数据类型。一个独立的词语,可以看作是一个非序列输入,或者,我们称之为一个0层的序列;由词语构成的句子,是一个单层序列;若干个句子构成一个段落,是一个双层的序列。
+
双层序列是一个嵌套的序列,它的每一个元素,又是一个单层的序列。这是一种非常灵活的数据组织方式,帮助我们构造一些复杂的输入信息。
+
我们可以按照如下层次定义非序列,单层序列,以及双层序列。
+
+0层序列:一个独立的元素,类型可以是PaddlePaddle支持的任意输入数据类型
+单层序列:排成一列的多个元素,每个元素是一个0层序列,元素之间的顺序是重要的输入信息
+双层序列:排成一列的多个元素,每个元素是一个单层序列,称之为双层序列的一个子序列(subseq),subseq的每个元素是一个0层序列
+
+
在 PaddlePaddle中,下面这些Layer能够接受双层序列作为输入,完成相应的计算。
+
+
+
pooling_layer
+
pooling_layer的使用示例如下,详细见配置API 。
+
seq_pool = pooling_layer ( input = layer ,
+ pooling_type = AvgPooling (),
+ agg_level = AggregateLevel . EACH_SEQUENCE )
+
+
+
+pooling_type
目前支持两种,分别是:MaxPooling()和AvgPooling()。
+agg_level=AggregateLevel.TIMESTEP
时(默认值):
+作用:双层序列经过运算变成一个0层序列,或单层序列经过运算变成一个0层序列
+输入:一个双层序列,或一个单层序列
+输出:一个0层序列,即整个输入序列(单层或双层)的平均值(或最大值)
+
+
+agg_level=AggregateLevel.EACH_SEQUENCE
时:
+作用:一个双层序列经过运算变成一个单层序列
+输入:必须是一个双层序列
+输出:一个单层序列,序列的每个元素是原来双层序列每个subseq元素的平均值(或最大值)
+
+
+
+
+
+
last_seq 和 first_seq
+
last_seq的使用示例如下(first_seq类似),详细见配置API 。
+
last = last_seq ( input = layer ,
+ agg_level = AggregateLevel . EACH_SEQUENCE )
+
+
+
+agg_level=AggregateLevel.TIMESTEP
时(默认值):
+作用:一个双层序列经过运算变成一个0层序列,或一个单层序列经过运算变成一个0层序列
+输入:一个双层序列或一个单层序列
+输出:一个0层序列,即整个输入序列(双层或者单层)最后一个,或第一个元素。
+
+
+agg_level=AggregateLevel.EACH_SEQUENCE
时:
+作用:一个双层序列经过运算变成一个单层序列
+输入:必须是一个双层序列
+输出:一个单层序列,其中每个元素是双层序列中每个subseq最后一个(或第一个)元素。
+
+
+
+
+
+
expand_layer
+
expand_layer的使用示例如下,详细见配置API 。
+
expand = expand_layer ( input = layer1 ,
+ expand_as = layer2 ,
+ expand_level = ExpandLevel . FROM_TIMESTEP )
+
+
+
+expand_level=ExpandLevel.FROM_TIMESTEP
时(默认值):
+作用:一个0层序列经过运算扩展成一个单层序列,或者一个双层序列
+输入:layer1必须是一个0层序列,是待扩展的数据;layer2可以是一个单层序列,或者是一个双层序列,提供扩展的长度信息
+输出:一个单层序列,或一个双层序列,输出序列的类型(双层序列,或单层序列)和序列中含有元素的数目同 layer2一致。若输出是单层序列,单层序列的每个元素(0层序列),都是对layer1元素的拷贝;若输出是双层序列,双层序列每个subseq中每个元素(0层序列),都是对layer1元素的拷贝
+
+
+expand_level=ExpandLevel.FROM_SEQUENCE
时:
+作用:一个单层序列经过运算扩展成一个双层序列
+输入:layer1必须是一个单层序列,是待扩展的数据;layer2必须是一个双层序列,提供扩展的长度信息
+输出:一个双层序列,序列中含有元素的数目同layer2一致。要求单层序列含有元素的数目(0层序列),和双层序列含有subseq 的数目一致。单层序列第i个元素(0层序列),被扩展为一个单层序列,构成了输出双层序列的第i个subseq。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc_cn/algorithm/rnn/hierarchical-rnn.html b/doc_cn/algorithm/rnn/hierarchical-rnn.html
new file mode 100644
index 0000000000000000000000000000000000000000..2bf7294fd65b097e55f163119083c9c9da7b5ce0
--- /dev/null
+++ b/doc_cn/algorithm/rnn/hierarchical-rnn.html
@@ -0,0 +1,404 @@
+
+
+
+
+
+
+
+
+
+ 双层RNN配置与示例 — PaddlePaddle documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
双层RNN配置与示例
+
我们在paddle/gserver/tests/test_RecurrentGradientMachine
单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。
+
+
示例1:双进双出,subseq间无memory
+
配置:单层RNN(sequence_layer_group
)和双层RNN(sequence_nest_layer_group
),语义完全相同。
+
+
读取双层序列的方法
+
首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式):
+
+单层序列的数据(Sequence/tour_train_wdseg
)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
+
+
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
+2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
+2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
+2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
+2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
+2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
+2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
+2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
+2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
+2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
+
+
+
+双层序列的数据(Sequence/tour_train_wdseg.nest
)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
+
+
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
+2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
+
+2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
+2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
+2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
+
+2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
+2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
+
+2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
+2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
+2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
+
+
+
其次,我们看一下单双层序列的不同dataprovider(见sequenceGen.py
):
+
+单层序列的dataprovider如下:
+word_slot是integer_value_sequence类型,代表单层序列。
+label是integer_value类型,代表一个向量。
+
+
+
+
def hook ( settings , dict_file , ** kwargs ):
+ settings . word_dict = dict_file
+ settings . input_types = [ integer_value_sequence ( len ( settings . word_dict )),
+ integer_value ( 3 )]
+
+@provider ( init_hook = hook )
+def process ( settings , file_name ):
+ with open ( file_name , 'r' ) as fdata :
+ for line in fdata :
+ label , comment = line . strip () . split ( ' \t ' )
+ label = int ( '' . join ( label . split ()))
+ words = comment . split ()
+ word_slot = [ settings . word_dict [ w ] for w in words if w in settings . word_dict ]
+ yield word_slot , label
+
+
+
+双层序列的dataprovider如下:
+word_slot是integer_value_sub_sequence类型,代表双层序列。
+label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
+关于dataprovider中input_types的详细用法,参见PyDataProvider2。
+
+
+
+
def hook2 ( settings , dict_file , ** kwargs ):
+ settings . word_dict = dict_file
+ settings . input_types = [ integer_value_sub_sequence ( len ( settings . word_dict )),
+ integer_value_sequence ( 3 )]
+
+@provider ( init_hook = hook2 )
+def process2 ( settings , file_name ):
+ with open ( file_name ) as fdata :
+ label_list = []
+ word_slot_list = []
+ for line in fdata :
+ if ( len ( line )) > 1 :
+ label , comment = line . strip () . split ( ' \t ' )
+ label = int ( '' . join ( label . split ()))
+ words = comment . split ()
+ word_slot = [ settings . word_dict [ w ] for w in words if w in settings . word_dict ]
+ label_list . append ( label )
+ word_slot_list . append ( word_slot )
+ else :
+ yield word_slot_list , label_list
+ label_list = []
+ word_slot_list = []
+
+
+
+
+
模型中的配置
+
首先,我们看一下单层序列的配置(见sequence_layer_group.conf
)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
+
settings ( batch_size = 5 )
+
+data = data_layer ( name = "word" , size = dict_dim )
+
+emb = embedding_layer ( input = data , size = word_dim )
+
+# (lstm_input + lstm) is equal to lstmemory
+with mixed_layer ( size = hidden_dim * 4 ) as lstm_input :
+ lstm_input += full_matrix_projection ( input = emb )
+
+lstm = lstmemory_group ( input = lstm_input ,
+ size = hidden_dim ,
+ act = TanhActivation (),
+ gate_act = SigmoidActivation (),
+ state_act = TanhActivation (),
+ lstm_layer_attr = ExtraLayerAttribute ( error_clipping_threshold = 50 ))
+
+lstm_last = last_seq ( input = lstm )
+
+with mixed_layer ( size = label_dim ,
+ act = SoftmaxActivation (),
+ bias_attr = True ) as output :
+ output += full_matrix_projection ( input = lstm_last )
+
+outputs ( classification_cost ( input = output , label = data_layer ( name = "label" , size = 1 )))
+
+
+
+
其次,我们看一下语义相同的双层序列配置(见sequence_nest_layer_group.conf
),并对其详细分析:
+
+batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
+data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
+lstmemory:
+单层序列过了一个mixed_layer和lstmemory_group。
+双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
+
+
+last_seq:
+单层序列直接取了最后一个元素
+双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
+分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
+
+
+
+
settings ( batch_size = 2 )
+
+data = data_layer ( name = "word" , size = dict_dim )
+
+emb_group = embedding_layer ( input = data , size = word_dim )
+
+# (lstm_input + lstm) is equal to lstmemory
+def lstm_group ( lstm_group_input ):
+ with mixed_layer ( size = hidden_dim * 4 ) as group_input :
+ group_input += full_matrix_projection ( input = lstm_group_input )
+
+ lstm_output = lstmemory_group ( input = group_input ,
+ name = "lstm_group" ,
+ size = hidden_dim ,
+ act = TanhActivation (),
+ gate_act = SigmoidActivation (),
+ state_act = TanhActivation (),
+ lstm_layer_attr = ExtraLayerAttribute ( error_clipping_threshold = 50 ))
+ return lstm_output
+
+lstm_nest_group = recurrent_group ( input = SubsequenceInput ( emb_group ),
+ step = lstm_group ,
+ name = "lstm_nest_group" )
+# hasSubseq ->(seqlastins) seq
+lstm_last = last_seq ( input = lstm_nest_group , agg_level = AggregateLevel . EACH_SEQUENCE )
+
+# seq ->(expand) hasSubseq
+lstm_expand = expand_layer ( input = lstm_last , expand_as = emb_group , expand_level = ExpandLevel . FROM_SEQUENCE )
+
+# hasSubseq ->(average) seq
+lstm_average = pooling_layer ( input = lstm_expand ,
+ pooling_type = AvgPooling (),
+ agg_level = AggregateLevel . EACH_SEQUENCE )
+
+with mixed_layer ( size = label_dim ,
+ act = SoftmaxActivation (),
+ bias_attr = True ) as output :
+ output += full_matrix_projection ( input = lstm_average )
+
+outputs ( classification_cost ( input = output , label = data_layer ( name = "label" , size = 1 )))
+
+
+
+
+
+
示例2:双进双出,subseq间有memory
+
配置:单层RNN(sequence_rnn.conf
),双层RNN(sequence_nest_rnn.conf
和sequence_nest_rnn_readonly_memory.conf
),语义完全相同。
+
+
读取双层序列的方法
+
我们看一下单双层序列的不同数据组织形式和dataprovider(见rnn_data_provider.py
)
+
data = [
+ [[[ 1 , 3 , 2 ], [ 4 , 5 , 2 ]], 0 ],
+ [[[ 0 , 2 ], [ 2 , 5 ], [ 0 , 1 , 2 ]], 1 ],
+]
+
+@provider ( input_types = [ integer_value_sub_sequence ( 10 ),
+ integer_value ( 3 )])
+def process_subseq ( settings , file_name ):
+ for d in data :
+ yield d
+
+@provider ( input_types = [ integer_value_sequence ( 10 ),
+ integer_value ( 3 )])
+def process_seq ( settings , file_name ):
+ for d in data :
+ seq = []
+
+
+
+单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
+双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
+单双层序列的label都分别是0和1
+
+
+
+
模型中的配置
+
我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
+
+单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
+
+
def step ( y ):
+ mem = memory ( name = "rnn_state" , size = hidden_dim )
+ return fc_layer ( input = [ y , mem ],
+ size = hidden_dim ,
+ act = TanhActivation (),
+ bias_attr = True ,
+ name = "rnn_state" )
+
+out = recurrent_group ( step = step , input = emb )
+
+
+
+双层序列,外层memory是一个元素:
+内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
+从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
+
+
+
+
def outer_step ( x ):
+ outer_mem = memory ( name = "outer_rnn_state" , size = hidden_dim )
+ def inner_step ( y ):
+ inner_mem = memory ( name = "inner_rnn_state" ,
+ size = hidden_dim ,
+ boot_layer = outer_mem )
+ return fc_layer ( input = [ y , inner_mem ],
+ size = hidden_dim ,
+ act = TanhActivation (),
+ bias_attr = True ,
+ name = "inner_rnn_state" )
+
+ inner_rnn_output = recurrent_group (
+ step = inner_step ,
+ input = x )
+ last = last_seq ( input = inner_rnn_output , name = "outer_rnn_state" )
+
+ return inner_rnn_output
+
+out = recurrent_group ( step = outer_step , input = SubsequenceInput ( emb ))
+
+
+
+双层序列,外层memory是单层序列:
+由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是无法直接使用 它的,即内层memory的boot_layer不能链接外层的这个memory。
+如果内层memory想间接使用 这个外层memory,只能通过pooling_layer
、last_seq
或first_seq
这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“Check failed: input.sequenceStartPositions ”的错误。
+
+
+
+
+
+
+
+
示例4:beam_search的生成
+
TBD
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc_cn/algorithm/rnn/rnn-tutorial.html b/doc_cn/algorithm/rnn/rnn-tutorial.html
new file mode 100644
index 0000000000000000000000000000000000000000..ed86662eccb302097158f574c808e892e380a7b0
--- /dev/null
+++ b/doc_cn/algorithm/rnn/rnn-tutorial.html
@@ -0,0 +1,222 @@
+
+
+
+
+
+
+
+
+
+ Recurrent Group教程 — PaddlePaddle documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Recurrent Group教程
+
+
概述
+
序列数据是自然语言处理任务面对的一种主要输入数据类型。
+
一句话是由词语构成的序列,多句话进一步构成了段落。因此,段落可以看作是一个嵌套的双层的序列,这个序列的每个元素又是一个序列。
+
双层序列是PaddlePaddle支持的一种非常灵活的数据组织方式,帮助我们更好地描述段落、多轮对话等更为复杂的语言数据。基于双层序列输入,我们可以设计搭建一个灵活的、层次化的RNN,分别从词语和句子级别编码输入数据,同时也能够引入更加复杂的记忆机制,更好地完成一些复杂的语言理解任务。
+
在PaddlePaddle中,recurrent_group
是一种任意复杂的RNN单元,用户只需定义RNN在一个时间步内完成的计算,PaddlePaddle负责完成信息和误差在时间序列上的传播。
+
更进一步,recurrent_group
同样可以扩展到双层序列的处理上。通过两个嵌套的recurrent_group
分别定义子句级别和词语级别上需要完成的运算,最终实现一个层次化的复杂RNN。
+
目前,在PaddlePaddle中,能够对双向序列进行处理的有recurrent_group
和部分Layer,具体可参考文档:支持双层序列作为输入的Layer 。
+
+
+
相关概念
+
+
基本原理
+
recurrent_group
是PaddlePaddle支持的一种任意复杂的RNN单元。使用者只需要关注于设计RNN在一个时间步之内完成的计算,PaddlePaddle负责完成信息和梯度在时间序列上的传播。
+
PaddlePaddle中,recurrent_group
的一个简单调用如下:
+
recurrent_group ( step , input , reverse )
+
+
+
+step:一个可调用的函数,定义一个时间步之内RNN单元完成的计算
+input:输入,必须是一个单层序列,或者一个双层序列
+reverse:是否以逆序处理输入序列
+
+
使用recurrent_group
的核心是设计step函数的计算逻辑。step函数内部可以自由组合PaddlePaddle支持的各种layer,完成任意的运算逻辑。recurrent_group
的输入(即input)会成为step函数的输入,由于step 函数只关注于RNN一个时间步之内的计算,在这里recurrent_group
替我们完成了原始输入数据的拆分。
+
+
+
输入
+
recurrent_group
处理的输入序列主要分为以下三种类型:
+
+数据输入 :一个双层序列进入recurrent_group
会被拆解为一个单层序列,一个单层序列进入recurrent_group
会被拆解为非序列,然后交给step函数,这一过程对用户是完全透明的。可以有以下两种:1)通过data_layer拿到的用户输入;2)其它layer的输出。
+只读Memory输入 :StaticInput
定义了一个只读的Memory,由StaticInput
指定的输入不会被recurrent_group
拆解,recurrent_group
循环展开的每个时间步总是能够引用所有输入,可以是一个非序列,或者一个单层序列。
+序列生成任务的输入 :GeneratedInput
只用于在序列生成任务中指定输入数据。
+
+
+
+
输入示例
+
序列生成任务大多遵循encoder-decoer架构,encoder和decoder可以是能够处理序列的任意神经网络单元,而RNN是最流行的选择。
+
给定encoder输出和当前词,decoder每次预测产生下一个最可能的词语。在这种结构中,decoder接受两个输入:
+
+要生成的目标序列:是decoder的数据输入,也是decoder循环展开的依据,recurrent_group
会对这类输入进行拆解。
+encoder输出,可以是一个非序列,或者一个单层序列:是一个unbounded memory,decoder循环展开的每一个时间步会引用全部结果,不应该被拆解,这种类型的输入必须通过StaticInput
指定。关于Unbounded Memory的更多讨论请参考论文 Neural Turning Machine 。
+
+
在序列生成任务中,decoder RNN总是引用上一时刻预测出的词的词向量,作为当前时刻输入。GeneratedInput
自动完成这一过程。
+
+
+
输出
+
step
函数必须返回一个或多个Layer的输出,这个Layer的输出会作为整个recurrent_group
最终的输出结果。在输出的过程中,recurrent_group
会将每个时间步的输出拼接,这个过程对用户也是透明的。
+
+
+
memory
+
memory只能在recurrent_group
中定义和使用。memory不能独立存在,必须指向一个PaddlePaddle定义的Layer。引用memory得到这layer上一时刻输出,因此,可以将memory理解为一个时延操作。
+
可以显示地指定一个layer的输出用于初始化memory。不指定时,memory默认初始化为0。
+
+
+
+
双层RNN介绍
+
recurrent_group
帮助我们完成对输入序列的拆分,对输出的合并,以及计算逻辑在序列上的循环展开。
+
利用这种特性,两个嵌套的recurrent_group
能够处理双层序列,实现词语和句子两个级别的双层RNN结构。
+
+单层(word-level)RNN:每个状态(state)对应一个词(word)。
+双层(sequence-level)RNN:一个双层RNN由多个单层RNN组成,每个单层RNN(即双层RNN的每个状态)对应一个子句(subseq)。
+
+
为了描述方便,下文以NLP任务为例,将含有子句(subseq)的段落定义为一个双层序列,将含有词语的句子定义为一个单层序列,那么0层序列即为一个词语。
+
+
+
双层RNN的使用
+
+
训练流程的使用方法
+
使用 recurrent_group
需要遵循以下约定:
+
+单进单出 :输入和输出都是单层序列。
+如果有多个输入,不同输入序列含有的词语数必须严格相等。
+输出一个单层序列,输出序列的词语数和输入序列一致。
+memory:在step函数中定义 memory指向一个layer,通过引用memory得到这个layer上一个时刻输出,形成recurrent 连接。memory的is_seq参数必须为false。如果没有定义memory,每个时间步之内的运算是独立的。
+boot_layer:memory的初始状态,默认初始状为0,memory的is_seq参数必须为false。
+
+
+双进双出 :输入和输出都是双层序列。
+如果有多个输入序列,不同输入含有的子句(subseq)数必须严格相等,但子句含有的词语数可以不相等。
+输出一个双层序列,子句(subseq)数、子句的单词数和指定的一个输入序列一致,默认为第一个输入。
+memory:在step函数中定义memory,指向一个layer,通过引用memory得到这个layer上一个时刻的输出,形成recurrent连接。定义在外层recurrent_group
step函数中的memory,能够记录上一个subseq 的状态,可以是一个单层序列(只作为read-only memory),也可以是一个词语。如果没有定义memory,那么 subseq 之间的运算是独立的。
+boot_layer:memory 初始状态,可以是一个单层序列(只作为read-only memory)或一个向量。默认不设置,即初始状态为0。
+
+
+双进单出 :目前还未支持,会报错”In hierachical RNN, all out links should be from sequences now”。
+
+
+
+
生成流程的使用方法
+
使用beam_search
需要遵循以下约定:
+
+单层RNN:从一个word生成下一个word。
+双层RNN:即把单层RNN生成后的subseq给拼接成一个新的双层seq。从语义上看,也不存在一个subseq直接生成下一个subseq的情况。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc_cn/faq/index.html b/doc_cn/faq/index.html
new file mode 100644
index 0000000000000000000000000000000000000000..6b05ec70af3b0018a87cd3ecddec22fdf828d2f8
--- /dev/null
+++ b/doc_cn/faq/index.html
@@ -0,0 +1,329 @@
+
+
+
+
+
+
+
+
+
+ PaddlePaddle常见问题 — PaddlePaddle documentation
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
神经网络的训练本身是一个非常消耗内存和显存的工作。经常会消耗数十G的内存和数G的显存。
+PaddlePaddle的内存占用主要分为如下几个方面:
+
+DataProvider缓冲池内存 (只针对内存)
+神经元激活内存 (针对内存和显存)
+参数内存 (针对内存和显存)
+其他内存杂项
+
+
这其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,
+这些内存就不考虑如何缩减了。
+
其他的内存的减少方法依次为
+
+
+
PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即
+
+
所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这
+个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的,
+那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
+
@provider ( min_pool_size = 0 , ... )
+def process ( settings , filename ):
+ os . system ( 'shuf %s > %s .shuf' % ( filename , filename )) # shuffle before.
+ with open ( ' %s .shuf' % filename , 'r' ) as f :
+ for line in f :
+ yield get_sample_from_line ( line )
+
+
+
这样做可以极大的减少内存占用,并且可能会加速训练过程。 详细文档参考 这里 。
+
+
+
+
神经网络在训练的时候,会对每一个激活暂存一些数据,包括激活,參差等等。
+在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系,
+一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含
+的时间步信息成正比。
+
所以,做法可以有两种。他们是
+
+减小batch size。 即在网络配置中 settings(batch_size=1000)
设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。
+减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200,
+但是突然有一个10000长的序列,就很容易导致内存超限。特别是在LSTM等RNN中。
+
+
+
+
+
PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。
+例如如果使用 adadelta
算法,则需要使用参数规模大约5倍的内存。 如果参数保存下来的
+文件为 100M
, 那么该优化算法至少需要 500M
的内存。
+
可以考虑使用一些优化算法,例如 momentum
。
+
+
+
+
+
PaddlePaddle是神经网络训练平台,加速PaddlePaddle训练有如下几个方面:
+
+减少数据载入的耗时
+加速训练速度
+利用更多的计算资源
+
+
+
+
使用 pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
+:code:`DataProvider
缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
+
@provider ( min_pool_size = 0 , ... )
+def process ( settings , filename ):
+ os . system ( 'shuf %s > %s .shuf' % ( filename , filename )) # shuffle before.
+ with open ( ' %s .shuf' % filename , 'r' ) as f :
+ for line in f :
+ yield get_sample_from_line ( line )
+
+
+
同时 @provider
接口有一个 cache
参数来控制缓存方法,将其设置成 CacheType.CACHE_PASS_IN_MEM
的话,会将第一个 pass
(过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 pass
中,不会再从 python
端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
+
+
+
+
PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 sparse_binary_vector
、 sparse_vector
、或者 integer_value
的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 sparse_update=True
+
这里使用简单的 word2vec
训练语言模型距离,具体使用方法为:
+
使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为:
+
DICT_DIM = 3000
+@provider ( input_types = [ integer_sequence ( DICT_DIM ), integer_value ( DICT_DIM )])
+def process ( settings , filename ):
+ with open ( filename ) as f :
+ # yield word ids to predict inner word id
+ # such as [28, 29, 10, 4], 4
+ # It means the sentance is 28, 29, 4, 10, 4.
+ yield read_next_from_file ( f )
+
+
+
这个任务的配置为:
+
... # the settings and define data provider is omitted.
+DICT_DIM = 3000 # dictionary dimension.
+word_ids = data_layer ( 'word_ids' , size = DICT_DIM )
+
+emb = embedding_layer ( input = word_ids , size = 256 , param_attr = ParamAttr ( sparse_update = True ))
+emb_sum = pooling_layer ( input = emb , pooling_type = SumPooling ())
+predict = fc_layer ( input = emb_sum , size = DICT_DIM , act = Softmax ())
+outputs ( classification_cost ( input = predict , label = data_layer ( 'label' , size = DICT_DIM )))
+
+
+
更多关于sparse训练的内容请参考 sparse训练的文档
+
+
+
+
利用更多的计算资源可以分为一下几个方式来进行:
+
+单机CPU训练
+* 使用多线程训练。设置命令行参数 trainer_count
,即可以设置参与训练的线程数量。使用方法为 paddle train --trainer_count=4
+单机GPU训练
+* 使用显卡训练。设置命令行参数 use_gpu
。 使用方法为 paddle train --use_gpu=true
+* 使用多块显卡训练。设置命令行参数 use_gpu
和 trainer_count
。使用 --use_gpu=True
开启GPU训练,使用 trainer_count
指定显卡数量。使用方法为 paddle train --use_gpu=true --trainer_count=4
+多机训练
+* 使用多机训练的方法也比较简单,需要先在每个节点启动 paddle pserver
,在使用 paddle train --pservers=192.168.100.1,192.168.100.2
来指定每个pserver的ip地址
+* 具体的多机训练方法参考 多机训练 文档。
+
+
+
+
+
+
paddle在进行计算的时候为了提升计算性能,使用了avx指令。部分老的cpu型号无法支持这样的指令。通常来说执行下grep avx /proc/cpuinfo看看是否有输出即可知道是否支持。(另:用此方法部分虚拟机可能检测到支持avx指令但是实际运行会挂掉,请当成是不支持,看下面的解决方案)
+
解决办法是:
+
+
+
+
+
在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。
+
通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。
+
如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 0.2, 0.5, 0.3
, 那么常数输出所能达到的最小cost是 -(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03
。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。
+
+
+
+
默认情况下,PaddlePaddle使用均值0,标准差为 \(\frac{1}{\sqrt{d}}\) 来初始化参数。其中 \(d\) 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式:
+
+高斯分布。将 param_attr
设置成 param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)
+均匀分布。将 param_attr
设置成 param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)
+
+
比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。
+
hidden = fc_layer ( input = ipt , param_attr = ParamAttr ( initial_max = 1.0 , initial_min =- 1.0 ),
+ bias_attr = ParamAttr ( initial_mean = 1.0 , initial_std = 0.0 ))
+
+
+
上述代码将bias全部初始化为1.0, 同时将参数初始化为 [1.0, -1.0]
的均匀分布。
+
+
+
+
PaddlePaddle的参数使用名字 name
作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 ParamAttr(name="YOUR_PARAM_NAME")
来设置。更方便的设置方式,是想要共享的参数使用同样的 ParamAttr
对象。
+
简单的全连接网络,参数共享的配置示例为:
+
from paddle.trainer_config_helpers import *
+
+settings (
+ learning_rate = 1 e - 4 ,
+ batch_size = 1000
+)
+
+a = data_layer ( name = 'feature_a' , size = 200 )
+b = data_layer ( name = 'feature_b' , size = 200 )
+
+fc_param = ParamAttr ( name = 'fc_param' , initial_max = 1.0 , initial_min =- 1.0 )
+bias_param = ParamAttr ( name = 'bias_param' , initial_mean = 0.0 , initial_std = 0.0 )
+
+softmax_param = ParamAttr ( name = 'softmax_param' , initial_max = 1.0 , initial_min =- 1.0 )
+
+hidden_a = fc_layer ( input = a , size = 200 , param_attr = fc_param , bias_attr = bias_param )
+hidden_b = fc_layer ( input = b , size = 200 , param_attr = fc_param , bias_attr = bias_param )
+
+predict = fc_layer ( input = [ hidden_a , hidden_b ], param_attr = [ softmax_param , softmax_param ],
+ bias_attr = False , size = 10 , act = SoftmaxActivation ())
+
+outputs ( classification_cost ( input = predict , label = data_layer ( name = 'label' , size = 10 )))
+
+
+
这里 hidden_a
和 hidden_b
使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 softmax_param
。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/doc_cn/index.html b/doc_cn/index.html
index db944cacf5563a91f69abfc51d6cdf31e5397926..768568571c97d6be1fff6b9bdabf7df0a7603589 100644
--- a/doc_cn/index.html
+++ b/doc_cn/index.html
@@ -78,7 +78,16 @@ var _hmt = _hmt || [];
+
@@ -95,6 +104,7 @@ var _hmt = _hmt || [];
使用指南
开发指南
算法教程
+
常见问题
diff --git a/doc_cn/objects.inv b/doc_cn/objects.inv
index 7969c18370e0d15b69996dcf3db0c407e6c28fe7..2cfa1bb72d49420b7b628bffcdc4927c1e4e4dd2 100644
Binary files a/doc_cn/objects.inv and b/doc_cn/objects.inv differ
diff --git a/doc_cn/searchindex.js b/doc_cn/searchindex.js
index 106bae35fd972cecfdd7b6f379d3eb3e4ab3fbcb..001f1053657aefaa6567c7c7d4a7aa439c68c20a 100644
--- a/doc_cn/searchindex.js
+++ b/doc_cn/searchindex.js
@@ -1 +1 @@
-Search.setIndex({envversion:49,filenames:["build/docker/build_docker_image","build_and_install/cmake/compile_options","build_and_install/cmake/index","build_and_install/cmake/install_deps","build_and_install/cmake/make_and_install","build_and_install/index","build_and_install/install/docker_install","build_and_install/install/ubuntu_install","cluster/index","demo/index","demo/quick_start/index","index","ui/cmd/dump_config","ui/cmd/index","ui/cmd/make_diagram","ui/cmd/merge_model","ui/cmd/paddle_pserver","ui/cmd/paddle_train","ui/cmd/paddle_version","ui/data_provider/index","ui/data_provider/pydataprovider2","ui/data_provider/write_new_dataprovider","ui/index","ui/predict/swig_py_paddle"],objects:{},objnames:{},objtypes:{},terms:{"0000x":10,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":20,"00186201e":23,"04\u4e2d\u6b63\u786e":7,"08823112e":23,"0b1":7,"10\u4ee5\u4e0a\u7684linux":6,"10\u7ef4\u7684\u6574\u6570\u503c":20,"10gbe":6,"10m":0,"12194102e":23,"12\u7248\u672c\u6d4b\u8bd5\u901a\u8fc7":0,"12\u7248\u672c\u7684\u60c5\u51b5\u4e0b\u5e76\u6ca1\u6709\u6d4b\u8bd5":0,"15501715e":23,"15mb":10,"16mb":10,"1\u7684\u8bdd":20,"252kb":10,"25639710e":23,"25k":10,"27787406e":23,"28\u7684\u50cf\u7d20\u7070\u5ea6\u503c":20,"28\u7684\u7a20\u5bc6\u5411\u91cf\u548c\u4e00\u4e2a":20,"2\u8fdb\u884c\u8fdb\u4e00\u6b65\u6f14\u5316":10,"32777140e":23,"36540484e":23,"40gbe":6,"43630644e":23,"48565123e":23,"48684503e":23,"49316648e":23,"50k":0,"51111044e":23,"53018653e":23,"56gbe":6,"5\u5230\u672c\u5730\u73af\u5883\u4e2d":7,"70634608e":23,"72296313e":23,"85625684e":23,"93137714e":23,"96644767e":23,"99982715e":23,"9\u7684\u6570\u5b57":20,"\u4e00\u4e2a\u6587\u4ef6":20,"\u4e00\u4e2alogging\u5bf9\u8c61":20,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":10,"\u4e00\u6761":20,"\u4e00\u81f4\u7684\u7279\u5f81":20,"\u4e00\u822c\u60c5\u51b5\u4e0b":19,"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":20,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":10,"\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6":19,"\u4e0a\u7684\u6548\u679c":10,"\u4e0b\u8f7d\u8fdb\u7a0b\u4f1a\u91cd\u542f":0,"\u4e0b\u8ff0\u5185\u5bb9\u5c06\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u7c7b\u522b\u63cf\u8ff0":6,"\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":20,"\u4e0b\u9762dataprovid":10,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":20,"\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":19,"\u4e0d\u5305\u542blabel":23,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":20,"\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":6,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":20,"\u4e0d\u9700\u8981avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":6,"\u4e0e\u8bad\u7ec3\u7f51\u7edc\u914d\u7f6e\u4e0d\u540c\u7684\u662f":10,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":20,"\u4e24\u4e2a\u6587\u6863":6,"\u4e24\u7c7b":10,"\u4e25\u91cd\u7684\u95ee\u9898":20,"\u4e2a":10,"\u4e2ayield":20,"\u4e2d":10,"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovider\u53ca\u5176\u53c2\u6570":19,"\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":20,"\u4e2d\u5bfb\u627e\u8fd9\u4e9bblas\u7684\u5b9e\u73b0":1,"\u4e2d\u7684":20,"\u4e2d\u7684\u4e8c\u8fdb\u5236\u4f7f\u7528\u4e86":6,"\u4e2d\u7684set":20,"\u4e2d\u914d\u7f6e":20,"\u4e3a":20,"\u4e3a\u4e86\u8fd0\u884cpaddlepaddle\u7684docker\u955c\u50cf":6,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":10,"\u4e3b\u8981\u51fd\u6570\u662fprocess\u51fd\u6570":20,"\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u6b65\u9aa4":23,"\u4e3b\u8981\u5305\u62ec\u4e24\u90e8\u5206":10,"\u4e3b\u8981\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":20,"\u4e3b\u8981\u6b65\u9aa4\u4e3a":23,"\u4e3b\u8981\u7531\u4e8e\u65e7\u7248\u672c":0,"\u4e3b\u8981\u7684\u8f6f\u4ef6\u5305\u4e3apy_paddl":23,"\u4e5f\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":20,"\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":1,"\u4e5f\u53ef\u4ee5":20,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":20,"\u4e5f\u53ef\u4ee5\u548cpaddl":13,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u6267\u884c":6,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5982\u4e0b\u65b9\u5f0f\u9884\u6d4b":10,"\u4e5f\u53ef\u4ee5\u901a\u8fc7save":10,"\u4e5f\u53ef\u4ee5\u9884\u6d4b\u6ca1\u6709label\u7684\u6d4b\u8bd5\u96c6":10,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u989d\u6b65":10,"\u4e5f\u5c31\u662f\u76f4\u63a5\u5199\u5185\u5b58\u7684float\u6570\u7ec4":23,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u540c\u6837\u7684generator\u7684\u65f6\u5019":20,"\u4e86\u975e\u5e38\u65b9\u4fbf\u7684\u4e8c\u8fdb\u5236\u5206\u53d1\u624b\u6bb5":6,"\u4e8c\u6b21\u5f00\u53d1\u53ef\u4ee5":6,"\u4eba\u5458\u7b49\u7b49":0,"\u4ec5\u4ec5\u9700\u8981":20,"\u4ecb\u7ecdpaddlepaddle\u4f7f\u7528\u6d41\u7a0b\u548c\u5e38\u7528\u7684\u7f51\u7edc\u57fa\u7840\u5355\u5143\u7684\u914d\u7f6e\u65b9\u6cd5":10,"\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":20,"\u4ece\u6587\u672c\u6587\u4ef6\u4e2d\u8bfb\u53d6":20,"\u4ece\u800c\u4e0d\u80fd\u5728\u8fd0\u884c\u7f16\u8bd1\u547d\u4ee4\u7684\u65f6\u5019\u63a5\u53d7\u53c2\u6570":0,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":20,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":19,"\u4ed6\u4eec\u662f":[6,7,13,20],"\u4ed6\u4eec\u7684imag":6,"\u4ed6\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovid":20,"\u4ee4\u884c\u53c2\u6570\u6587\u6863":10,"\u4ee5\u592a\u7f51\u5361":6,"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":19,"\u4efb\u610f\u4e00\u79cdcblas\u5b9e\u73b0":1,"\u4f1a\u62a5\u5bfb\u627e\u4e0d\u5230\u8fd9\u4e9b\u52a8\u6001\u5e93":7,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":19,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":20,"\u4f1a\u751f\u6210\u591a\u4e2agener":20,"\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":20,"\u4f20\u5165\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316":23,"\u4f20\u5165\u7684\u662f\u4e00\u4e2a\u51fd\u6570":20,"\u4f20\u5165\u7684\u914d\u7f6e\u53c2\u6570\u5305\u62ec":0,"\u4f20\u5165\u8fd9\u4e2a\u53d8\u91cf\u7684\u65b9\u5f0f\u4e3a":20,"\u4f46\u662f":[0,20],"\u4f46\u662f\u5728":20,"\u4f46\u662f\u5982\u679c\u4f7f\u7528\u4e86\u9ad8\u6027\u80fd\u7684\u7f51\u5361":6,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548cbenchmark":1,"\u4f46\u662f\u6709\u65f6\u4e3a\u4e86\u8ba1\u7b97\u5747\u8861\u6027":20,"\u4f46\u7406\u8bba\u4e0a\u652f\u6301\u5176\u4ed6\u7684":7,"\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\u7f16\u8bd1\u548c":1,"\u4f4e\u4e8edocker":0,"\u4f53\u53ef\u4ee5\u53c2\u8003":20,"\u4f7f\u5728python\u73af\u5883\u4e0b\u7684\u9884\u6d4b\u63a5\u53e3\u66f4\u52a0\u7b80\u5355":23,"\u4f7f\u7528":[1,6,23],"\u4f7f\u7528\u5982\u4e0b\u811a\u672c\u53ef\u4ee5\u786e\u5b9a\u672c\u673a\u7684cpu\u77e5\u5426\u652f\u6301":6,"\u4f7f\u7528\u7684\u547d\u4ee4\u4e5f\u662f":1,"\u4f7f\u7528\u8be5\u63a5\u53e3\u7528\u6237\u53ef\u4ee5\u53ea\u5173\u6ce8\u5982\u4f55":20,"\u4f7f\u7528\u8be5dockerfile\u6784\u5efa\u51fa\u955c\u50cf":6,"\u4f7f\u7528\u8fd9\u4e2a\u5173\u952e\u8bcd":20,"\u4f7f\u7528deb\u5305\u5728ubuntu\u4e0a\u5b89\u88c5paddlepaddl":5,"\u4f7f\u7528dockerfile\u6784\u5efa\u4e00\u4e2a\u5168\u65b0\u7684dock":6,"\u4f7f\u7528mnist\u624b\u5199\u8bc6\u522b\u4f5c\u4e3a\u6837\u4f8b":23,"\u4f7f\u7528ssh\u8bbf\u95eepaddlepaddle\u955c\u50cf":6,"\u4f8b\u5982":[1,10,20],"\u4f8b\u5982\u6587\u4ef6\u540d\u662f":20,"\u4f8b\u5982rdma\u7f51\u5361":6,"\u4f8b\u5982sigmoid\u53d8\u6362":10,"\u4f9d\u6b21\u8fd4\u56de\u4e86\u6587\u4ef6\u4e2d\u7684\u6bcf\u6761\u6570\u636e":20,"\u4fe1\u606f":6,"\u5173\u95edcontain":6,"\u5176\u4e2d":[0,6,7,19,20,23],"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteg":10,"\u5176\u4e2d\u7b2c\u4e00\u884c\u662f\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":20,"\u5176\u4ed6\u53c2\u6570\u5747\u4f7f\u7528kei":20,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":10,"\u5176\u4ed6\u53c2\u6570\u90fd\u4f7f\u7528kei":20,"\u5176\u4f5c\u7528\u662f\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":19,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":10,"\u5176\u6570\u636e\u4f7f\u7528":20,"\u5176\u7b2c\u4e00\u884c\u8bf4\u660e\u4e86paddle\u7684\u7248\u672c":18,"\u5177":20,"\u5177\u4f53\u53ef\u4ee5\u8bbe\u7f6e\u6210\u4ec0\u4e48\u5176\u4ed6\u683c":20,"\u5177\u4f53\u6709\u54ea\u4e9b\u683c\u5f0f":20,"\u5177\u4f53\u8bf7\u53c2\u8003\u6ce8\u610f\u4e8b\u9879\u4e2d\u7684":6,"\u5177\u4f53dataprovider\u8fd8\u5177\u6709\u4ec0\u4e48\u529f\u80fd":20,"\u5177\u6709\u4e24\u4e2a\u53c2\u6570":20,"\u5177\u6709\u548c\u5bbf\u4e3b\u673a\u76f8\u8fd1\u7684\u8fd0\u884c\u6548\u7387":6,"\u5177\u6709\u7684\u5c5e\u6027\u6709":20,"\u5178\u578b\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a":23,"\u5178\u578b\u7684\u9884\u6d4b\u4ee3\u7801\u5982\u4e0b":23,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":19,"\u518d\u6307\u5b9a":1,"\u5199\u5165train":20,"\u5199\u5728train":19,"\u51c6\u5907\u6570\u636e":23,"\u51fd\u6570":20,"\u51fd\u6570\u4e2d":20,"\u51fd\u6570\u4e2d\u4f7f\u7528":20,"\u51fd\u6570\u4e2d\u7684":20,"\u51fd\u6570\u662f\u4f7f\u7528":20,"\u51fd\u6570\u6765\u4fdd\u8bc1\u517c\u5bb9\u6027":20,"\u51fd\u6570\u67e5\u8be2\u6587\u6863":23,"\u5206\u5e03\u5f0f\u8bad\u7ec3":10,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c":20,"\u5217\u8868\u5982\u4e0b":20,"\u5219\u53ef\u4ee5\u4f7f\u7528":6,"\u5219\u53ef\u4ee5\u9009\u62e9\u4e0a\u8868\u4e2d\u7684avx\u7248\u672cpaddlepaddl":6,"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":10,"\u5219\u9700\u8981\u4f7f\u7528":7,"\u5219\u9700\u8981\u5148\u5c06":6,"\u5219\u9700\u8981\u8fdb\u884c\u4e00\u5b9a\u7684\u4e8c\u6b21\u5f00\u53d1":6,"\u521b\u5efa\u4e00\u4e2a":23,"\u521b\u5efagener":20,"\u5220\u9664contain":6,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u5bf9\u5e94\u7684\u8be5\u5355\u8bcd\u7684\u8fde\u7eed\u8868\u793a\u5411\u91cf":10,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":10,"\u522b":10,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":20,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":10,"\u52a0\u8f7d\u6570\u636e":10,"\u5305":6,"\u5305\u548c":6,"\u5305\u62ec":10,"\u5305\u62ec\u7b80\u5355\u7684rnn\u6a21\u578b":10,"\u5305\u62ecdocker\u955c\u50cf":5,"\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":6,"\u5305\u62ecpaddle\u8fd0\u884cdemo\u6240\u9700\u8981\u7684\u4f9d\u8d56":6,"\u5373":[6,10],"\u5373\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":20,"\u5373\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":20,"\u5373\u4ece\u5355\u8bcd\u5b57\u7b26\u4e32\u5230\u5355\u8bcdid\u7684\u5b57\u5178":20,"\u5373\u4f1a\u751f\u6210100\u4e2agener":20,"\u5373\u4f7f\u5728check\u4e2d\u6570\u636e\u4e0d\u5408\u6cd5":20,"\u5373\u4f7f\u5728process\u91cc\u9762\u53ea\u4f1a\u6709\u4e00":20,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":20,"\u5373\u53ef":20,"\u5373\u53ef\u4ee5\u4f7f\u7528ssh\u8bbf\u95ee\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3":6,"\u5373\u53ef\u542f\u52a8\u548c\u8fdb\u5165paddlepaddle\u7684contain":6,"\u5373\u53ef\u5728\u672c\u5730\u7f16\u8bd1\u51fapaddlepaddle\u7684\u955c\u50cf":0,"\u5373\u53ef\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u6784\u5efa":6,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":20,"\u5373\u5982\u679ctrain":20,"\u5373\u5bf9\u7b2c3\u6b65\u8fdb\u884c\u66ff\u6362":10,"\u5373\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":20,"\u5373train":20,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":10,"\u53c2\u6570":0,"\u53c2\u6570\u6570\u91cf":10,"\u53c2\u8003":19,"\u53c2\u89c1":[3,4],"\u53d1\u884c\u7248":7,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gflags":1,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230glog":1,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":1,"\u53d6\u51b3\u4e8e\u662f\u5426\u627e\u5230swig":1,"\u53d8\u4e3a3\u4e2a\u65b0\u7684\u5b50\u6b65\u9aa4":10,"\u53d8\u4f1a\u62a5\u8fd9\u4e2a\u9519\u8bef":7,"\u53d8\u91cf":20,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a2\u6b65":10,"\u53ea\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":6,"\u53ea\u662f\u5c06\u53e5\u5b50\u5229\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u7a00\u758f":10,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":20,"\u53ea\u80fd\u591f\u8fd4\u56delist\u6216\u8005tupl":20,"\u53ea\u9700\u8981\u4f7f\u7528\u4e00\u884c\u4ee3\u7801\u5373\u53ef\u4ee5\u8bbe\u7f6e\u8bad\u7ec3\u5f15\u7528\u8fd9\u4e2adataprovid":20,"\u53ea\u9700\u8981\u5728":20,"\u53ea\u9700\u8981\u77e5\u9053\u8fd9\u53ea\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":20,"\u53ef\u4ee5\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u8bad\u7ec3\u6837\u672c":20,"\u53ef\u4ee5\u4f20\u516510k":0,"\u53ef\u4ee5\u4f7f\u7528":0,"\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4":7,"\u53ef\u4ee5\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8bc4\u4f30\u5e26\u6709label\u7684\u9a8c\u8bc1\u96c6":10,"\u53ef\u4ee5\u4f7f\u7528graphviz\u5bf9paddlepaddle\u7684\u7f51\u7edc\u6a21\u578b\u8fdb\u884c\u7ed8\u5236":13,"\u53ef\u4ee5\u4f7f\u7528paddl":13,"\u53ef\u4ee5\u4f7f\u7528python\u7684":23,"\u53ef\u4ee5\u53c2\u8003":10,"\u53ef\u4ee5\u5728\u4e00\u4e2a\u51fd\u6570\u91cc":20,"\u53ef\u4ee5\u5728cmake\u7684\u547d\u4ee4\u884c\u8bbe\u7f6e":1,"\u53ef\u4ee5\u5c06\u4e00\u6761\u6570\u636e\u8bbe\u7f6e\u6210\u591a\u4e2abatch":20,"\u53ef\u4ee5\u5c06paddlepaddle\u7684\u6a21\u578b\u548c\u914d\u7f6e\u6253\u5305\u6210\u4e00\u4e2a\u6587\u4ef6":13,"\u53ef\u4ee5\u5c06paddlepaddle\u7684\u8bad\u7ec3\u6a21\u578b\u4ee5proto":13,"\u53ef\u4ee5\u65b9\u4fbf\u5d4c\u5165\u5f0f\u5de5\u4f5c":1,"\u53ef\u4ee5\u6839\u636e\u4e0d\u540c\u7684\u6570\u636e\u914d\u7f6e\u4e0d\u540c\u7684\u8f93\u5165\u7c7b\u578b":20,"\u53ef\u4ee5\u8fd4\u56de\u4e00\u4e2adict":20,"\u53ef\u4ee5\u901a\u8fc7show":10,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":10,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":19,"\u53ef\u80fd\u7684\u8f93\u51fa\u4e3a":7,"\u53ef\u9009":20,"\u5404\u79cd\u53c2\u6570\u548c\u7ef4\u62a4":0,"\u540c\u65f6":[0,1,20],"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":10,"\u540c\u65f6\u6b22\u8fce\u8d21\u732e\u66f4\u591a\u7684\u5b89\u88c5\u5305":5,"\u540d\u79f0":10,"\u540e\u9762\u8ddf\u7740\u4e00\u7cfb\u5217\u7f16\u8bd1\u53c2\u6570":18,"\u5411\u91cf\u8868\u793a":10,"\u5426":1,"\u5426\u5219":19,"\u5426\u5219\u9700\u8981\u9009\u62e9\u975eavx\u7684paddlepaddl":6,"\u547d\u4ee4":0,"\u547d\u4ee4\u4e3a":6,"\u547d\u4ee4\u5373\u53ef\u5b8c\u6210\u5b89\u88c5":7,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":10,"\u547d\u4ee4\u8fd0\u884c\u955c\u50cf":6,"\u547d\u4ee4\u9884\u5148\u4e0b\u8f7d\u955c\u50cf":6,"\u548c":[1,6,20],"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":20,"\u548c\u5dee\u8bc4":10,"\u548c\u6587\u672c\u4fe1\u606f\u7528tab\u95f4\u9694":10,"\u548c\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":19,"\u548c\u7528\u6237\u4f20\u5165\u7684\u53c2\u6570":20,"\u548c\u9884\u5904\u7406\u811a\u672c":10,"\u548ccudnn":7,"\u548cinitalizer\u91cc\u5b9a\u4e49\u987a\u5e8f\u4e00\u81f4":10,"\u5668":10,"\u56db\u4e2a\u7248\u672c":7,"\u56db\u79cd\u6570\u636e\u7c7b\u578b\u662f":20,"\u56fe\u50cf\u5206\u7c7b":9,"\u5728":[1,7,20],"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165\u4e86dictionary\u4f5c\u4e3a\u53c2\u6570":20,"\u5728\u5b8c\u6210\u4e86\u6570\u636e\u548c\u7f51\u7edc\u7ed3\u6784\u642d\u5efa\u4e4b\u540e":10,"\u5728\u672c\u95ee\u9898\u4e2d":10,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u5229\u7528":10,"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":10,"\u5728\u6bcf\u4e2a\u7ef4\u5ea6\u4e0a\u53d6\u51fa\u5728\u8be5\u53e5\u8bdd\u65b0\u7684\u5411\u91cf\u96c6\u5408\u4e0a\u8be5\u7ef4\u5ea6\u7684\u6700\u5927\u503c\u4f5c\u4e3a\u6700\u540e\u7684\u53e5\u5b50\u8868\u793a\u5411\u91cf":10,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":23,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":19,"\u5728\u8bad\u7ec3\u914d\u7f6e\u91cc":20,"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":20,"\u5728\u914d\u7f6e\u4e2d\u8bfb\u53d6\u4e86\u5b57\u5178":20,"\u5728cmake\u914d\u7f6e\u65f6\u53ef\u4ee5\u4f7f\u7528":1,"\u5728pydataprovider\u4e2d":20,"\u5728python\u73af\u5883\u4e0b\u9884\u6d4b\u7ed3\u679c":23,"\u57fa\u672c\u4e0a\u4e0d\u80fd\u6574\u4f53\u4fee\u6b63":20,"\u57fa\u672c\u7684\u5904\u7406\u903b\u8f91\u4e5f\u548cmnist\u903b\u8f91\u4e00\u81f4":20,"\u57fa\u672c\u7684pydataprovider\u4f7f\u7528\u4ecb\u7ecd\u5b8c\u6bd5\u4e86":20,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":10,"\u591a\u6b21\u8fd4\u56de\u53d8\u91cf":20,"\u591a\u7ebf\u7a0b\u4e0b\u8f7d\u8fc7\u7a0b\u4e2d":0,"\u591a\u7ebf\u7a0b\u6570\u636e\u8bfb\u53d6":20,"\u5927":20,"\u597d\u8bc4":10,"\u5982\u679c":[7,20],"\u5982\u679c\u4e0d\u4e86\u89e3":20,"\u5982\u679c\u4e0d\u4f7f\u7528\u5219\u4f1a\u4f7f\u7528\u4e00\u4e2a\u7b80\u5316\u7248\u7684\u547d\u4ee4\u884c\u53c2\u6570\u89e3\u6790":1,"\u5982\u679c\u4e0d\u4f7f\u7528\u5219\u4f1a\u4f7f\u7528\u4e00\u4e2a\u7b80\u5316\u7248\u7684\u65e5\u5fd7\u5b9e\u73b0":1,"\u5982\u679c\u4e0d\u5207\u8bcd":10,"\u5982\u679c\u4e0d\u8bbe\u7f6e\u7684\u8bdd":20,"\u5982\u679c\u4f7f\u7528gpu\u7248\u672c\u7684paddlepaddl":7,"\u5982\u679c\u5728":7,"\u5982\u679c\u5728\u7b2c\u4e00\u6b21cmake\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe":1,"\u5982\u679c\u5728\u8bad\u7ec3\u65f6":20,"\u5982\u679c\u5c0f\u4e8e\u8fd9\u4e2a\u4e0b\u8f7d\u901f\u5ea6":0,"\u5982\u679c\u60a8\u4f7f\u7528":6,"\u5982\u679c\u60f3\u8981\u5728\u5916\u90e8\u673a\u5668\u8bbf\u95ee\u8fd9\u4e2acontain":6,"\u5982\u679c\u662ffalse\u7684\u8bdd":20,"\u5982\u679c\u662ftrue\u7684\u8bdd":20,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":19,"\u5982\u679c\u7528\u6237\u4e0d\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":20,"\u5982\u679c\u8bbe\u7f6e\u6210true\u7684\u8bdd":20,"\u5982\u679c\u8f93\u51fa":6,"\u5982\u679c\u8fd0\u884cgpu\u7248\u672c\u7684paddlepaddl":6,"\u5982\u679ctest":19,"\u5b83\u5305\u542b\u7684\u53c2\u6570\u6709":20,"\u5b89\u88c5\u5305\u5728ubuntu":7,"\u5b89\u88c5\u5305\u7684\u4e0b\u8f7d\u5730\u5740\u662f":7,"\u5b89\u88c5\u597d\u7684paddlepaddle\u811a\u672c\u5305\u62ec\u591a\u6761\u547d\u4ee4":13,"\u5b89\u88c5\u5b8c\u6210\u540e":7,"\u5b89\u88c5\u5b8c\u6210\u7684paddlepaddle\u4e3b\u4f53\u5305\u62ec\u4e09\u4e2a\u90e8\u5206":6,"\u5b89\u88c5\u5b8c\u6210paddlepaddle\u540e":7,"\u5b89\u88c5\u6559\u7a0b":10,"\u5b89\u88c5\u65b9\u6cd5\u8bf7\u53c2\u8003":6,"\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56":3,"\u5b89\u88c5\u7f16\u8bd1paddlepaddle\u9700\u8981\u7684\u4f9d\u8d56":2,"\u5b89\u88c5docker\u9700\u8981\u60a8\u7684\u673a\u5668":6,"\u5b89\u88c5paddlepaddl":10,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":5,"\u5b8c\u6210\u591a\u673a\u8bad\u7ec3":13,"\u5b8c\u6574\u4ee3\u7801\u89c1":23,"\u5b9a\u4e49\u6587\u672c\u4fe1\u606f":10,"\u5b9e\u73b0\u4e86\u6253\u5f00\u6587\u672c\u6587\u4ef6":20,"\u5bc6\u7801\u4e5f\u662froot":6,"\u5bf9\u4e8e\u7528\u6237\u6765\u8bf4":20,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":10,"\u5bf9\u4e8ecuda\u7684toolkit\u6709\u65ad\u70b9\u7eed\u4f20\u548c\u4f20\u8f93\u901f\u5ea6\u8fc7\u5c0f\u91cd\u542f\u4e0b\u8f7d\u7684":0,"\u5bf9\u4e8emnist\u800c\u8a00":20,"\u5bf9\u8be5\u8868\u793a\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":10,"\u5bf9\u8c61":20,"\u5bf9\u8c61convert":23,"\u5c06\u4f1a\u6d4b\u8bd5\u914d\u7f6e\u6587\u4ef6\u4e2dtest":10,"\u5c06\u5b57\u5178\u5b58\u5165\u4e86set":20,"\u5c06\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3\u6620\u5c04\u5230container\u768422\u7aef\u53e3\u4e0a":6,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8bad\u7ec3":20,"\u5c06\u6587\u4ef6\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":19,"\u5c06\u8bc4\u8bba\u5206\u4e3a\u597d\u8bc4":10,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":10,"\u5c06ssh\u88c5\u5165\u7cfb\u7edf\u5185\u5e76\u5f00\u542f\u8fdc\u7a0b\u8bbf\u95ee":6,"\u5c31":20,"\u5c31\u50cf\u8fd9\u4e2a\u6837\u4f8b\u4e00\u6837":20,"\u5c31\u662f\u5c06\u8fd9\u4e9b\u52a8\u6001\u5e93\u52a0\u5230\u73af\u5883\u53d8\u91cf\u91cc\u9762":7,"\u5c5e\u6027":20,"\u5dee\u8bc4":10,"\u5e38\u89c1\u7684\u8f93\u51fa\u683c\u5f0f\u4e3a":18,"\u5e76\u4e14":20,"\u5e76\u4e14\u4f7f\u7528\u5173\u952e\u8bcd":20,"\u5e76\u4e14\u5220\u9664container\u4e2d\u7684\u6570\u636e":6,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f":20,"\u5e76\u4e14\u6807\u8bb0process\u51fd\u6570\u662f\u4e00\u4e2adataprovid":20,"\u5e76\u4f7f\u7528\u4e86dropout":10,"\u5e76\u572823\u884c\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":20,"\u5e76\u5c06\u6bcf\u884c\u8f6c\u6362\u6210\u548c":20,"\u5e76\u63d0\u4f9b":6,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":20,"\u5e76\u8bbe\u7f6e\u597d\u5bf9\u5e94\u7684\u73af\u5883\u53d8\u91cf":7,"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":10,"\u5e8f\u5217\u6a21\u578b\u6570\u636e\u63d0\u4f9b":19,"\u5e8f\u5217\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":20,"\u5e93\u7684\u8bdd":7,"\u5f0f":20,"\u5f15\u7528\u7684dataprovider\u662f":20,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":20,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":10,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":10,"\u5f53\u7136":19,"\u5f53\u8c03":20,"\u5f88":10,"\u5f97\u5230\u7ed3\u679c":7,"\u5feb\u901f\u5165\u95e8":11,"\u5ff5\u662f":20,"\u60a8\u53ef\u4ee5\u4f7f\u7528":6,"\u60a8\u5c31\u53ef\u4ee5\u8fdc\u7a0b\u7684\u4f7f\u7528paddlepaddle\u5566":6,"\u60a8\u9700\u8981\u5728\u673a\u5668\u4e2d\u5b89\u88c5\u597ddocker":6,"\u60a8\u9700\u8981\u8fdb\u5165\u955c\u50cf\u8fd0\u884cpaddlepaddl":6,"\u60c5\u611f\u5206\u6790":9,"\u60f3\u8981\u8fd0\u884cpaddlepaddl":6,"\u6210\u4e3a\u7ef4\u5ea6\u4e3ahidden":10,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b":10,"\u6211\u4eec\u4ee5\u6587\u672c\u5206\u7c7b\u95ee\u9898\u4f5c\u4e3a\u80cc\u666f":10,"\u6211\u4eec\u4f7f\u7528":10,"\u6211\u4eec\u5728\u6b64\u603b":10,"\u6211\u4eec\u5c06\u4ee5\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":10,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u7684\u6d41\u7a0b\u7684\u811a\u672c":10,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7684\u547d\u4ee4\u884c\u4fdd\u5b58\u5728\u4e86":10,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528docker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":5,"\u6211\u4eec\u63d0\u4f9b\u4e8612\u4e2a":6,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7bdataproviderconvert":23,"\u6211\u4eec\u8fdb\u5165\u5230\u8bad\u7ec3\u90e8\u5206":10,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":10,"\u6211\u4eec\u968f\u65f6\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":10,"\u6216\u5176\u4ed6":10,"\u6216\u8005":6,"\u6216\u800510g\u8fd9\u6837\u7684\u5355\u4f4d":0,"\u6216\u8005\u4f7f\u7528\u4e0b\u9762\u4e00\u6761\u547d\u4ee4\u5b89\u88c5":7,"\u6216\u8005\u5728python":20,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u5730\u5740\u7b49\u7b49":19,"\u6216\u8005\u8bbe\u7f6e\u4e3anone":19,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":19,"\u6216\u8005\u9ad8\u6027\u80fd\u7684":6,"\u6240\u4ee5":[20,23],"\u6240\u4ee5\u5728cpu\u7684\u8fd0\u7b97\u6027\u80fd\u4e0a\u5e76\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":6,"\u6240\u4ee5\u5982\u679c\u5bf9\u4e8e\u5185\u5b58\u6bd4\u8f83\u5c0f\u7684\u673a\u5668":20,"\u6240\u4ee5\u5982\u679c\u60f3\u8981\u5728\u540e\u53f0\u542f\u7528ssh":6,"\u6240\u4ee5\u5c06":20,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u503c\u548c\u6570\u636e\u5bf9\u5e94\u5173\u7cfb":20,"\u6240\u4ee5\u6700\u4f73\u5b9e\u8df5\u63a8\u8350\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":20,"\u6240\u4ee5\u7528\u4e8e\u9884\u6d4b\u7684\u914d\u7f6e\u6587\u4ef6\u8981\u505a\u76f8\u5e94\u7684\u4fee\u6539":23,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":23,"\u6240\u4ee5gpu\u5728\u8fd0\u7b97\u6027\u80fd\u4e0a\u4e5f\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":6,"\u6240\u4ee5init_hook\u5c3d\u91cf\u4f7f\u7528":20,"\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":10,"\u6240\u6709\u6587\u4ef6\u5217\u8868":20,"\u6240\u6709\u7684":1,"\u6240\u6709\u7684\u4e0b\u8f7d\u7ebf\u7a0b\u5173\u95ed\u65f6":0,"\u6240\u6709\u914d\u7f6e\u5728":10,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":20,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":20,"\u624d\u4f1astop":20,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":1,"\u6267\u884c":0,"\u6267\u884c\u5982\u4e0b\u547d\u4ee4\u5373\u53ef\u4ee5\u5173\u95ed\u8fd9\u4e2acontain":6,"\u6267\u884c\u65b9\u6cd5\u5982\u4e0b":6,"\u62a5\u9519":7,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf\u8868\u793a":10,"\u6307\u4ee4\u96c6":6,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":10,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":10,"\u6307\u5b9a\u8bad\u7ec3":10,"\u6307\u5b9abatch":10,"\u6307\u5b9aoutputs\u8f93\u51fa\u6982\u7387\u5c42":10,"\u6389\u7f16\u8bd1\u76ee\u5f55\u540e":1,"\u63a5\u4e0b\u6765\u4f7f\u7528":23,"\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":20,"\u63a8\u8350\u4f7f\u7528\u5c06\u672c\u5730\u7f51\u5361":6,"\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":1,"\u63a8\u8350\u6e05\u7406":1,"\u63a8\u8350\u76f4\u63a5\u653e\u7f6e\u5230\u8bad\u7ec3\u76ee\u5f55":19,"\u63a8\u8350\u8bbe\u7f6e":20,"\u63cf\u8ff0":1,"\u63cf\u8ff0\u4e86docker":0,"\u6548\u679c\u4e00\u81f4":20,"\u6548\u679c\u603b\u7ed3":10,"\u6559\u7a0b":10,"\u6570\u636e":20,"\u6570\u636e\u4f20\u8f93\u65e0\u9700label\u6570\u636e":10,"\u6570\u636e\u5904\u7406python\u6587\u4ef6\u540d":10,"\u6570\u636e\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":20,"\u6570\u636e\u63d0\u4f9b":19,"\u6570\u636e\u6587\u4ef6\u5b58\u653e\u5728\u672c\u5730\u78c1\u76d8\u4e2d":19,"\u6570\u636e\u662f\u7ed9\u4e00\u6bb5\u82f1\u6587\u6587\u672c":20,"\u6570\u636e\u683c\u5f0f\u548c\u8be6\u7ec6\u6587\u6863\u8bf7\u53c2\u8003":10,"\u6587\u4ef6":20,"\u6587\u4ef6\u4e2d":10,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":10,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217":20,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":10,"\u6587\u672c\u5377\u79ef\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4":10,"\u6587\u672c\u751f\u6210":9,"\u65b0\u5199layer":11,"\u65b9\u4fbf\u8c03\u8bd5\u4f7f\u7528":13,"\u65b9\u4fbf\u90e8\u7f72\u5206\u53d1":13,"\u65e0\u9700label\u76f8\u5173\u7684\u5c42":10,"\u65f6\u5e8f\u6a21\u578b\u5373\u4e3arnn\u6a21\u578b":10,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":10,"\u662f":1,"\u662f\u4e00\u4e2abatch":20,"\u662f\u4e00\u4e2apython\u7684":20,"\u662f\u4e00\u4e2aswig\u5c01\u88c5\u7684paddlepaddle\u5305":6,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":20,"\u662f\u4e2adataprovider\u662f\u4e0d\u662f\u8981\u505ashuffl":20,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":20,"\u662f\u4ece\u8bad\u7ec3\u914d\u7f6e\u4f20\u5165\u7684dict\u5bf9\u8c61":20,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":20,"\u662f\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":20,"\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61":20,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":1,"\u662f\u5426\u4f7f\u7528\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":1,"\u662f\u5426\u4f7f\u7528gflags":1,"\u662f\u5426\u4f7f\u7528glog":1,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":1,"\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":1,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":1,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd\u5f00\u542f\u8ba1\u65f6\u529f\u80fd\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":1,"\u662f\u5426\u5f00\u542fgpu\u529f\u80fd":0,"\u662f\u5426\u5f00\u542frdma\u652f\u6301":1,"\u662f\u5426\u7f16\u8bd1\u4e2d\u6587\u6587\u6863":1,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236":1,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":1,"\u662f\u5426\u7f16\u8bd1\u82f1\u6587\u6587\u6863":1,"\u662f\u5426\u7f16\u8bd1gpu\u652f\u6301":1,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":1,"\u662f\u5728\u8fd0\u884c\u65f6\u6267\u884c\u7684":20,"\u662f\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":20,"\u662f\u6570\u636e\u8f93\u5165\u683c\u5f0f":20,"\u662f\u8bbe\u7f6e\u8fd9\u4e2adataprovider\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":20,"\u662f\u8bbe\u7f6edataprovider\u5728\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":20,"\u662f\u8bbe\u7f6edataprovider\u5728\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":20,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":19,"\u662fpython\u7684\u4e00\u4e2a\u5173\u952e\u8bcd":20,"\u663e":10,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":5,"\u66f4\u8be6\u7ec6\u7528\u4f8b\u8bf7\u53c2\u8003\u6587\u6863":10,"\u66f4\u8be6\u7ec6\u7684\u4ecb\u7ecd\u8bf7\u53c2\u8003\u5404\u4e2a\u547d\u4ee4\u7684\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":13,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e":10,"\u6700\u4f4e\u7ebf\u7a0b\u7684\u4e0b\u8f7d\u901f\u5ea6":0,"\u6700\u540e\u4f7f\u7528":23,"\u6709100\u4e2a\u8bad\u7ec3\u6587\u4ef6":20,"\u6709\u503c\u7684\u4f4d\u7f6e\u53ea\u80fd\u53d61":20,"\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":20,"\u6709\u90e8\u5206\u53c2\u6570\u662fpaddle\u81ea\u52a8\u751f\u6210\u7684":20,"\u672c\u8282\u6211\u4eec\u5c06\u4e13\u6ce8\u4e8e\u7f51\u7edc\u7ed3\u6784\u7684\u4ecb\u7ecd":10,"\u6765\u5b89\u88c5":7,"\u6765\u5f15\u7528\u8fd9\u4e2aimag":6,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684":20,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":20,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":19,"\u6765\u8bf4\u660e\u7b80\u5355\u7684pydataprovider\u5982\u4f55\u4f7f\u7528":20,"\u6765\u8fdb\u884c\u8bad\u7ec3":6,"\u6765\u914d\u7f6ecudnn\u7684\u5b89\u88c5\u8def\u5f84":1,"\u6784\u9020gradientmachin":23,"\u6790\u597d\u7684\u914d\u7f6e\u521b\u5efa\u795e\u7ecf\u7f51\u7edc":23,"\u67e5\u770b\u5b89\u88c5\u540e\u7684paddl":7,"\u6807\u7b7e\u662f0":20,"\u6837\u4f8b\u6570\u636e\u4e3a":20,"\u6837\u4f8b\u6570\u636e\u5982\u4e0b":20,"\u6837\u672c":20,"\u6839\u636e\u4e0a\u4e00\u6b65\u89e3":23,"\u6839\u636e\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d":20,"\u683c\u5f0f\u5982\u4e0b":10,"\u68d2":10,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":10,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u8fd9\u6837\u7684\u65e5\u5fd7":10,"\u6a21\u578b\u914d\u7f6e":11,"\u6a2a\u5411\u5305\u62ec\u4e09\u4e2a\u7248\u672c":6,"\u6b63\u5e38\u7684docker":6,"\u6b63\u6837\u672c":10,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u5206\u4e3a\u5982\u4e0b5\u4e2a\u57fa\u7840\u90e8\u5206":10,"\u6bcf\u4e00\u6761\u8bad\u7ec3\u6570\u636e\u90fd\u662f\u4e00\u4e2a\u6587\u4ef6":20,"\u6bcf\u4e00\u884c":20,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":10,"\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":20,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":10,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":10,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":20,"\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":10,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":10,"\u6bd4\u5982\u901a\u8fc7\u7528\u6237\u5bf9\u7535\u5b50\u5546\u52a1\u7f51\u7ad9\u8bc4\u8bba":10,"\u6bd4\u8f83\u53ef\u80fd\u7684\u547d\u4ee4\u5982\u4e0b":7,"\u6ca1\u6709\u4f5c\u7528":20,"\u6ca1\u6709\u5b89\u88c5":7,"\u6ca1\u6709\u8bbe\u7f6e":7,"\u6ce8\u610f":[0,20],"\u6d41\u7a0b\u5982\u4e0b":10,"\u6d4b\u8bd5\u6570\u636e":10,"\u6d4b\u8bd5\u7684\u65f6\u5019\u9ed8\u8ba4\u4e0dshuffl":20,"\u6d4b\u8bd5\u811a\u672c\u5982\u4e0b":10,"\u6e90\u7801":10,"\u6e90\u7801\u6839\u76ee\u5f55":0,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":10,"\u7136\u540e\u6267\u884c\u5982\u4e0b":7,"\u7136\u540e\u8fd0\u884c\u8fd9\u4e2acontainer\u5373\u53ef":6,"\u7248\u672c":7,"\u751f\u6210\u5404\u4e2a\u5e73\u53f0\u7684makefil":1,"\u75280\u548c1\u8868\u793a":20,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":10,"\u7528\u4e8e\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":7,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":19,"\u7528\u6237\u4e5f\u53ef\u4ee5\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u6570\u636e\u5bf9\u5e94\u5173\u7cfb":20,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528python\u7684":19,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3log\u9009\u62e9test\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":10,"\u7528\u6237\u53ef\u4ee5\u9009\u62e9\u5bf9\u5e94\u7248\u672c\u7684docker":6,"\u7528\u6237\u540d\u4e3a":6,"\u7528\u6237\u5728dataprovider\u4e2d\u9700\u8981\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u5176\u4e2d\u6bcf\u4e00\u4e2a\u6587\u4ef6":19,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570\u4f7f\u7528args\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":20,"\u7528\u6237\u63a5\u53e3":11,"\u7528\u6237\u9700\u8981\u5148\u5c06paddlepaddle\u5b89\u88c5\u5305\u4e0b\u8f7d\u5230\u672c\u5730":7,"\u7528\u6765\u505a\u9884\u6d4b\u548c\u7b80\u5355\u7684\u5b9a\u5236\u5316":6,"\u7528\u8fc7\u4e00\u6b21\u7684\u65f6\u5019":20,"\u7531\u4e8e\u6570\u636e\u662f\u4e24\u6761":23,"\u7531\u4e8edocker\u662f\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u5316\u865a\u62df\u65b9\u6848":6,"\u7531\u4e8epaddlepaddle\u7684docker\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u9884\u5b9a\u4e49\u7684\u8fd0\u884c\u547d\u4ee4":6,"\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u7f51\u7edc\u914d\u7f6e":10,"\u7684":10,"\u7684\u540d\u5b57":20,"\u7684\u5b89\u88c5\u6587\u6863":6,"\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":20,"\u7684\u6587\u6863":20,"\u7684\u65f6\u5019\u5982\u679c\u62a5\u4e00\u4e9b\u4f9d\u8d56\u672a\u627e\u5230\u7684\u9519\u8bef\u662f\u6b63\u5e38\u7684":7,"\u7684\u662f":20,"\u7684\u673a\u5668\u4e0a\u8fdb\u884c":0,"\u7684\u7f51\u6865\u6765\u8fdb\u884c\u7f51\u7edc\u901a\u4fe1":6,"\u7684demo\u5b66\u4e60\u5982\u4f55\u8fdb\u884c\u591a\u673a\u8bad\u7ec3":10,"\u7684docker\u53ef\u80fd\u7f3a\u4e4f":0,"\u7684matrix":23,"\u7684python\u5305\u662fpaddlepaddle\u7684\u8bad\u7ec3\u4e3b\u8981\u7a0b\u5e8f":6,"\u7684python\u5305\u6765\u505a\u914d\u7f6e\u6587\u4ef6\u89e3\u6790\u7b49\u5de5\u4f5c":6,"\u7684python\u9884\u6d4b\u8fc7\u7a0b":10,"\u76ee\u5f55":10,"\u76ee\u5f55\u4e0b":0,"\u76f4\u63a5\u63d0\u53d6\u51fa\u795e\u7ecf\u7f51\u7edcoutput\u5c42\u7684\u8f93\u51fa\u7ed3\u679c":23,"\u76f8\u5173\u547d\u4ee4\u4e3a":6,"\u76f8\u5173\u7684\u6982":20,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":19,"\u77e5\u9053\u5982\u4f55\u4ece":20,"\u793a":10,"\u7a0b\u5e8f\u6216\u8005\u81ea\u5b9a\u4e49\u4e00\u4e2a\u542b\u6709\u542f\u52a8\u811a\u672c\u7684imag":6,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":19,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f":20,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":20,"\u7b2c\u4e00\u6bb5\u6570\u636e\u4e3a\u8fd9\u5f20\u56fe\u7247\u7684label":20,"\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662ffilenam":20,"\u7b2c\u4e8c\u6bb5\u6570\u636e\u4e3a\u8fd9\u4e2a\u56fe\u7247\u7684\u50cf\u7d20\u503c":20,"\u7b80\u5355\u4f18\u5316":0,"\u7b80\u5355\u7684\u4f7f\u7528":19,"\u7b80\u5355\u7684\u4f7f\u7528\u573a\u666f":19,"\u7b80\u5355\u7684\u4f7f\u7528\u6837\u4f8b\u4e3a":0,"\u7b80\u5355\u7684\u542b\u6709ssh\u7684dockerfile\u5982\u4e0b":6,"\u7b80\u5355\u7684pydataprovider\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":20,"\u7c7b\u522bid":10,"\u7c7b\u522bid\u7684\u6570\u636e\u7c7b\u578b":10,"\u7c7b\u578b\u6765\u8bbe\u7f6e":20,"\u7eb5\u5411\u5305\u62ec\u56db\u4e2a\u7248\u672c":6,"\u7ec3":13,"\u7ed3\u4e0a\u8ff0\u7f51\u7edc\u7ed3\u6784\u5728amazon":10,"\u7ee7\u7eed\u8bad\u7ec3":20,"\u7ef4\u5ea6\u4e3aword":10,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":10,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":10,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":20,"\u7f16\u8bd1\u53c2\u6570\u9009\u9879\u6587\u4ef6":18,"\u7f16\u8bd1\u73af\u5883\u548c\u6e90\u4ee3\u7801":6,"\u7f16\u8bd1\u9009\u9879":1,"\u7f16\u8bd1\u9009\u9879\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":5,"\u7f16\u8bd1\u9009\u9879\u5217\u8868\u5982\u4e0b":1,"\u7f16\u8bd1paddlepaddle\u7684gpu\u7248\u672c\u5e76\u4e0d\u9700\u8981\u4e00\u5b9a\u5728\u5177\u6709gpu":0,"\u7f51\u7edc\u540d\u79f0":10,"\u7f51\u7edc\u914d\u7f6e":10,"\u7f6e\u8fd9\u4e9b\u53d8\u91cf":1,"\u800c":6,"\u800c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f\u4e3a":20,"\u800c\u4e0d\u4f7f\u7528docker":6,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93\u7ed9paddlepaddl":20,"\u800c\u4e14\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u65f6\u4e00\u6837\u4ee5cost":23,"\u800c\u5728":[1,20],"\u800c\u5982\u679c\u6309\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u5c31\u4e0d\u4f1a\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898":20,"\u800c\u662f\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c":20,"\u800c\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":20,"\u800c\u7279\u5f81\u5373\u4e3a":20,"\u800c\u8fd9\u4e2a\u4e00\u822c\u8bf4\u660epaddlepaddle\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6bd5\u4e86":7,"\u800c\u8fd9\u4e2a\u53d8\u91cf\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u7684batch":20,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38":20,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":1,"\u800cgpu\u7684\u9a71\u52a8\u548c\u8bbe\u5907\u5168\u90e8\u6620\u5c04\u5230\u4e86\u5bb9\u5668\u5185":6,"\u800cpaddlepaddle\u8fdb\u7a0b\u5e2e\u52a9\u7528\u6237\u505a\u4e86":20,"\u811a\u672c":6,"\u811a\u672c\u53ef\u4ee5\u542f\u52a8paddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b\u548cpserv":6,"\u811a\u672c\u548c":6,"\u811a\u672c\u7c7b\u4f3c\u4e8e":6,"\u81ea\u5b9a\u4e49\u4e00\u4e2adataprovid":19,"\u81f3\u5c11\u5177\u67093":6,"\u81f3\u6b64":[6,20],"\u83b7\u53d6\u5229\u7528one":10,"\u83b7\u53d6\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u5404k\u4e2a\u8fd1\u90bb":10,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":10,"\u8868\u793a\u6574\u6570\u6807\u7b7e":20,"\u8868\u793a\u662f\u5426\u5141\u8bb8paddle\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":20,"\u8868\u793a\u7a00\u758f\u7684\u5411\u91cf":20,"\u8868\u793a\u7a00\u758f\u7684\u96f6\u4e00\u5411\u91cf":20,"\u8868\u793a\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":20,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":10,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":10,"\u8868\u793a\u8fd9\u4e2adataprovider\u662f\u8bad\u7ec3\u7528\u7684dataprovider\u6216\u8005\u6d4b\u8bd5\u7528\u7684":20,"\u89e3\u51b3\u529e\u6cd5\u662f\u5c06cuda":7,"\u89e3\u51b3\u65b9\u6cd5\u5f88\u7b80\u5355":7,"\u89e3\u6790\u8bad\u7ec3\u65f6\u7684\u914d\u7f6e\u6587\u4ef6":23,"\u89e3\u91ca":10,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3":19,"\u8bad\u7ec3":6,"\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u7684\u60c5\u51b5\u4e0b":20,"\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":19,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":10,"\u8bad\u7ec3\u7684\u65f6\u5019\u9ed8\u8ba4shuffl":20,"\u8bad\u7ec3\u811a\u672c":10,"\u8bad\u7ec3\u811a\u672c\u5728":10,"\u8bad\u7ec3\u8f6e\u6b21":10,"\u8bb2\u6570\u636e\u53d1\u9001\u7ed9paddlepaddl":20,"\u8bbe\u7f6e\u4e0b\u5217\u7f16\u8bd1\u9009\u9879\u65f6":1,"\u8bbe\u7f6e\u6210":20,"\u8bbe\u7f6e\u6210\u4e86\u5e8f\u5217":20,"\u8bbe\u7f6e\u6210true\u7684\u8bdd":20,"\u8bbe\u7f6e\u8f93\u5165\u7c7b\u578b":20,"\u8bc4\u4f30\u4ea7\u54c1\u7684\u8d28\u91cf":10,"\u8bcd\u6027\u6807\u6ce8":9,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":10,"\u8be5\u6570\u636e":20,"\u8be5\u6784\u5efa\u811a\u672c\u5145\u5206\u8003\u8651\u4e86\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":0,"\u8be5\u6a21\u578b\u4f9d\u7136\u662f\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":10,"\u8be5\u76ee\u5f55\u4e0b\u6709\u4e24\u4e2a\u6587\u4ef6":0,"\u8be5\u811a\u672c\u7684\u4f7f\u7528\u65b9\u6cd5\u662f":0,"\u8be5image\u57fa\u4e8eubuntu":0,"\u8be5image\u7684\u6784\u5efa\u5728dock":0,"\u8be6\u60c5\u8bf7\u53c2\u8003":23,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca\u5982\u4e0b\u9762\u8868\u683c":10,"\u8be6\u7ec6\u7684\u547d\u4ee4\u884c\u53c2\u6570\u8bf7\u53c2\u8003":23,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":1,"\u8bf4\u660e":1,"\u8bf4\u660e\u547d\u4ee4\u884c\u53c2\u6570":7,"\u8bf7\u53c2\u8003":[6,20],"\u8bf7\u53c2\u8003\u4e0b\u8282refer":20,"\u8bf7\u53c2\u8003\u4e0b\u8ff0\u6587\u7ae0":19,"\u8bf7\u5b89\u88c5cuda":7,"\u8bfb\u5165\u89e3\u6790\u8bad\u7ec3\u914d\u7f6e":23,"\u8bfb\u53d6\u6570\u636e":20,"\u8c03\u7528":1,"\u8c03\u7528\u4e00\u6b21":20,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":20,"\u8d1f\u6837\u672c":10,"\u8d1f\u8d23\u591a\u673a\u8bad\u7ec3\u4e2d\u7684\u53c2\u6570\u805a\u5408\u5de5\u4f5c":13,"\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":20,"\u8def\u5f84\u53d8\u91cf\u4e3a":1,"\u8f93\u5165n\u4e2a\u5355\u8bcd":10,"\u8f93\u51fa\u4e3an\u4e2aword":10,"\u8fd0\u884c":[6,7],"\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u5c3d\u91cf\u662f\u540c\u4e00\u4e2a\u7248\u672c":1,"\u8fd0\u884c\u8fd9\u4e2acontain":6,"\u8fd0\u884cpaddlepaddle\u7684gpu\u7248\u672c\u4e00\u5b9a\u8981\u5728\u5177\u6709cuda\u7684\u673a\u5668\u4e0a\u8fd0\u884c":0,"\u8fd4\u56de0":20,"\u8fd4\u56de\u4e00\u4e2alist\u6216\u8005tupl":20,"\u8fd4\u56de\u6570\u636e\u5728paddlepaddle\u4e2d\u662f\u4ec5\u4ec5\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u8bad\u7ec3\u6837\u672c":20,"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548c":20,"\u8fd4\u56debatch_size\u7684\u5927\u5c0f":20,"\u8fd9":10,"\u8fd93\u4e2a\u5b50\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":10,"\u8fd9\u4e2a\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":20,"\u8fd9\u4e2a\u51fd\u6570\u4ee5\u4e00\u6761\u6570\u636e\u4e3a\u53c2\u6570":20,"\u8fd9\u4e2a\u51fd\u6570\u4f1a\u5728":20,"\u8fd9\u4e2a\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":20,"\u8fd9\u4e2a\u51fd\u6570\u7684\u53c2\u6570\u662f":20,"\u8fd9\u4e2a\u521d\u59cb\u5316\u51fd\u6570\u5177\u6709\u5982\u4e0b\u53c2\u6570":20,"\u8fd9\u4e2a\u53c2\u6570\u5728\u8fd9\u4e2a\u6837\u4f8b\u91cc\u6ca1\u6709\u4f7f\u7528":20,"\u8fd9\u4e2a\u53c2\u6570\u88abpaddlepaddle\u8fdb\u7a0b\u4f20\u5165":20,"\u8fd9\u4e2a\u548c\u5728":20,"\u8fd9\u4e2a\u58f0\u660e\u57fa\u672c\u4e0a\u548cmnist\u7684\u6837\u4f8b\u4e00\u81f4":20,"\u8fd9\u4e2a\u5b57\u5178\u53ef\u4ee5\u5728":20,"\u8fd9\u4e2a\u5bf9\u5e94\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":20,"\u8fd9\u4e2a\u5bf9\u8c61\u548cprocess\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u4e00\u81f4":20,"\u8fd9\u4e2a\u5de5\u5177\u7c7b\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e":23,"\u8fd9\u4e2a\u5e8f\u5217\u6a21\u578b\u6bd4\u8f83\u590d\u6742":20,"\u8fd9\u4e2a\u63a5\u53e3\u5e76\u4e0d\u7528\u6237\u53cb\u597d":23,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":10,"\u8fd9\u4e2a\u672c\u8eab\u4e0d\u662f\u4e00\u4e2a\u5f88":20,"\u8fd9\u4e2a\u6a21\u5757\u4e2d\u7684":20,"\u8fd9\u4e2a\u8bbe\u7f6e\u4e3a":20,"\u8fd9\u4e2a\u8f6f\u4ef6\u5305\u6587\u6863\u76f8\u5bf9\u5b8c\u5584":23,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":20,"\u8fd9\u4e9b\u53c2\u6570\u5305\u62ecpaddle\u5b9a\u4e49\u7684\u53c2\u6570":20,"\u8fd9\u4e9b\u53d8":1,"\u8fd9\u4e9b\u53d8\u91cf\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":1,"\u8fd9\u4e9b\u53d8\u91cf\u5747\u53ef\u4ee5\u4f7f\u7528":1,"\u8fd9\u4e9b\u6d41\u7a0b\u4e2d\u7684\u6570\u636e\u4e0b\u8f7d":10,"\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":20,"\u8fd9\u884c\u7684\u4f5c\u7528\u662f\u8bbe\u7f6edataprovider\u7684\u4e00\u4e9b\u5c5e\u6027":20,"\u8fd9\u91cc":20,"\u8fd9\u91cc\u4e3e\u4f8b\u7684\u6570\u636e\u662f\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":20,"\u8fd9\u91cc\u4ee5":10,"\u8fd9\u91cc\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":20,"\u8fd9\u91cc\u53ef\u4ee5\u53c2\u8003paddle\u7684":18,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7b80\u5355\u7684\u6587\u672c\u6587\u4ef6\u8868\u793amnist\u56fe\u7247":20,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":10,"\u8fd9\u91cc\u6ca1\u6709\u4ecb\u7ecd\u591a\u673a\u5206\u5e03\u5f0f\u8bad\u7ec3":10,"\u8fd9\u91cc\u7684":20,"\u8fd9\u91cc\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":20,"\u8fd9\u91cc\u8981\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38":23,"\u8fd9\u91cc\u8bbe\u7f6e\u7684\u662f\u8fd4\u56de\u4e00\u4e2a":20,"\u8fd9\u91cc\u8bf4\u660e\u4e86\u8bad\u7ec3\u6570\u636e\u662f":20,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":10,"\u8fdb\u5165\u8be5\u6e90\u7801\u76ee\u5f55":0,"\u8fdb\u5165docker":6,"\u8fdc\u7a0b\u8bbf\u95ee":6,"\u8fde\u63a5\u8bf7\u53c2\u8003":10,"\u9009\u62e9\u666e\u901acpu\u7248\u672c\u7684devel\u7248\u672c\u7684imag":6,"\u9009\u9879":1,"\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":1,"\u903b\u8f91\u56de\u5f52":10,"\u90a3\u4e48":20,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":19,"\u90a3\u4e48\u5bf9\u5e94\u7684dataprovider\u65e2\u4e3a":20,"\u90a3\u4e48\u8fd9\u4e2a\u4e0b\u8f7d\u7ebf\u7a0b\u5c06\u4f1a\u5173\u95ed":0,"\u90a3\u4e48paddlepaddle\u4f1a\u7c97\u7565\u7684\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":20,"\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":20,"\u914d\u7f6e\u4e86":20,"\u914d\u7f6e\u53c2\u6570\u914d\u7f6e\u7ed9dataprovider\u7684":20,"\u914d\u7f6e\u6587\u4ef6":10,"\u91cc\u4f1a\u7ee7\u7eed\u5b89\u88c5":7,"\u91cc\u63d0\u4f9b\u4e86\u6570\u636e\u4e0b\u8f7d\u811a\u672c":10,"\u91cc\u9762\u8bfb\u53d6":20,"\u91cf\u4e5f\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528cmake\u547d\u4ee4\u524d\u901a\u8fc7\u73af\u5883\u53d8\u91cf\u6307\u5b9a":1,"\u9488\u5bf9\u672c\u95ee\u9898":10,"\u94fe\u63a5\u4f55\u79cdblas\u7b49\u7b49":1,"\u9519\u8bef\u7387":10,"\u95f4\u9694":20,"\u9664\u4e86":20,"\u9664\u8fc7data\u5c42":10,"\u9700\u8981\u53c2\u8003":6,"\u9700\u8981\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":6,"\u9700\u8981\u6ce8\u610f":20,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[1,7],"\u9884\u6d4b\u6570\u636e\u6307\u5b9atest":10,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":10,"\u9884\u6d4b\u811a\u672c":10,"\u9884\u6d4bid":10,"\u989d\u5916\u7684\u53c2\u6570":10,"\u9996\u5148\u5217\u4e3e\u903b\u8f91\u56de\u5f52\u7f51\u7edc":10,"\u9996\u5148\u6211\u4eec\u5c06\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6":20,"\u9996\u5148\u8bf7\u53c2\u8003":10,"\u9aa43":10,"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":10,"\u9ed8\u8ba4\u503c":1,"\u9ed8\u8ba4\u5355\u4f4d\u662fbyte":0,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4e00\u6761\u6570\u636e":20,"adamax\u7b49":10,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":10,"api\u9884\u6d4b":10,"argument\u4f20\u5165":20,"argument\u5f62\u5f0f\u4f20\u5165":20,"atlas\u5e93\u7684\u8def\u5f84":1,"batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":10,"bool\u53c2\u6570":20,"case":[10,22],"cd\u5230\u542b\u6709dockerfile\u7684\u8def\u5f84\u4e2d":6,"check\u662ffalse\u7684\u8bdd":20,"cmake\u53ef\u4ee5\u5c06cmake\u9879\u76ee\u6587\u4ef6":1,"cmake\u662f\u4e00\u4e2a\u8de8\u5e73\u53f0\u7684\u7f16\u8bd1\u811a\u672c":1,"cmake\u7684\u5b98\u65b9\u6587\u6863":1,"cmake\u7f16\u8bd1\u65f6\u4f1a\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":1,"container\u540e":6,"cpu\u7248\u672c":6,"cuda\u76f8\u5173\u7684driver\u548c\u8bbe\u5907\u6620\u5c04\u8fdbcontainer\u4e2d":6,"d\u547d\u4ee4\u5373\u53ef":1,"d\u547d\u4ee4\u6307\u5b9a":1,"dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":20,"dataprovider\u53ef\u4ee5\u662f":20,"dataprovider\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":20,"dataprovider\u7684\u5177\u4f53\u7528\u6cd5\u548c\u5982\u4f55\u5b9e\u73b0\u4e00\u4e2a\u65b0\u7684dataprovid":19,"devel\u548cdemo":6,"dim\u7684\u65b0\u7684\u5411\u91cf":10,"dim\u7ef4\u5ea6\u5411\u91cf":10,"docker\u662f\u4e00\u4e2a\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u7ea7\u865a\u62df\u73af\u5883":6,"docker\u7684\u5b98\u65b9\u6587\u6863":6,"dockerfile\u548cbuild":0,"dockerfile\u662fdock":0,"dockerfile\u7684\u6587\u6863":6,"dockerfile\u7684\u6700\u4f73\u5b9e\u8df5":6,"driver\u6dfb\u52a0\u5230ld_library_path\u4e2d":7,"elec\u6d4b\u8bd5\u96c6":10,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u6570\u636e\u63d0\u4f9b\u7684\u811a\u672c":10,"export":[1,6,7],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":20,"float":20,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":20,"generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559":20,"generator\u81f3\u5c11\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":20,"gpu\u53cc\u7f13\u5b58":20,"gpu\u7248\u672c":6,"gpu\u7248\u672c\u4e8c\u8fdb\u5236":1,"gru\u6a21\u578b":10,"gru\u6a21\u578b\u914d\u7f6e":10,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":20,"id\u4e3a0\u7684\u6982\u7387":10,"id\u4e3a1\u7684\u6982\u7387":10,"image\u6784\u5efa\u6e90\u7801\u653e\u7f6e\u5728":0,"image\u7684\u4e3b\u8981\u63cf\u8ff0\u6587\u4ef6":0,"image\u7684\u4e3b\u8981\u6784\u5efa\u6b65\u9aa4":0,"image\u7684\u6784\u5efa\u6b65\u9aa4":0,"import":[10,20,23],"include\u4e0b\u9700\u8981\u5305\u542bcbla":1,"include\u4e0b\u9700\u8981\u5305\u542bmkl":1,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":20,"int":[10,20],"key\u662fdata_layer\u7684\u540d\u5b57":20,"layer\u4f5c\u4e3a\u8f93\u51fa":23,"layer\u6587\u6863":10,"ld_library_path\u7b49\u7b49":7,"ld_library_path\u91cc\u9762\u627e\u4e0d\u5230\u8fd9\u4e9b\u52a8\u6001":7,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":1,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":1,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":1,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542b":1,"list\u4e0d\u8bbe\u7f6e":19,"list\u4e2d":[19,20],"list\u4e2d\u7684\u4e00\u884c":20,"list\u4e2d\u7684\u6bcf\u4e00\u884c":20,"list\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":19,"list\u4e5f\u53ef\u4ee5\u653e\u7f6ehdfs\u6587\u4ef6\u8def\u5f84":19,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":20,"list\u5373\u4e3a":20,"list\u548ctest":19,"list\u5747\u4e3a\u672c\u5730\u7684\u4e24\u4e2a\u6587\u4ef6":19,"list\u6307\u5b9a\u7684\u6570\u636e":10,"list\u7684\u4f4d\u7f6e":10,"list\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a\u8def\u5f84":20,"lstm\u6a21\u578b\u7b49":10,"lstm\u6a21\u578b\u914d\u7f6e":10,"make\u548cmak":2,"mkl\u7684\u8def\u5f84":1,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":1,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u6709":20,"movielens\u6570\u636e\u96c6":9,"movielens\u8bc4\u5206\u56de\u5f52":9,"name\u90fd\u662f":6,"osx\u6216\u8005\u662fwindows\u673a\u5668":6,"osx\u7684\u5b89\u88c5\u6587\u6863":6,"paddle\u5b9a\u4e49\u7684\u53c2\u6570\u5305\u62ec":20,"paddle\u7684":7,"paddlepaddle\u4f7f\u7528\u8fd0\u884c\u65f6\u52a8\u6001\u8fde\u63a5cuda\u7684so":7,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":20,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528":1,"paddlepaddle\u53ef\u4ee5\u8bfb\u53d6python\u5199\u7684\u4f20\u8f93\u6570\u636e\u811a\u672c":10,"paddlepaddle\u5728\u8fd0\u884c\u65f6\u627e\u4e0d\u5230\u5bf9\u5e94\u7684config\u6587\u4ef6":7,"paddlepaddle\u5c06train":20,"paddlepaddle\u63a8\u8350\u4f7f\u7528docker\u8fdb\u884cpaddlepaddle\u7684\u90e8\u7f72\u548c":6,"paddlepaddle\u63d0\u4f9b\u4e86docker\u7684\u4f7f\u7528\u955c\u50cf":6,"paddlepaddle\u63d0\u4f9b\u6570\u4e2a\u9884\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6765\u8fdb\u884c\u5b89\u88c5":5,"paddlepaddle\u63d0\u4f9b\u7684\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u547d\u4ee4\u8fd0\u884c":6,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":20,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879\u53ef\u4ee5\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e":1,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879\u662f\u53ef\u4ee5\u63a7\u5236paddlepaddle\u751f\u6210cpu":1,"paddlepaddle\u7684dock":0,"paddlepaddle\u7684python\u9884\u6d4b\u63a5\u53e3":22,"paddlepaddle\u7684ubuntu\u5b89\u88c5\u5305\u5206\u4e3a\u56db\u4e2a\u7248\u672c":7,"paddlepaddle\u76ee\u524d\u4f7f\u7528swig\u5bf9\u5176\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":23,"paddlepaddle\u76ee\u524d\u652f\u6301\u4f7f\u7528deb\u5305\u5b89\u88c5":7,"paddlepaddle\u8fd0\u884c\u65f6\u5982\u679c\u6ca1\u6709\u5bfb\u627e\u5230cuda\u7684driv":7,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":19,"period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":10,"process\u51fd\u6570":20,"process\u51fd\u6570\u662f\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u7684\u4e3b\u51fd\u6570":20,"process\u51fd\u6570\u8c03\u7528\u591a\u6b21":20,"pserver\u4e3apaddlepaddle\u7684paramet":13,"pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570":13,"pserver\u7ec4\u5408\u4f7f\u7528":13,"py\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":10,"pydataprovider2\u4f1a\u5c3d\u91cf\u4f7f\u7528\u5185\u5b58":20,"pydataprovider2\u6587\u6863":23,"pydataprovider2\u7684\u4f7f\u7528":19,"pydataprovider\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":20,"python\u5305":6,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":20,"python\u7684":6,"python\u7684swig\u63a5\u53e3\u53ef\u4ee5\u65b9\u4fbf\u8fdb\u884c\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":1,"return":[10,20],"rnn\u914d\u7f6e":11,"server\u8fdb\u7a0b":13,"sh\u662fdocker":0,"shuffle\u8bad\u7ec3\u6570\u636e":20,"softmax\u8f93\u51fa":10,"string\u7684\u683c\u5f0f\u6253\u5370\u51fa\u6765":13,"swig_paddle\u63a5\u53d7\u7684\u539f\u59cb\u6570\u636e\u662fc":23,"tag\u5206\u522b\u4e3a":6,"train\u5373\u4e3apaddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b":13,"train\u5b8c\u6210\u5355\u673a\u591a\u663e\u5361\u591a\u7ebf\u7a0b\u7684\u8bad":13,"train\u7684\u547d\u4ee4\u884c\u53c2\u6570":13,"ubuntu\u7684deb\u5b89\u88c5\u5305\u7b49":5,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2acudnn\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":1,"value\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":23,"value\u662f\u7279\u5f81\u503c":20,"var":6,"vector\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":10,"version\u53ef\u4ee5\u6253\u5370\u51fapaddle\u7684\u7248\u672c\u4fe1\u606f\u548c\u7f16\u8bd1\u7684\u9009\u9879":18,"version\u53ef\u4ee5\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u7f16\u8bd1\u65f6\u4fe1\u606f":13,"version\u7684\u547d\u4ee4\u884c\u53c2\u6570":13,"yield\u6587\u672c\u4fe1\u606f\u548c\u7c7b\u522bid":10,__main__:23,__name__:23,abov:20,act:10,act_typ:10,activ:10,adadelta:10,adagrad:10,adam:10,adamoptim:10,afi:20,all:20,allow:10,alreadi:7,also:10,append:20,apt:[6,7],arg:[0,10,20],around:20,arrai:23,assert:23,atla:1,atlas_root:1,avg:10,avgcost:10,avgpool:10,avx:6,bag:10,baidu:[6,7],batch:10,batch_siz:10,binari:10,bla:1,bool:10,both:10,bow:10,build:[0,6],cach:[10,19],cache_pass_in_mem:[10,20],cachetyp:[10,20],calc_batch_s:20,call:10,can:10,can_over_batch_s:20,cat:6,categori:10,check:[7,20],check_fail_continu:20,chines:9,chpasswd:6,classif:10,classification_cost:10,classification_error_evalu:10,close:20,cmake:1,cmd:6,cnn:10,code:[0,20,23],com:[6,7],comment:10,compil:[7,18],conf:23,config:[7,10],config_arg:10,config_pars:23,connect:10,contain:[10,20],context:20,context_len:10,context_start:10,convert:[10,20,23],couldn:7,cpp:[7,10],cpu:[6,7,20],cpuinfo:6,createfromconfigproto:23,cross:10,cuda_so:6,cudastat:7,cudasuccess:7,cudnn:1,cudnn_root:1,cudnnv5:1,current:[10,20],currentcost:10,currentev:10,dalla:20,data:7,data_config:23,data_initialz:10,data_lay:[10,20],dataprovid:10,dataprovider_bow:10,dataprovider_emb:10,dataproviderconvert:23,dataset:10,deb:7,debian:7,decor:20,def:[10,20,23],defin:[10,20],define_py_data_sources2:[10,20],delar:10,demo:[6,10],dense_vector:[20,23],describ:10,descript:22,detail:22,dev:6,devel:6,devic:6,devices:6,dict:[10,20],dict_fil:10,dictionai:10,dictionari:[10,20],dictrionari:10,differ:10,dim:10,dimens:10,dir:10,doc:23,documentari:20,dpkg:7,driver:7,dso_handl:7,dtype:23,dump_config:13,dure:[10,20],dynam:20,each:[10,20],each_pixel_str:20,each_word:20,echo:6,either:10,els:[6,10],emb:10,embed:9,embedding_lay:10,entropi:10,enumer:10,error:[7,10],etc:6,eval:10,exampl:10,expose:6,f0831:7,fail:7,fals:10,fc_layer:10,featur:[10,20],festiv:20,file:[10,20],file_list:20,file_nam:10,filenam:20,fill:10,find:7,first:10,float32:23,fly:10,forwardtest:23,framework:10,from:[6,10,20,23],fulli:10,func:20,gdebi:7,gener:[10,20],get:[6,7,10,20],get_config_arg:10,get_data:10,github:7,give:20,given:10,globe:20,gpu:[6,7],gradient_clipping_threshold:10,gradientmachin:23,grep:6,gru:10,gru_siz:10,help:23,hint:23,hl_cuda_devic:7,hl_dso_load:7,host:6,hot:10,hous:20,http:7,ignor:20,imag:6,imagenet:9,img:20,inarg:23,includ:10,init:10,init_hook:[10,19],init_model_path:10,initi:[10,20],initpaddl:23,input:[10,20],input_typ:[10,19],instal:2,insuffici:7,integ:[10,20],integer_sequ:20,integer_valu:[10,20],integer_value_sequ:10,invok:20,is_predict:10,is_train:20,isinst:23,iterat:20,job:10,kernel:6,kwarg:[10,20],l2regular:10,label:[10,20],label_dim:10,lake:20,later:10,latest:[0,6],layer:10,ld_library_path:7,learning_method:10,learning_r:10,len:[10,20],lib64:[6,7],lib:1,libcuda:6,libnvidia:6,librari:7,list:[10,19,20],load_data_arg:23,loadparamet:23,local:[1,7],log_period:10,logger:20,look:[10,20],loss:10,lowest_dl_speed:0,lstm:10,lstm_size:10,mac:6,main:23,maintainer:6,make:[7,20],make_diagram:13,maxid:10,maxid_lay:10,mean:10,memori:10,merge_model:13,method:20,min_pool_s:20,mkdir:6,mkl:1,mkl_core:1,mkl_root:1,mnist:20,mnist_model:23,mnist_provid:20,mnist_train:20,model_config:23,modul:[10,20],momentum:10,movi:20,must:7,name:[6,10,20],necessari:10,need:10,neg:[10,20],net:6,next:20,no_cache:20,no_sequence:20,noavx:[6,7],none:[10,20,23],normal:6,note:7,nullptr:7,num:10,num_pass:10,nvidia:6,obj:[10,20],object:[10,20],off:[0,1,7,18],omit:10,on_init:20,onli:10,open:[10,20],openbla:1,openblas_root:1,openssh:6,opt:1,other:10,outlin:22,output:10,outsid:20,paddl:[0,6,7,10,13],paddle_gpu:0,paddle_ssh:6,paddle_ssh_machin:6,paddledev:6,paddlepaddl:[6,7,18,23],paramet:10,parse_config:23,pass:[10,20],path:[7,10],period:10,permitrootlogin:6,pixel:20,pixels_float:20,pixels_str:20,place:20,pleas:7,pool_siz:20,pooling_lay:10,pooling_typ:10,posit:[10,20],pred:10,predict_output_dir:10,predict_sampl:23,preprocess:10,print:23,proc:6,process:[10,20],process_pr:10,properli:10,pull:6,put:10,py_paddl:[6,23],pydataprovid:19,pydataprovider2:[10,20,23],pydataproviderwrapp:10,python:10,quick_start:10,rang:10,rank:10,rare:20,read:[10,20],real_process:20,refer:19,reference_cblas_root:1,reffer:1,regular:10,releas:7,repres:10,represent:10,resnet:9,result:[10,20],rmsprop:10,roce:6,root:6,run:6,runtim:[7,20],same:[10,20],sampl:[10,20],save:[10,20],save_dir:10,saw:20,sbin:6,script:0,second:10,sed:6,see:10,sentenc:20,sentiment:20,sentimental_provid:20,separ:10,seq_typ:20,sequel:20,sequence:20,sequence_conv_pool:10,sequencetyp:20,server:6,set:[10,20],setup:10,should_shuffl:20,simple_gru:10,simple_lstm:10,size:[10,20],softmax:10,softmaxactiv:10,sourc:10,spars:10,sparse_binary_vector:[10,20],sparse_float_vector:20,specifi:[7,10],split:[10,20],src_root:23,ssh:6,sshd:6,sshd_config:6,stat:10,stop:6,store:10,string:20,strip:10,structur:10,stun:20,sub_sequence:20,sudo:7,support:6,sure:7,swig_paddl:23,tag:0,take:20,tbd:21,team:6,test:[10,19],test_data:23,test_list:[10,20],text:[10,20],text_conv:10,them:10,thi:[10,20],thing:20,tmp:20,train:7,train_list:[10,20],trainer:[10,20,23],trainer_config:[10,19,20,23],trainer_config_help:[10,20],trainerintern:10,trainermain:7,travel:20,trn:10,tst:10,two:10,txt:[10,20],type:[10,20],unk_idx:10,updat:6,use:[10,22],use_dynamic_ord:20,use_gpu:[10,23],usepam:6,user:10,usr:[1,6,7],valid:7,valu:[10,20,23],version:[6,7],via:7,want:20,what:10,when:20,which:10,whole:20,wilder:20,window:6,with_avx:[1,7,18],with_doc:1,with_doc_cn:1,with_doubl:[7,18],with_double:1,with_dso:1,with_gflag:[7,18],with_gflags:1,with_glog:[1,7,18],with_gpu:[0,1,7,18],with_metric_learn:[7,18],with_predict_sdk:[7,18],with_python:[1,7,18],with_rdma:[1,7,18],with_style_check:1,with_swig_py:1,with_testing:1,with_tim:[7,18],with_timer:1,without:6,wonder:20,word:9,word_dict:10,word_dim:10,word_id:20,word_vector:10,xarg:6,yield:[10,20],you:[7,20],your_host_machine:6},titles:["\u6784\u5efaPaddlePaddle Docker Image","\u8bbe\u7f6ePaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","\u4f7f\u7528cmake\u7f16\u8bd1PaddlePaddle","\u5b89\u88c5\u7f16\u8bd1PaddlePaddle\u9700\u8981\u7684\u4f9d\u8d56","make\u548cmake install","\u7f16\u8bd1\u4e0e\u5b89\u88c5","\u5b89\u88c5PaddlePaddle\u7684Docker\u955c\u50cf","\u4f7f\u7528deb\u5305\u5728Ubuntu\u4e0a\u5b89\u88c5PaddlePaddle","\u96c6\u7fa4\u8bad\u7ec3","\u4f7f\u7528\u793a\u4f8b","PaddlePaddle\u5feb\u901f\u5165\u95e8\u6559\u7a0b","PaddlePaddle\u6587\u6863","<no title>","\u547d\u4ee4\u884c\u53c2\u6570","<no title>","<no title>","paddle pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570","paddle train\u7684\u547d\u4ee4\u884c\u53c2\u6570","paddle version\u7684\u547d\u4ee4\u884c\u53c2\u6570","PaddlePaddle\u7684\u6570\u636e\u63d0\u4f9b(DataProvider)\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","\u81ea\u5b9a\u4e49\u4e00\u4e2aDataProvider","\u7528\u6237\u63a5\u53e3","PaddlePaddle\u7684Python\u9884\u6d4b\u63a5\u53e3"],titleterms:{"\u4e0b\u8f7d\u548c\u8fd0\u884cdocker\u955c\u50cf":6,"\u4ecb\u7ecd":19,"\u4f18\u5316\u7b97\u6cd5":10,"\u4f7f\u7528\u6307\u5357":11,"\u4f7f\u7528\u6982\u8ff0":10,"\u4f7f\u7528\u793a\u4f8b":9,"\u4f7f\u7528\u811a\u672c\u6784\u5efapaddlepaddl":0,"\u4f7f\u7528cmake\u7f16\u8bd1paddlepaddl":2,"\u4f7f\u7528deb\u5305\u5728ubuntu\u4e0a\u5b89\u88c5paddlepaddl":7,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":20,"\u5377\u79ef\u6a21\u578b":10,"\u53c2\u8003":20,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":20,"\u53ef\u80fd\u9047\u5230\u7684\u95ee\u9898":7,"\u547d\u4ee4\u884c\u53c2\u6570":[10,13,22],"\u56fe\u50cf":9,"\u5b89\u88c5":[5,10],"\u5b89\u88c5\u7f16\u8bd1paddlepaddle\u9700\u8981\u7684\u4f9d\u8d56":3,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":6,"\u5e38\u7528\u6a21\u578b":9,"\u5e8f\u5217\u6a21\u578b\u6570\u636e\u63d0\u4f9b":20,"\u5f00\u53d1\u6307\u5357":11,"\u6027\u80fd\u95ee\u9898":6,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":10,"\u63a8\u8350":9,"\u6570\u636e\u5411\u6a21\u578b\u4f20\u9001":10,"\u6570\u636e\u63d0\u4f9b":22,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":10,"\u65f6\u5e8f\u6a21\u578b":10,"\u6784\u5efapaddlepaddl":0,"\u6ce8\u610f\u4e8b\u9879":[6,20],"\u7528\u6237\u63a5\u53e3":22,"\u7b80\u5355\u7684\u4f7f\u7528\u573a\u666f":20,"\u7b97\u6cd5\u6559\u7a0b":11,"\u7f16\u8bd1":5,"\u7f16\u8bd1\u4e0e\u5b89\u88c5":5,"\u7f51\u7edc\u7ed3\u6784":10,"\u81ea\u5b9a\u4e49\u4e00\u4e2adataprovid":21,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":9,"\u8bad\u7ec3\u6a21\u578b":10,"\u8bbe\u7f6epaddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":1,"\u8bcd\u5411\u91cf\u6a21\u578b":10,"\u8f93\u51fa\u65e5\u5fd7":10,"\u8fdc\u7a0b\u8bbf\u95ee\u95ee\u9898\u548c\u4e8c\u6b21\u5f00\u53d1":6,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":10,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":10,"\u9644\u5f55":10,"\u96c6\u7fa4\u8bad\u7ec3":8,"\u9884\u6d4b":[10,22],"blas\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":1,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":1,"config\u6587\u4ef6\u627e\u4e0d\u5230":7,"cudnn\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":1,"driver\u627e\u4e0d\u5230":7,"make\u548cmak":4,"paddlepaddle\u5feb\u901f\u5165\u95e8\u6559\u7a0b":10,"paddlepaddle\u63d0\u4f9b\u7684docker\u955c\u50cf\u7248\u672c":6,"paddlepaddle\u6587\u6863":11,"paddlepaddle\u7684\u6570\u636e\u63d0\u4f9b":19,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":1,"paddlepaddle\u7684bool\u578b\u7f16\u8bd1\u9009\u9879":1,"paddlepaddle\u7684cblas\u7f16\u8bd1\u9009\u9879":1,"paddlepaddle\u7684python\u9884\u6d4b\u63a5\u53e3":23,"pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570":16,"pydataprovider2\u7684\u4f7f\u7528":20,"python\u6570\u636e\u52a0\u8f7d\u811a\u672c":10,"so\u627e\u4e0d\u5230":7,"train\u7684\u547d\u4ee4\u884c\u53c2\u6570":17,"version\u7684\u547d\u4ee4\u884c\u53c2\u6570":18,algorithm:10,appendix:10,architectur:10,argument:10,cach:20,command:10,configur:10,convolut:10,cuda:[1,7],data:10,dataprovid:19,docker:0,image:0,init_hook:20,input_typ:20,instal:4,install:10,libcudart:7,libcudnn:7,line:10,log:10,logist:10,model:10,network:10,optimiz:10,overview:10,paddl:[16,17,18],predict:10,prepar:10,provid:[10,20],refer:20,regress:10,script:10,sequenc:10,summari:10,time:10,train:10,transfer:10,vector:10,word:10}})
\ No newline at end of file
+Search.setIndex({envversion:49,filenames:["algorithm/rnn/hierarchical-layer","algorithm/rnn/hierarchical-rnn","algorithm/rnn/rnn-tutorial","build/docker/build_docker_image","build_and_install/cmake/compile_options","build_and_install/cmake/index","build_and_install/cmake/install_deps","build_and_install/cmake/make_and_install","build_and_install/index","build_and_install/install/docker_install","build_and_install/install/ubuntu_install","cluster/index","demo/index","demo/quick_start/index","faq/index","index","ui/cmd/dump_config","ui/cmd/index","ui/cmd/make_diagram","ui/cmd/merge_model","ui/cmd/paddle_pserver","ui/cmd/paddle_train","ui/cmd/paddle_version","ui/data_provider/index","ui/data_provider/pydataprovider2","ui/data_provider/write_new_dataprovider","ui/index","ui/predict/swig_py_paddle"],objects:{},objnames:{},objtypes:{},terms:{"0000x":13,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":24,"00186201e":27,"04\u4e2d\u6b63\u786e":10,"08823112e":27,"0\u5c42\u5e8f\u5217":0,"0b1":10,"100m":14,"10\u4ee5\u4e0a\u7684linux":9,"10\u7ef4\u7684\u6574\u6570\u503c":24,"10gbe":9,"10m":3,"12194102e":27,"12\u7248\u672c\u6d4b\u8bd5\u901a\u8fc7":3,"12\u7248\u672c\u7684\u60c5\u51b5\u4e0b\u5e76\u6ca1\u6709\u6d4b\u8bd5":3,"15501715e":27,"15mb":13,"16mb":13,"1\u7684\u8bdd":24,"252kb":13,"25639710e":27,"25k":13,"27787406e":27,"28\u7684\u50cf\u7d20\u7070\u5ea6\u503c":24,"28\u7684\u7a20\u5bc6\u5411\u91cf\u548c\u4e00\u4e2a":24,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":14,"2\u4e2a\u5b50\u53e5":1,"2\u53e5\u53cc\u5c42\u5e8f\u5217\u548c5\u53e5\u5355\u5c42\u5e8f\u5217\u7684\u6570\u636e\u5b8c\u5168\u4e00\u6837":1,"2\u8868\u793a\u4e00\u6b21\u8fc72\u53e5\u53cc\u5c42\u5e8f\u5217":1,"2\u8fdb\u884c\u8fdb\u4e00\u6b65\u6f14\u5316":13,"32777140e":27,"36540484e":27,"3\u4e2a\u5b50\u53e5":1,"40gbe":9,"43630644e":27,"48565123e":27,"48684503e":27,"49316648e":27,"500m":14,"50k":3,"51111044e":27,"53018653e":27,"56gbe":9,"5\u5230\u672c\u5730\u73af\u5883\u4e2d":10,"5\u8868\u793a\u4e00\u6b21\u8fc75\u53e5\u5355\u5c42\u5e8f\u5217":1,"70634608e":27,"72296313e":27,"85625684e":27,"93137714e":27,"96644767e":27,"99982715e":27,"9\u7684\u6570\u5b57":24,"\u4e00":1,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":2,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":2,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":2,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":2,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":14,"\u4e00\u4e2a\u6587\u4ef6":24,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":0,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":0,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":14,"\u4e00\u4e2alabel":1,"\u4e00\u4e2alogging\u5bf9\u8c61":24,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":13,"\u4e00\u4eba":1,"\u4e00\u5171\u670910\u4e2a\u6837\u672c":1,"\u4e00\u5171\u67094\u4e2a\u6837\u672c":1,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":2,"\u4e00\u65e9":1,"\u4e00\u662fbatch":14,"\u4e00\u6761":24,"\u4e00\u6b21\u6027\u676f\u5b50":1,"\u4e00\u81f4":1,"\u4e00\u81f4\u7684\u7279\u5f81":24,"\u4e00\u822c\u60c5\u51b5\u4e0b":23,"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":24,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":13,"\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6":23,"\u4e0a\u7684\u6548\u679c":13,"\u4e0a\u7f51":1,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":14,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":2,"\u4e0b\u6b21":1,"\u4e0b\u8f7d\u8fdb\u7a0b\u4f1a\u91cd\u542f":3,"\u4e0b\u8ff0\u5185\u5bb9\u5c06\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u7c7b\u522b\u63cf\u8ff0":9,"\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":24,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":0,"\u4e0b\u9762dataprovid":13,"\u4e0d":1,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":24,"\u4e0d\u4f1a\u518d\u4ece":14,"\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":23,"\u4e0d\u5305\u542blabel":27,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":14,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":24,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":2,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":2,"\u4e0d\u5c11":1,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":2,"\u4e0d\u6307\u5b9a\u65f6":2,"\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":9,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":24,"\u4e0d\u8fc7":1,"\u4e0d\u8fdc":1,"\u4e0d\u9519":1,"\u4e0d\u9700\u8981avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":9,"\u4e0e\u8bad\u7ec3\u7f51\u7edc\u914d\u7f6e\u4e0d\u540c\u7684\u662f":13,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":14,"\u4e14":1,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":24,"\u4e24":1,"\u4e24\u4e2a\u5d4c\u5957\u7684":2,"\u4e24\u4e2a\u6587\u6863":9,"\u4e24\u7c7b":13,"\u4e25\u91cd\u7684\u95ee\u9898":24,"\u4e2a":13,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":14,"\u4e2ayield":24,"\u4e2d":[13,14],"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovider\u53ca\u5176\u53c2\u6570":23,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":2,"\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":24,"\u4e2d\u5bfb\u627e\u8fd9\u4e9bblas\u7684\u5b9e\u73b0":4,"\u4e2d\u7684":24,"\u4e2d\u7684\u4e8c\u8fdb\u5236\u4f7f\u7528\u4e86":9,"\u4e2d\u7684set":24,"\u4e2d\u914d\u7f6e":24,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":14,"\u4e3a":24,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":2,"\u4e3a\u4e86\u8fd0\u884cpaddlepaddle\u7684docker\u955c\u50cf":9,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":13,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":14,"\u4e3b\u8981\u51fd\u6570\u662fprocess\u51fd\u6570":24,"\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u6b65\u9aa4":27,"\u4e3b\u8981\u5305\u62ec\u4e24\u90e8\u5206":13,"\u4e3b\u8981\u539f\u56e0":1,"\u4e3b\u8981\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":24,"\u4e3b\u8981\u6b65\u9aa4\u4e3a":27,"\u4e3b\u8981\u7531\u4e8e\u65e7\u7248\u672c":3,"\u4e3b\u8981\u7684\u8f6f\u4ef6\u5305\u4e3apy_paddl":27,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":14,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":2,"\u4e5f":1,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":2,"\u4e5f\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":24,"\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":4,"\u4e5f\u53ef\u4ee5":24,"\u4e5f\u53ef\u4ee5\u4e3ainteg":1,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":24,"\u4e5f\u53ef\u4ee5\u548cpaddl":17,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":2,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u6267\u884c":9,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5982\u4e0b\u65b9\u5f0f\u9884\u6d4b":13,"\u4e5f\u53ef\u4ee5\u901a\u8fc7save":13,"\u4e5f\u53ef\u4ee5\u9884\u6d4b\u6ca1\u6709label\u7684\u6d4b\u8bd5\u96c6":13,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u989d\u6b65":13,"\u4e5f\u5c31\u662f\u76f4\u63a5\u5199\u5185\u5b58\u7684float\u6570\u7ec4":27,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":2,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u540c\u6837\u7684generator\u7684\u65f6\u5019":24,"\u4e7e":1,"\u4e86":1,"\u4e86\u975e\u5e38\u65b9\u4fbf\u7684\u4e8c\u8fdb\u5236\u5206\u53d1\u624b\u6bb5":9,"\u4e8c\u6b21\u5f00\u53d1\u53ef\u4ee5":9,"\u4e94\u661f\u7ea7":1,"\u4ea4\u901a":1,"\u4ea4\u901a\u4fbf\u5229":1,"\u4eba\u5458\u7b49\u7b49":3,"\u4ec5\u4ec5\u9700\u8981":24,"\u4ecb\u7ecdpaddlepaddle\u4f7f\u7528\u6d41\u7a0b\u548c\u5e38\u7528\u7684\u7f51\u7edc\u57fa\u7840\u5355\u5143\u7684\u914d\u7f6e\u65b9\u6cd5":13,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":2,"\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":24,"\u4ece\u6587\u672c\u6587\u4ef6\u4e2d\u8bfb\u53d6":24,"\u4ece\u800c\u4e0d\u80fd\u5728\u8fd0\u884c\u7f16\u8bd1\u547d\u4ee4\u7684\u65f6\u5019\u63a5\u53d7\u53c2\u6570":3,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":24,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":23,"\u4ece\u8bed\u4e49\u4e0a\u770b":2,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":1,"\u4ed6\u4eec\u662f":[9,10,14,17,24],"\u4ed6\u4eec\u7684imag":9,"\u4ed6\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovid":24,"\u4ee3\u8868\u4e00\u4e2a\u5411\u91cf":1,"\u4ee3\u8868\u4e0d\u540c\u7684\u53cc\u5c42\u5e8f\u5217":1,"\u4ee3\u8868\u5355\u5c42\u5e8f\u5217":1,"\u4ee3\u8868\u53cc\u5c42\u5e8f\u5217":1,"\u4ee4\u884c\u53c2\u6570\u6587\u6863":13,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":0,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":2,"\u4ee5\u592a\u7f51\u5361":9,"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":23,"\u4ef7\u683c":1,"\u4efb\u610f\u4e00\u79cdcblas\u5b9e\u73b0":4,"\u4f1a\u5171\u4eab\u53c2\u6570":14,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":14,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":2,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":2,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":14,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":2,"\u4f1a\u62a5\u5bfb\u627e\u4e0d\u5230\u8fd9\u4e9b\u52a8\u6001\u5e93":10,"\u4f1a\u62a5\u9519":2,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":23,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":24,"\u4f1a\u751f\u6210\u591a\u4e2agener":24,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":2,"\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":24,"\u4f20\u5165\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316":27,"\u4f20\u5165\u7684\u662f\u4e00\u4e2a\u51fd\u6570":24,"\u4f20\u5165\u7684\u914d\u7f6e\u53c2\u6570\u5305\u62ec":3,"\u4f20\u5165\u8fd9\u4e2a\u53d8\u91cf\u7684\u65b9\u5f0f\u4e3a":24,"\u4f46\u4ece\u4e0a\u9762\u7684\u6570\u636e\u683c\u5f0f\u53ef\u77e5":1,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":2,"\u4f46\u662f":[3,14,24],"\u4f46\u662f\u5728":24,"\u4f46\u662f\u5982\u679c\u4f7f\u7528\u4e86\u9ad8\u6027\u80fd\u7684\u7f51\u5361":9,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548cbenchmark":4,"\u4f46\u662f\u6709\u65f6\u4e3a\u4e86\u8ba1\u7b97\u5747\u8861\u6027":24,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":14,"\u4f46\u662fbatch":14,"\u4f46\u7406\u8bba\u4e0a\u652f\u6301\u5176\u4ed6\u7684":10,"\u4f46\u8fd9\u79cd\u60c5\u51b5\u4e0b":1,"\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\u7f16\u8bd1\u548c":4,"\u4f4d\u7f6e":1,"\u4f4e\u4e8edocker":3,"\u4f4f":1,"\u4f53\u53ef\u4ee5\u53c2\u8003":24,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":1,"\u4f5c\u4e3a\u53c2\u6570\u7684id":14,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":2,"\u4f5c\u4e3aboot":1,"\u4f5c\u7528":0,"\u4f7f\u5728python\u73af\u5883\u4e0b\u7684\u9884\u6d4b\u63a5\u53e3\u66f4\u52a0\u7b80\u5355":27,"\u4f7f\u7528":[2,4,9,14,27],"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":14,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":14,"\u4f7f\u7528\u4e86avx\u6307\u4ee4":14,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":14,"\u4f7f\u7528\u591a\u673a\u8bad\u7ec3\u7684\u65b9\u6cd5\u4e5f\u6bd4\u8f83\u7b80\u5355":14,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":14,"\u4f7f\u7528\u5982\u4e0b\u811a\u672c\u53ef\u4ee5\u786e\u5b9a\u672c\u673a\u7684cpu\u77e5\u5426\u652f\u6301":9,"\u4f7f\u7528\u65b9\u6cd5\u4e3a":14,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":14,"\u4f7f\u7528\u7684\u547d\u4ee4\u4e5f\u662f":4,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":2,"\u4f7f\u7528\u8be5\u63a5\u53e3\u7528\u6237\u53ef\u4ee5\u53ea\u5173\u6ce8\u5982\u4f55":24,"\u4f7f\u7528\u8be5dockerfile\u6784\u5efa\u51fa\u955c\u50cf":9,"\u4f7f\u7528\u8fd9\u4e2a\u5173\u952e\u8bcd":24,"\u4f7f\u7528deb\u5305\u5728ubuntu\u4e0a\u5b89\u88c5paddlepaddl":8,"\u4f7f\u7528dockerfile\u6784\u5efa\u4e00\u4e2a\u5168\u65b0\u7684dock":9,"\u4f7f\u7528mnist\u624b\u5199\u8bc6\u522b\u4f5c\u4e3a\u6837\u4f8b":27,"\u4f7f\u7528ssh\u8bbf\u95eepaddlepaddle\u955c\u50cf":9,"\u4f86":1,"\u4f8b\u5982":[4,13,14,24],"\u4f8b\u5982\u5982\u679c\u4f7f\u7528":14,"\u4f8b\u5982\u6587\u4ef6\u540d\u662f":24,"\u4f8b\u5982rdma\u7f51\u5361":9,"\u4f8b\u5982sigmoid\u53d8\u6362":13,"\u4f9d\u6b21\u8fd4\u56de\u4e86\u6587\u4ef6\u4e2d\u7684\u6bcf\u6761\u6570\u636e":24,"\u4f9d\u7136\u4fdd\u6301\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u503c\u4e0d\u53d8":1,"\u4fbf\u5229":1,"\u4fbf\u5b9c":1,"\u4fe1\u606f":9,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":14,"\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":14,"\u505c\u7535":1,"\u5143\u7d20":0,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":0,"\u5168\u5bb6":1,"\u5173\u4e8edataprovider\u4e2dinput":1,"\u5173\u4e8eunbound":2,"\u5173\u95edcontain":9,"\u5176\u4e2d":[3,9,10,14,23,24,27],"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteg":13,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":0,"\u5176\u4e2d\u7b2c\u4e00\u884c\u662f\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":24,"\u5176\u4e2d\u7b2ci\u4e2asubseq\u4e2d\u7684\u6240\u6709\u5411\u91cf\u5747\u4e3a\u8f93\u5165\u7684\u5355\u5c42\u5e8f\u5217\u4e2d\u7684\u7b2ci\u4e2a\u5411\u91cf":1,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":14,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":14,"\u5176\u4ed6\u53c2\u6570\u5747\u4f7f\u7528kei":24,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":13,"\u5176\u4ed6\u53c2\u6570\u90fd\u4f7f\u7528kei":24,"\u5176\u4ed6\u7684\u5185\u5b58\u7684\u51cf\u5c11\u65b9\u6cd5\u4f9d\u6b21\u4e3a":14,"\u5176\u4f5c\u7528\u662f\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":23,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":13,"\u5176\u5b83layer\u7684\u8f93\u51fa":2,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":14,"\u5176\u6570\u636e\u4f7f\u7528":24,"\u5176\u6b21":1,"\u5176\u7b2c\u4e00\u884c\u8bf4\u660e\u4e86paddle\u7684\u7248\u672c":22,"\u5177":24,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":14,"\u5177\u4f53\u53ef\u4ee5\u8bbe\u7f6e\u6210\u4ec0\u4e48\u5176\u4ed6\u683c":24,"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":2,"\u5177\u4f53\u6709\u54ea\u4e9b\u683c\u5f0f":24,"\u5177\u4f53\u7684\u591a\u673a\u8bad\u7ec3\u65b9\u6cd5\u53c2\u8003":14,"\u5177\u4f53\u8bf7\u53c2\u8003\u6ce8\u610f\u4e8b\u9879\u4e2d\u7684":9,"\u5177\u4f53dataprovider\u8fd8\u5177\u6709\u4ec0\u4e48\u529f\u80fd":24,"\u5177\u6709\u4e24\u4e2a\u53c2\u6570":24,"\u5177\u6709\u548c\u5bbf\u4e3b\u673a\u76f8\u8fd1\u7684\u8fd0\u884c\u6548\u7387":9,"\u5177\u6709\u7684\u5c5e\u6027\u6709":24,"\u5178\u578b\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a":27,"\u5178\u578b\u7684\u9884\u6d4b\u4ee3\u7801\u5982\u4e0b":27,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":23,"\u5185\u5c42\u662f":1,"\u5185\u5c42inner":1,"\u518d\u6307\u5b9a":4,"\u5199\u5165train":24,"\u5199\u5728train":23,"\u51c6\u5907":1,"\u51c6\u5907\u6570\u636e":27,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":14,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":14,"\u51cf\u5c0fbatch":14,"\u51fa\u53bb\u73a9":1,"\u51fa\u5dee":1,"\u51fa\u6765":1,"\u51fd\u6570":24,"\u51fd\u6570\u4e2d":24,"\u51fd\u6570\u4e2d\u4f7f\u7528":24,"\u51fd\u6570\u4e2d\u7684":24,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":2,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":2,"\u51fd\u6570\u662f\u4f7f\u7528":24,"\u51fd\u6570\u6765\u4fdd\u8bc1\u517c\u5bb9\u6027":24,"\u51fd\u6570\u67e5\u8be2\u6587\u6863":27,"\u5206\u522b\u4e3a":1,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":2,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":2,"\u5206\u522b\u662f":0,"\u5206\u5e03\u5f0f\u8bad\u7ec3":13,"\u5206\u6790\u5f97\u51fa":1,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c":24,"\u5217\u8868\u5982\u4e0b":24,"\u5219\u53ef\u4ee5\u4f7f\u7528":9,"\u5219\u53ef\u4ee5\u9009\u62e9\u4e0a\u8868\u4e2d\u7684avx\u7248\u672cpaddlepaddl":9,"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":13,"\u5219\u9700\u8981\u4f7f\u7528":10,"\u5219\u9700\u8981\u4f7f\u7528\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":14,"\u5219\u9700\u8981\u5148\u5c06":9,"\u5219\u9700\u8981\u8fdb\u884c\u4e00\u5b9a\u7684\u4e8c\u6b21\u5f00\u53d1":9,"\u521b\u5efa\u4e00\u4e2a":27,"\u521b\u5efagener":24,"\u521d\u59cb\u72b6\u6001":2,"\u5220\u9664contain":9,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u5bf9\u5e94\u7684\u8be5\u5355\u8bcd\u7684\u8fde\u7eed\u8868\u793a\u5411\u91cf":13,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4e00\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":14,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":2,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":13,"\u5229\u843d":1,"\u522b":13,"\u5237\u7259":1,"\u524d\u53f0":1,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":24,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":13,"\u52a0\u8f7d\u6570\u636e":13,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u6709\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":14,"\u5305":9,"\u5305\u548c":9,"\u5305\u62ec":13,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":14,"\u5305\u62ec\u6fc0\u6d3b":14,"\u5305\u62ec\u7b80\u5355\u7684rnn\u6a21\u578b":13,"\u5305\u62ecdocker\u955c\u50cf":8,"\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":9,"\u5305\u62ecpaddle\u8fd0\u884cdemo\u6240\u9700\u8981\u7684\u4f9d\u8d56":9,"\u5341\u4e00":1,"\u534e\u6da6\u4e07\u5bb6":1,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":1,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684label\u90fd\u5206\u522b\u662f0\u548c1":1,"\u5355\u5c42":2,"\u5355\u5c42\u5e8f\u5217":[0,1],"\u5355\u5c42\u5e8f\u5217\u7684\u6570\u636e":1,"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":0,"\u5355\u5c42\u5e8f\u5217\u7684dataprovider\u5982\u4e0b":1,"\u5355\u5c42\u5e8f\u5217\u76f4\u63a5\u53d6\u4e86\u6700\u540e\u4e00\u4e2a\u5143\u7d20":1,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":0,"\u5355\u5c42\u5e8f\u5217\u8fc7\u4e86\u4e00\u4e2amix":1,"\u5355\u5c42\u6216\u53cc\u5c42":0,"\u5355\u5c42rnn":[1,2],"\u5355\u5c42rnn\u793a\u4f8b":15,"\u5355\u673acpu\u8bad\u7ec3":14,"\u5355\u673agpu\u8bad\u7ec3":14,"\u5355\u6d4b\u4e2d":1,"\u5355\u8fdb\u5355\u51fa":2,"\u536b\u751f":1,"\u5373":[9,13,14],"\u5373\u4e00\u4e2a\u53e5\u5b50\u4e00\u4e2alabel":1,"\u5373\u4e00\u4e2a\u5b50\u53e5\u4e00\u4e2alabel":1,"\u5373\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":24,"\u5373\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":24,"\u5373\u4ece\u5355\u8bcd\u5b57\u7b26\u4e32\u5230\u5355\u8bcdid\u7684\u5b57\u5178":24,"\u5373\u4f1a\u751f\u6210100\u4e2agener":24,"\u5373\u4f7f\u5728check\u4e2d\u6570\u636e\u4e0d\u5408\u6cd5":24,"\u5373\u4f7f\u5728process\u91cc\u9762\u53ea\u4f1a\u6709\u4e00":24,"\u5373\u5185\u5c42memory\u7684boot":1,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":2,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":24,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":2,"\u5373\u53ef":24,"\u5373\u53ef\u4ee5\u4f7f\u7528ssh\u8bbf\u95ee\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3":9,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":14,"\u5373\u53ef\u4ee5\u8bbe\u7f6e\u53c2\u4e0e\u8bad\u7ec3\u7684\u7ebf\u7a0b\u6570\u91cf":14,"\u5373\u53ef\u542f\u52a8\u548c\u8fdb\u5165paddlepaddle\u7684contain":9,"\u5373\u53ef\u5728\u672c\u5730\u7f16\u8bd1\u51fapaddlepaddle\u7684\u955c\u50cf":3,"\u5373\u53ef\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u6784\u5efa":9,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":14,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":24,"\u5373\u5982\u679ctrain":24,"\u5373\u5bf9\u7b2c3\u6b65\u8fdb\u884c\u66ff\u6362":13,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":2,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":1,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":0,"\u5373\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":24,"\u5373\u8bbe\u7f6e":14,"\u5373\u8d77\u5230\u7684\u4f5c\u7528\u4ec5\u4ec5\u662f\u628a\u53cc\u5c42seq\u62c6\u6210\u5355\u5c42":1,"\u5373input":2,"\u5373train":24,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":13,"\u53bb\u8fc7":1,"\u53c2\u6570":3,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":14,"\u53c2\u6570\u6570\u91cf":13,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":14,"\u53c2\u8003":23,"\u53c2\u89c1":[6,7],"\u53c2\u89c1pydataprovider2":1,"\u53c3\u5dee\u7b49\u7b49":14,"\u53c8":1,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":0,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":14,"\u53cc\u5c42":2,"\u53cc\u5c42\u5e8f\u5217":[0,1],"\u53cc\u5c42\u5e8f\u5217\u5728\u540c\u6837\u7684mix":1,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":0,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":2,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":0,"\u53cc\u5c42\u5e8f\u5217\u7684\u6570\u636e":1,"\u53cc\u5c42\u5e8f\u5217\u7684dataprovider\u5982\u4e0b":1,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u53cc\u5c42\u5e8f\u5217\u9996\u5148":1,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":0,"\u53cc\u5c42rnn":[1,2],"\u53cc\u5c42rnn\u793a\u4f8b":15,"\u53cc\u8fdb\u5355\u51fa":2,"\u53d1\u884c\u7248":10,"\u53d6\u4e86\u6bcf\u4e2asubseq\u7684\u5e73\u5747\u503c":1,"\u53d6\u4e86\u6bcf\u4e2asubseq\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":1,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gflags":4,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230glog":4,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":4,"\u53d6\u51b3\u4e8e\u662f\u5426\u627e\u5230swig":4,"\u53d8\u4e3a3\u4e2a\u65b0\u7684\u5b50\u6b65\u9aa4":13,"\u53d8\u4f1a\u62a5\u8fd9\u4e2a\u9519\u8bef":10,"\u53d8\u91cf":24,"\u53e3\u5934":1,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a2\u6b65":13,"\u53e6":14,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":14,"\u53ea\u4f5c\u4e3aread":2,"\u53ea\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":9,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":1,"\u53ea\u662f\u5c06\u53e5\u5b50\u5229\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u7a00\u758f":13,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":24,"\u53ea\u6709":1,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":2,"\u53ea\u80fd\u591f\u8fd4\u56delist\u6216\u8005tupl":24,"\u53ea\u80fd\u901a\u8fc7":1,"\u53ea\u8bfbmemory\u8f93\u5165":2,"\u53ea\u9488\u5bf9\u5185\u5b58":14,"\u53ea\u9700\u8981\u4f7f\u7528\u4e00\u884c\u4ee3\u7801\u5373\u53ef\u4ee5\u8bbe\u7f6e\u8bad\u7ec3\u5f15\u7528\u8fd9\u4e2adataprovid":24,"\u53ea\u9700\u8981\u5728":24,"\u53ea\u9700\u8981\u77e5\u9053\u8fd9\u53ea\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":24,"\u53ef\u4ee5":1,"\u53ef\u4ee5\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u8bad\u7ec3\u6837\u672c":24,"\u53ef\u4ee5\u4f20\u516510k":3,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":14,"\u53ef\u4ee5\u4f7f\u7528":[3,14],"\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4":10,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":14,"\u53ef\u4ee5\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8bc4\u4f30\u5e26\u6709label\u7684\u9a8c\u8bc1\u96c6":13,"\u53ef\u4ee5\u4f7f\u7528graphviz\u5bf9paddlepaddle\u7684\u7f51\u7edc\u6a21\u578b\u8fdb\u884c\u7ed8\u5236":17,"\u53ef\u4ee5\u4f7f\u7528paddl":17,"\u53ef\u4ee5\u4f7f\u7528python\u7684":27,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":14,"\u53ef\u4ee5\u53c2\u8003":13,"\u53ef\u4ee5\u5728\u4e00\u4e2a\u51fd\u6570\u91cc":24,"\u53ef\u4ee5\u5728cmake\u7684\u547d\u4ee4\u884c\u8bbe\u7f6e":4,"\u53ef\u4ee5\u5c06\u4e00\u6761\u6570\u636e\u8bbe\u7f6e\u6210\u591a\u4e2abatch":24,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":2,"\u53ef\u4ee5\u5c06paddlepaddle\u7684\u6a21\u578b\u548c\u914d\u7f6e\u6253\u5305\u6210\u4e00\u4e2a\u6587\u4ef6":17,"\u53ef\u4ee5\u5c06paddlepaddle\u7684\u8bad\u7ec3\u6a21\u578b\u4ee5proto":17,"\u53ef\u4ee5\u65b9\u4fbf\u5d4c\u5165\u5f0f\u5de5\u4f5c":4,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":2,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":2,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":2,"\u53ef\u4ee5\u6839\u636e\u4e0d\u540c\u7684\u6570\u636e\u914d\u7f6e\u4e0d\u540c\u7684\u8f93\u5165\u7c7b\u578b":24,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":0,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":14,"\u53ef\u4ee5\u8fd4\u56de\u4e00\u4e2adict":24,"\u53ef\u4ee5\u901a\u8fc7show":13,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":13,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":14,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":23,"\u53ef\u80fd\u7684\u8f93\u51fa\u4e3a":10,"\u53ef\u9009":24,"\u5403":1,"\u5403\u996d":1,"\u5404\u65b9\u9762":1,"\u5404\u79cd\u53c2\u6570\u548c\u7ef4\u62a4":3,"\u5408":1,"\u5408\u7406":1,"\u540c\u65f6":[3,4,14,24],"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":14,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":2,"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":13,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":14,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":14,"\u540c\u65f6\u6b22\u8fce\u8d21\u732e\u66f4\u591a\u7684\u5b89\u88c5\u5305":8,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":14,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":2,"\u540d\u79f0":13,"\u540e":14,"\u540e\u9762\u8ddf\u7740\u4e00\u7cfb\u5217\u7f16\u8bd1\u53c2\u6570":22,"\u5411\u91cf\u8868\u793a":13,"\u5426":4,"\u5426\u5219":23,"\u5426\u5219\u5728\u7b2c0\u4e2a\u65f6\u95f4\u6b65\u65f6":1,"\u5426\u5219\u9700\u8981\u9009\u62e9\u975eavx\u7684paddlepaddl":9,"\u5440":1,"\u5468\u56f4":1,"\u547d\u4ee4":3,"\u547d\u4ee4\u4e3a":9,"\u547d\u4ee4\u5373\u53ef\u5b8c\u6210\u5b89\u88c5":10,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":13,"\u547d\u4ee4\u8fd0\u884c\u955c\u50cf":9,"\u547d\u4ee4\u9884\u5148\u4e0b\u8f7d\u955c\u50cf":9,"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":1,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":24,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":14,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":0,"\u548c\u53cc\u5c42rnn":1,"\u548c\u5dee\u8bc4":13,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":0,"\u548c\u6587\u672c\u4fe1\u606f\u7528tab\u95f4\u9694":13,"\u548c\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":23,"\u548c\u7528\u6237\u4f20\u5165\u7684\u53c2\u6570":24,"\u548c\u90e8\u5206layer":2,"\u548c\u9884\u5904\u7406\u811a\u672c":13,"\u548cavgpool":0,"\u548ccudnn":10,"\u548cinitalizer\u91cc\u5b9a\u4e49\u987a\u5e8f\u4e00\u81f4":13,"\u54c1\u8d28":1,"\u5546\u52a1":1,"\u554a":1,"\u5668":13,"\u56db\u4e2a\u7248\u672c":10,"\u56db\u79cd\u6570\u636e\u7c7b\u578b\u662f":24,"\u56e0\u6b64":2,"\u56e0\u6b642\u4e2abatch\u5c31\u53ef\u4ee5\u5b8c\u62101\u4e2apass":1,"\u56e0\u6b64\u4e0a\u8ff0\u4e09\u4e2alayer\u7684\u524d\u5411\u4f1a\u62a5\u51fa":1,"\u56e0\u6b64\u4e24\u4e2a\u914d\u7f6e\u5728\u8fd9\u4e24\u5c42\u4e0a\u7684\u8f93\u51fa\u662f\u4e00\u6837\u7684":1,"\u56e0\u6b64\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u8f93\u51fa\u662f\u4e00\u6837\u65f3":1,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":1,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u8fc7\u5b8clstmemory\u7684\u8f93\u51fa\u548c\u5355\u5c42\u7684\u4e00\u6837":1,"\u56e0\u6b64\u5f53\u5916\u5c42\u6709i":1,"\u56fe\u50cf\u5206\u7c7b":12,"\u5728":[0,1,4,10,24],"\u5728\u4e4b\u540e\u7684":14,"\u5728\u4f7f\u7528":14,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":14,"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165\u4e86dictionary\u4f5c\u4e3a\u53c2\u6570":24,"\u5728\u5b8c\u6210\u4e86\u6570\u636e\u548c\u7f51\u7edc\u7ed3\u6784\u642d\u5efa\u4e4b\u540e":13,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":2,"\u5728\u672c\u95ee\u9898\u4e2d":13,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u5229\u7528":13,"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":13,"\u5728\u6bcf\u4e2a\u7ef4\u5ea6\u4e0a\u53d6\u51fa\u5728\u8be5\u53e5\u8bdd\u65b0\u7684\u5411\u91cf\u96c6\u5408\u4e0a\u8be5\u7ef4\u5ea6\u7684\u6700\u5927\u503c\u4f5c\u4e3a\u6700\u540e\u7684\u53e5\u5b50\u8868\u793a\u5411\u91cf":13,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":27,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":0,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":23,"\u5728\u8bad\u7ec3\u914d\u7f6e\u91cc":24,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":2,"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":24,"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":2,"\u5728\u8fd9\u91cc":2,"\u5728\u914d\u7f6e\u4e2d\u8bfb\u53d6\u4e86\u5b57\u5178":24,"\u5728\u91c7\u7528sgd":14,"\u5728cmake\u914d\u7f6e\u65f6\u53ef\u4ee5\u4f7f\u7528":4,"\u5728paddlepaddle\u4e2d":2,"\u5728pydataprovider\u4e2d":24,"\u5728python\u73af\u5883\u4e0b\u9884\u6d4b\u7ed3\u679c":27,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":2,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":2,"\u5730\u6bb5":1,"\u5730\u7406\u4f4d\u7f6e":1,"\u5730\u94c1\u7ad9":1,"\u5747\u5300\u5206\u5e03":14,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":2,"\u57fa\u672c\u4e0a\u4e0d\u80fd\u6574\u4f53\u4fee\u6b63":24,"\u57fa\u672c\u7684\u5904\u7406\u903b\u8f91\u4e5f\u548cmnist\u903b\u8f91\u4e00\u81f4":24,"\u57fa\u672c\u7684pydataprovider\u4f7f\u7528\u4ecb\u7ecd\u5b8c\u6bd5\u4e86":24,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":2,"\u5916\u5c42memory\u5fc5\u987b\u6709boot":1,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":1,"\u5916\u5c42memory\u662f\u5355\u5c42\u5e8f\u5217":1,"\u5916\u5c42outer":1,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":13,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":2,"\u591a\u673a\u8bad\u7ec3":14,"\u591a\u6b21\u8fd4\u56de\u53d8\u91cf":24,"\u591a\u7ebf\u7a0b\u4e0b\u8f7d\u8fc7\u7a0b\u4e2d":3,"\u591a\u7ebf\u7a0b\u6570\u636e\u8bfb\u53d6":24,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":2,"\u5927":24,"\u5929":1,"\u5929\u4e00\u5e7f\u573a":1,"\u5929\u4e00\u9601":1,"\u597d":1,"\u597d\u5403":1,"\u597d\u8bc4":13,"\u5982\u4e0b":1,"\u5982\u679c":[10,24],"\u5982\u679c\u4e0d\u4e86\u89e3":24,"\u5982\u679c\u4e0d\u4f7f\u7528\u5219\u4f1a\u4f7f\u7528\u4e00\u4e2a\u7b80\u5316\u7248\u7684\u547d\u4ee4\u884c\u53c2\u6570\u89e3\u6790":4,"\u5982\u679c\u4e0d\u4f7f\u7528\u5219\u4f1a\u4f7f\u7528\u4e00\u4e2a\u7b80\u5316\u7248\u7684\u65e5\u5fd7\u5b9e\u73b0":4,"\u5982\u679c\u4e0d\u5207\u8bcd":13,"\u5982\u679c\u4e0d\u6536\u655b":14,"\u5982\u679c\u4e0d\u8bbe\u7f6e\u7684\u8bdd":24,"\u5982\u679c\u4f7f\u7528gpu\u7248\u672c\u7684paddlepaddl":10,"\u5982\u679c\u5185\u5c42memory\u60f3":1,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684":14,"\u5982\u679c\u5728":10,"\u5982\u679c\u5728\u7b2c\u4e00\u6b21cmake\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe":4,"\u5982\u679c\u5728\u8bad\u7ec3\u65f6":24,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":14,"\u5982\u679c\u5c0f\u4e8e\u8fd9\u4e2a\u4e0b\u8f7d\u901f\u5ea6":3,"\u5982\u679c\u60a8\u4f7f\u7528":9,"\u5982\u679c\u60f3\u8981\u5728\u5916\u90e8\u673a\u5668\u8bbf\u95ee\u8fd9\u4e2acontain":9,"\u5982\u679c\u662ffalse\u7684\u8bdd":24,"\u5982\u679c\u662ftrue\u7684\u8bdd":24,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":2,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":2,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":23,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":2,"\u5982\u679c\u7528\u6237\u4e0d\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":24,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":14,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":14,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":14,"\u5982\u679c\u8bbe\u7f6e\u6210true\u7684\u8bdd":24,"\u5982\u679c\u8f93\u51fa":9,"\u5982\u679c\u8fd0\u884cgpu\u7248\u672c\u7684paddlepaddl":9,"\u5982\u679clearning_rate\u592a\u5927":14,"\u5982\u679clearning_rate\u592a\u5c0f":14,"\u5982\u679ctest":23,"\u5b50":1,"\u5b50\u53e5":2,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":2,"\u5b81\u6ce2":1,"\u5b83\u5305\u542b\u7684\u53c2\u6570\u6709":24,"\u5b83\u7684":1,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":0,"\u5b89\u6392":1,"\u5b89\u88c5\u5305":14,"\u5b89\u88c5\u5305\u5728ubuntu":10,"\u5b89\u88c5\u5305\u7684\u4e0b\u8f7d\u5730\u5740\u662f":10,"\u5b89\u88c5\u597d\u7684paddlepaddle\u811a\u672c\u5305\u62ec\u591a\u6761\u547d\u4ee4":17,"\u5b89\u88c5\u5b8c\u6210\u540e":10,"\u5b89\u88c5\u5b8c\u6210\u7684paddlepaddle\u4e3b\u4f53\u5305\u62ec\u4e09\u4e2a\u90e8\u5206":9,"\u5b89\u88c5\u5b8c\u6210paddlepaddle\u540e":10,"\u5b89\u88c5\u6559\u7a0b":13,"\u5b89\u88c5\u65b9\u6cd5\u8bf7\u53c2\u8003":9,"\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56":6,"\u5b89\u88c5\u7f16\u8bd1paddlepaddle\u9700\u8981\u7684\u4f9d\u8d56":5,"\u5b89\u88c5docker\u9700\u8981\u60a8\u7684\u673a\u5668":9,"\u5b89\u88c5paddlepaddl":13,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":8,"\u5b89\u9759":1,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":2,"\u5b8c\u6210\u591a\u673a\u8bad\u7ec3":17,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":0,"\u5b8c\u6574\u4ee3\u7801\u89c1":27,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":2,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":2,"\u5b9a\u4e49\u5728\u5916\u5c42":2,"\u5b9a\u4e49\u6587\u672c\u4fe1\u606f":13,"\u5b9e\u73b0\u4e86\u6253\u5f00\u6587\u672c\u6587\u4ef6":24,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":2,"\u5b9e\u9645\u4e2d\u5e76\u4e0d\u9700\u8981":1,"\u5ba2\u6237":1,"\u5bb6":1,"\u5bc6\u7801\u4e5f\u662froot":9,"\u5bf9":1,"\u5bf9\u4e8e\u7528\u6237\u6765\u8bf4":24,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":13,"\u5bf9\u4e8ecuda\u7684toolkit\u6709\u65ad\u70b9\u7eed\u4f20\u548c\u4f20\u8f93\u901f\u5ea6\u8fc7\u5c0f\u91cd\u542f\u4e0b\u8f7d\u7684":3,"\u5bf9\u4e8emnist\u800c\u8a00":24,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":2,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":2,"\u5bf9\u8be5\u8868\u793a\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":13,"\u5bf9\u8c61":[14,24],"\u5bf9\u8c61convert":27,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":2,"\u5bf9\u9762":1,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":14,"\u5c06":14,"\u5c06\u4f1a\u6d4b\u8bd5\u914d\u7f6e\u6587\u4ef6\u4e2dtest":13,"\u5c06\u5176\u6269\u5c55\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42\u5e8f\u5217":1,"\u5c06\u5176\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5355\u5c42\u5e8f\u5217":1,"\u5c06\u5176\u8bbe\u7f6e\u6210":14,"\u5c06\u542b\u6709\u5b50\u53e5":2,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u5c06\u5b57\u5178\u5b58\u5165\u4e86set":24,"\u5c06\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3\u6620\u5c04\u5230container\u768422\u7aef\u53e3\u4e0a":9,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8bad\u7ec3":24,"\u5c06\u6587\u4ef6\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":23,"\u5c06\u8bc4\u8bba\u5206\u4e3a\u597d\u8bc4":13,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":13,"\u5c06ssh\u88c5\u5165\u7cfb\u7edf\u5185\u5e76\u5f00\u542f\u8fdc\u7a0b\u8bbf\u95ee":9,"\u5c1a\u53ef":1,"\u5c31":[1,24],"\u5c31\u50cf\u8fd9\u4e2a\u6837\u4f8b\u4e00\u6837":24,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":14,"\u5c31\u662f":1,"\u5c31\u662f\u5c06\u8fd9\u4e9b\u52a8\u6001\u5e93\u52a0\u5230\u73af\u5883\u53d8\u91cf\u91cc\u9762":10,"\u5c42\u6b21\u5316\u7684rnn":2,"\u5c45\u7136":1,"\u5c5e\u6027":24,"\u5dee\u8bc4":13,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":2,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":2,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":0,"\u5e38\u89c1\u7684\u8f93\u51fa\u683c\u5f0f\u4e3a":22,"\u5e72\u51c0":1,"\u5e76\u4e14":24,"\u5e76\u4e14\u4f7f\u7528\u5173\u952e\u8bcd":24,"\u5e76\u4e14\u5220\u9664container\u4e2d\u7684\u6570\u636e":9,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":14,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f":24,"\u5e76\u4e14\u6807\u8bb0process\u51fd\u6570\u662f\u4e00\u4e2adataprovid":24,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":14,"\u5e76\u4f7f\u7528\u4e86dropout":13,"\u5e76\u572823\u884c\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":24,"\u5e76\u5bf9\u5176\u8be6\u7ec6\u5206\u6790":1,"\u5e76\u5c06\u6bcf\u884c\u8f6c\u6362\u6210\u548c":24,"\u5e76\u63d0\u4f9b":9,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":24,"\u5e76\u8bbe\u7f6e\u597d\u5bf9\u5e94\u7684\u73af\u5883\u53d8\u91cf":10,"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":13,"\u5e8a\u4e0a\u7528\u54c1":1,"\u5e8a\u57ab":1,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540clayer2\u4e00\u81f4":0,"\u5e8f\u5217\u6570\u636e\u548c\u4e0a\u9762\u7684\u5b8c\u5168\u4e00\u6837":1,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":2,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":0,"\u5e8f\u5217\u6a21\u578b\u6570\u636e\u63d0\u4f9b":23,"\u5e8f\u5217\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":24,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":2,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":2,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":0,"\u5e93\u7684\u8bdd":10,"\u5e94\u8be5":1,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":14,"\u5f00\u542fgpu\u8bad\u7ec3":14,"\u5f0f":24,"\u5f15\u7528\u7684dataprovider\u662f":24,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":2,"\u5f3a\u70c8\u63a8\u8350":1,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":24,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn":1,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":13,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":13,"\u5f53\u7136":23,"\u5f53\u8c03":24,"\u5f62\u6210recurr":2,"\u5f62\u6210recurrent\u8fde\u63a5":2,"\u5f88":[1,13],"\u5f88\u591a":1,"\u5f88\u5b89\u9759":1,"\u5f88\u5e72\u51c0":1,"\u5f88\u65b9\u4fbf":1,"\u5f97":1,"\u5f97\u5230\u7ed3\u679c":10,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":2,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":1,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":2,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"\u5feb":1,"\u5feb\u901f\u5165\u95e8":15,"\u5ff5\u662f":24,"\u6027\u4ef7\u6bd4":1,"\u603b\u4f53\u6765\u8bf4":1,"\u60a8\u4e5f\u53ef\u4ee5\u91c7\u7528\u522b\u7684\u7ec4\u7ec7\u5f62\u5f0f":1,"\u60a8\u53ef\u4ee5\u4f7f\u7528":9,"\u60a8\u5c31\u53ef\u4ee5\u8fdc\u7a0b\u7684\u4f7f\u7528paddlepaddle\u5566":9,"\u60a8\u9700\u8981\u5728\u673a\u5668\u4e2d\u5b89\u88c5\u597ddocker":9,"\u60a8\u9700\u8981\u8fdb\u5165\u955c\u50cf\u8fd0\u884cpaddlepaddl":9,"\u60c5\u611f\u5206\u6790":12,"\u60f3\u8981\u8fd0\u884cpaddlepaddl":9,"\u611f\u89c9":1,"\u6210\u4e3a\u7ef4\u5ea6\u4e3ahidden":13,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b":13,"\u6211\u4eec\u4ee5\u6587\u672c\u5206\u7c7b\u95ee\u9898\u4f5c\u4e3a\u80cc\u666f":13,"\u6211\u4eec\u4f7f\u7528":13,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":0,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":2,"\u6211\u4eec\u5728":1,"\u6211\u4eec\u5728\u6b64\u603b":13,"\u6211\u4eec\u5c06\u4ee5\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":13,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u7684\u6d41\u7a0b\u7684\u811a\u672c":13,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7684\u547d\u4ee4\u884c\u4fdd\u5b58\u5728\u4e86":13,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528docker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":8,"\u6211\u4eec\u63d0\u4f9b\u4e8612\u4e2a":9,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7bdataproviderconvert":27,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u4e0d\u540c\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f":1,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u4e0d\u540c\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f\u548cdataprovid":1,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u4e0d\u540cdataprovid":1,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e":1,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e":1,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":0,"\u6211\u4eec\u8fdb\u5165\u5230\u8bad\u7ec3\u90e8\u5206":13,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":1,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":13,"\u6211\u4eec\u968f\u65f6\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":13,"\u6216":1,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"\u6216\u4e00\u4e2a\u5411\u91cf":2,"\u6216\u5176\u4ed6":13,"\u6216\u5355\u5c42\u5e8f\u5217":0,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u6216\u6700\u5927\u503c":0,"\u6216\u7b2c\u4e00\u4e2a":0,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":0,"\u6216\u8005":[0,9,14],"\u6216\u800510g\u8fd9\u6837\u7684\u5355\u4f4d":3,"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[0,2],"\u6216\u8005\u4f7f\u7528\u4e0b\u9762\u4e00\u6761\u547d\u4ee4\u5b89\u88c5":10,"\u6216\u8005\u5728python":24,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u5730\u5740\u7b49\u7b49":23,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"\u6216\u8005\u66f4\u65e9":14,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":14,"\u6216\u8005\u8bbe\u7f6e\u4e3anone":23,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":23,"\u6216\u8005\u9ad8\u6027\u80fd\u7684":9,"\u623f":1,"\u623f\u95f4":1,"\u6240\u4ee5":[14,24,27],"\u6240\u4ee5\u5728cpu\u7684\u8fd0\u7b97\u6027\u80fd\u4e0a\u5e76\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":9,"\u6240\u4ee5\u5982\u679c\u5bf9\u4e8e\u5185\u5b58\u6bd4\u8f83\u5c0f\u7684\u673a\u5668":24,"\u6240\u4ee5\u5982\u679c\u60f3\u8981\u5728\u540e\u53f0\u542f\u7528ssh":9,"\u6240\u4ee5\u5c06":24,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u503c\u548c\u6570\u636e\u5bf9\u5e94\u5173\u7cfb":24,"\u6240\u4ee5\u6700\u4f73\u5b9e\u8df5\u63a8\u8350\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":24,"\u6240\u4ee5\u7528\u4e8e\u9884\u6d4b\u7684\u914d\u7f6e\u6587\u4ef6\u8981\u505a\u76f8\u5e94\u7684\u4fee\u6539":27,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":27,"\u6240\u4ee5gpu\u5728\u8fd0\u7b97\u6027\u80fd\u4e0a\u4e5f\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":9,"\u6240\u4ee5init_hook\u5c3d\u91cf\u4f7f\u7528":24,"\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":13,"\u6240\u6709\u6587\u4ef6\u5217\u8868":24,"\u6240\u6709\u7684":4,"\u6240\u6709\u7684\u4e0b\u8f7d\u7ebf\u7a0b\u5173\u95ed\u65f6":3,"\u6240\u6709\u914d\u7f6e\u5728":13,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":24,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":24,"\u624d\u4f1astop":24,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":1,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":4,"\u6267\u884c":3,"\u6267\u884c\u5982\u4e0b\u547d\u4ee4\u5373\u53ef\u4ee5\u5173\u95ed\u8fd9\u4e2acontain":9,"\u6267\u884c\u65b9\u6cd5\u5982\u4e0b":9,"\u62a5\u9519":10,"\u62c6\u89e3":2,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf\u8868\u793a":13,"\u6307\u4ee4\u96c6":9,"\u6307\u5411\u4e00\u4e2alayer":2,"\u6307\u5b9a":2,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":13,"\u6307\u5b9a\u663e\u5361\u6570\u91cf":14,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":13,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":2,"\u6307\u5b9a\u8bad\u7ec3":13,"\u6307\u5b9abatch":13,"\u6307\u5b9aoutputs\u8f93\u51fa\u6982\u7387\u5c42":13,"\u633a":1,"\u633a\u597d":1,"\u6362":1,"\u6389\u7f16\u8bd1\u76ee\u5f55\u540e":4,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":0,"\u63a5\u4e0b\u6765\u4f7f\u7528":27,"\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":24,"\u63a5\u53e3\u6709\u4e00\u4e2a":14,"\u63a5\u7740":1,"\u63a8\u8350":1,"\u63a8\u8350\u4f7f\u7528\u5c06\u672c\u5730\u7f51\u5361":9,"\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":4,"\u63a8\u8350\u6e05\u7406":4,"\u63a8\u8350\u76f4\u63a5\u653e\u7f6e\u5230\u8bad\u7ec3\u76ee\u5f55":23,"\u63a8\u8350\u8bbe\u7f6e":24,"\u63cf\u8ff0":4,"\u63cf\u8ff0\u4e86docker":3,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":0,"\u653e\u5fc3":1,"\u6548\u679c\u4e00\u81f4":24,"\u6548\u679c\u603b\u7ed3":13,"\u6559\u7a0b":13,"\u6570":2,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":2,"\u6570\u636e":24,"\u6570\u636e\u4e2d0":14,"\u6570\u636e\u4f20\u8f93\u65e0\u9700label\u6570\u636e":13,"\u6570\u636e\u5904\u7406python\u6587\u4ef6\u540d":13,"\u6570\u636e\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":24,"\u6570\u636e\u63d0\u4f9b":23,"\u6570\u636e\u6587\u4ef6\u5b58\u653e\u5728\u672c\u5730\u78c1\u76d8\u4e2d":23,"\u6570\u636e\u662f\u7ed9\u4e00\u6bb5\u82f1\u6587\u6587\u672c":24,"\u6570\u636e\u683c\u5f0f\u548c\u8be6\u7ec6\u6587\u6863\u8bf7\u53c2\u8003":13,"\u6570\u636e\u8f93\u5165":2,"\u6574\u4f53":1,"\u6574\u6d01":1,"\u6587\u4ef6":24,"\u6587\u4ef6\u4e2d":13,"\u6587\u4ef6\u4e3a":14,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":13,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217":24,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":13,"\u6587\u672c\u5377\u79ef\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4":13,"\u6587\u672c\u751f\u6210":12,"\u6587\u6863":14,"\u65b0":1,"\u65b0\u5199layer":15,"\u65b9\u4fbf":1,"\u65b9\u4fbf\u8c03\u8bd5\u4f7f\u7528":17,"\u65b9\u4fbf\u90e8\u7f72\u5206\u53d1":17,"\u65c1\u8fb9":1,"\u65e0":1,"\u65e0\u6cd5\u76f4\u63a5\u4f7f\u7528":1,"\u65e0\u9700label\u76f8\u5173\u7684\u5c42":13,"\u65e9\u9910":1,"\u65f6":[0,14],"\u65f6\u5019":1,"\u65f6\u5e8f\u6a21\u578b\u5373\u4e3arnn\u6a21\u578b":13,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":13,"\u662f":[1,4],"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":0,"\u662f\u4e00\u4e2abatch":24,"\u662f\u4e00\u4e2apython\u7684":24,"\u662f\u4e00\u4e2aswig\u5c01\u88c5\u7684paddlepaddle\u5305":9,"\u662f\u4e00\u4e2aunbound":2,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":2,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":24,"\u662f\u4e2adataprovider\u662f\u4e0d\u662f\u8981\u505ashuffl":24,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":24,"\u662f\u4ece\u8bad\u7ec3\u914d\u7f6e\u4f20\u5165\u7684dict\u5bf9\u8c61":24,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":24,"\u662f\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":24,"\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61":24,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":2,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":4,"\u662f\u5426\u4f7f\u7528\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":4,"\u662f\u5426\u4f7f\u7528gflags":4,"\u662f\u5426\u4f7f\u7528glog":4,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":4,"\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":4,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":4,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd\u5f00\u542f\u8ba1\u65f6\u529f\u80fd\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":4,"\u662f\u5426\u5f00\u542fgpu\u529f\u80fd":3,"\u662f\u5426\u5f00\u542frdma\u652f\u6301":4,"\u662f\u5426\u7f16\u8bd1\u4e2d\u6587\u6587\u6863":4,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236":4,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":4,"\u662f\u5426\u7f16\u8bd1\u82f1\u6587\u6587\u6863":4,"\u662f\u5426\u7f16\u8bd1gpu\u652f\u6301":4,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":4,"\u662f\u5728\u8fd0\u884c\u65f6\u6267\u884c\u7684":24,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":0,"\u662f\u60f3\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":14,"\u662f\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":24,"\u662f\u6570\u636e\u8f93\u5165\u683c\u5f0f":24,"\u662f\u8bbe\u7f6e\u8fd9\u4e2adataprovider\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":24,"\u662f\u8bbe\u7f6edataprovider\u5728\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":24,"\u662f\u8bbe\u7f6edataprovider\u5728\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":24,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":2,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":2,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":23,"\u662fpython\u7684\u4e00\u4e2a\u5173\u952e\u8bcd":24,"\u663e":13,"\u665a":1,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":8,"\u66f4\u591a\u5173\u4e8esparse\u8bad\u7ec3\u7684\u5185\u5bb9\u8bf7\u53c2\u8003":14,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":2,"\u66f4\u65b0\u6a21\u5f0f":14,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":14,"\u66f4\u8be6\u7ec6\u7528\u4f8b\u8bf7\u53c2\u8003\u6587\u6863":13,"\u66f4\u8be6\u7ec6\u7684\u4ecb\u7ecd\u8bf7\u53c2\u8003\u5404\u4e2a\u547d\u4ee4\u7684\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":17,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e":13,"\u66f4\u8fdb\u4e00\u6b65":2,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":2,"\u6700":1,"\u6700\u4f4e\u7ebf\u7a0b\u7684\u4e0b\u8f7d\u901f\u5ea6":3,"\u6700\u540e":1,"\u6700\u540e\u4e00\u4e2a":0,"\u6700\u540e\u4f7f\u7528":27,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":2,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":2,"\u6708\u6e56":1,"\u6709":1,"\u6709100\u4e2a\u8bad\u7ec3\u6587\u4ef6":24,"\u6709\u4e24\u53e5":1,"\u6709\u503c\u7684\u4f4d\u7f6e\u53ea\u80fd\u53d61":24,"\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":24,"\u6709\u90e8\u5206\u53c2\u6570\u662fpaddle\u81ea\u52a8\u751f\u6210\u7684":24,"\u670d\u52a1":1,"\u670d\u52a1\u5458":1,"\u672c\u6765":1,"\u672c\u8282\u6211\u4eec\u5c06\u4e13\u6ce8\u4e8e\u7f51\u7edc\u7ed3\u6784\u7684\u4ecb\u7ecd":13,"\u6765":1,"\u6765\u521d\u59cb\u5316\u53c2\u6570":14,"\u6765\u5b89\u88c5":10,"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":1,"\u6765\u5f15\u7528\u8fd9\u4e2aimag":9,"\u6765\u6307\u5b9a\u6bcf\u4e2apserver\u7684ip\u5730\u5740":14,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684":24,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":24,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":23,"\u6765\u8bbe\u7f6e":14,"\u6765\u8bf4\u660e\u7b80\u5355\u7684pydataprovider\u5982\u4f55\u4f7f\u7528":24,"\u6765\u8fdb\u884c\u8bad\u7ec3":9,"\u6765\u914d\u7f6ecudnn\u7684\u5b89\u88c5\u8def\u5f84":4,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":14,"\u676f\u5b50":1,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2asubseq":0,"\u6784\u9020gradientmachin":27,"\u6790\u597d\u7684\u914d\u7f6e\u521b\u5efa\u795e\u7ecf\u7f51\u7edc":27,"\u67e5\u770b\u5b89\u88c5\u540e\u7684paddl":10,"\u6807\u51c6\u5dee\u4e3a":14,"\u6807\u7b7e\u662f0":24,"\u6837\u4f8b\u6570\u636e\u4e3a":24,"\u6837\u4f8b\u6570\u636e\u5982\u4e0b":24,"\u6837\u672c":24,"\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":1,"\u6839\u636e\u4e0a\u4e00\u6b65\u89e3":27,"\u6839\u636e\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d":24,"\u683c\u5f0f\u5982\u4e0b":13,"\u68d2":13,"\u697c\u5c42":1,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":13,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u8fd9\u6837\u7684\u65e5\u5fd7":13,"\u6a21\u578b\u914d\u7f6e":15,"\u6a2a\u5411\u5305\u62ec\u4e09\u4e2a\u7248\u672c":9,"\u6b21":1,"\u6b63\u5e38\u7684docker":9,"\u6b63\u6837\u672c":13,"\u6b64\u5904\u90fd\u4e3a2":1,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":2,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u5206\u4e3a\u5982\u4e0b5\u4e2a\u57fa\u7840\u90e8\u5206":13,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":1,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":1,"\u6bcf\u4e00\u6761\u8bad\u7ec3\u6570\u636e\u90fd\u662f\u4e00\u4e2a\u6587\u4ef6":24,"\u6bcf\u4e00\u884c":24,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u6bcf\u4e2a\u5355\u5c42rnn":2,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":13,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":2,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":1,"\u6bcf\u4e2a\u6837\u672c\u7684\u5b50\u53e5\u6570\u5206\u522b\u4e3a2":1,"\u6bcf\u4e2a\u72b6\u6001":2,"\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":24,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":13,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":13,"\u6bcf\u4e2asubseq\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u5c31\u7b49\u4e8e\u5355\u5c42\u5e8f\u5217\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":1,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":24,"\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":13,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":13,"\u6bd4\u5982":14,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":14,"\u6bd4\u5982\u901a\u8fc7\u7528\u6237\u5bf9\u7535\u5b50\u5546\u52a1\u7f51\u7ad9\u8bc4\u8bba":13,"\u6bd4\u8f83\u53ef\u80fd\u7684\u547d\u4ee4\u5982\u4e0b":10,"\u6c34\u6e29":1,"\u6c49\u5ead":1,"\u6ca1":1,"\u6ca1\u6709\u4f5c\u7528":24,"\u6ca1\u6709\u5b89\u88c5":10,"\u6ca1\u6709\u8bbe\u7f6e":10,"\u6ce8\u610f":[1,3,24],"\u6cf3\u6c60":1,"\u6d41":1,"\u6d41\u7a0b\u5982\u4e0b":13,"\u6d44":1,"\u6d4b\u8bd5\u6570\u636e":13,"\u6d4b\u8bd5\u7684\u65f6\u5019\u9ed8\u8ba4\u4e0dshuffl":24,"\u6d4b\u8bd5\u811a\u672c\u5982\u4e0b":13,"\u6e29\u99a8":1,"\u6e90\u7801":13,"\u6e90\u7801\u6839\u76ee\u5f55":3,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":13,"\u70ed\u60c5":1,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":2,"\u7136\u540e\u6267\u884c\u5982\u4e0b":10,"\u7136\u540e\u8fd0\u884c\u8fd9\u4e2acontainer\u5373\u53ef":9,"\u7248\u672c":10,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":14,"\u751f\u6210\u5404\u4e2a\u5e73\u53f0\u7684makefil":4,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":14,"\u75280\u548c1\u8868\u793a":24,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":13,"\u7528\u4e8e\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":10,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":23,"\u7528\u6237\u4e5f\u53ef\u4ee5\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u6570\u636e\u5bf9\u5e94\u5173\u7cfb":24,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":2,"\u7528\u6237\u53ef\u4ee5\u4f7f\u7528python\u7684":23,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3log\u9009\u62e9test\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":13,"\u7528\u6237\u53ef\u4ee5\u9009\u62e9\u5bf9\u5e94\u7248\u672c\u7684docker":9,"\u7528\u6237\u540d\u4e3a":9,"\u7528\u6237\u5728dataprovider\u4e2d\u9700\u8981\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u5176\u4e2d\u6bcf\u4e00\u4e2a\u6587\u4ef6":23,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570\u4f7f\u7528args\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":24,"\u7528\u6237\u63a5\u53e3":15,"\u7528\u6237\u9700\u8981\u5148\u5c06paddlepaddle\u5b89\u88c5\u5305\u4e0b\u8f7d\u5230\u672c\u5730":10,"\u7528\u6765\u505a\u9884\u6d4b\u548c\u7b80\u5355\u7684\u5b9a\u5236\u5316":9,"\u7528\u6b64\u65b9\u6cd5\u90e8\u5206\u865a\u62df\u673a\u53ef\u80fd\u68c0\u6d4b\u5230\u652f\u6301avx\u6307\u4ee4\u4f46\u662f\u5b9e\u9645\u8fd0\u884c\u4f1a\u6302\u6389":14,"\u7528\u8fc7\u4e00\u6b21\u7684\u65f6\u5019":24,"\u7531":2,"\u7531\u4e8e\u5916\u5c42\u6bcf\u4e2a\u65f6\u95f4\u6b65\u8fd4\u56de\u7684\u662f\u4e00\u4e2a\u5b50\u53e5":1,"\u7531\u4e8e\u5916\u5c42memory\u6ca1\u6709\u4efb\u4f55seq\u4fe1\u606f":1,"\u7531\u4e8e\u6570\u636e\u662f\u4e24\u6761":27,"\u7531\u4e8e\u8fd9\u4e2a\u5916\u5c42group\u91cc\u9762\u6ca1\u6709memori":1,"\u7531\u4e8edocker\u662f\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u5316\u865a\u62df\u65b9\u6848":9,"\u7531\u4e8epaddlepaddle\u7684docker\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u9884\u5b9a\u4e49\u7684\u8fd0\u884c\u547d\u4ee4":9,"\u7531\u4e8estep":2,"\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u7f51\u7edc\u914d\u7f6e":13,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":0,"\u7535\u8111":1,"\u7684":[1,13],"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":2,"\u7684\u4efb\u4e00\u4e00\u79cd":14,"\u7684\u5185\u5b58":14,"\u7684\u540d\u5b57":24,"\u7684\u5747\u5300\u5206\u5e03":14,"\u7684\u5b89\u88c5\u6587\u6863":9,"\u7684\u5e73\u5747\u503c":0,"\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":24,"\u7684\u6570\u76ee\u4e00\u81f4":0,"\u7684\u6587\u6863":24,"\u7684\u65f6\u5019\u5982\u679c\u62a5\u4e00\u4e9b\u4f9d\u8d56\u672a\u627e\u5230\u7684\u9519\u8bef\u662f\u6b63\u5e38\u7684":10,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":14,"\u7684\u662f":24,"\u7684\u673a\u5668\u4e0a\u8fdb\u884c":3,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":2,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":2,"\u7684\u72b6\u6001":2,"\u7684\u7f51\u6865\u6765\u8fdb\u884c\u7f51\u7edc\u901a\u4fe1":9,"\u7684\u8bdd":14,"\u7684\u8f93\u5165":2,"\u7684\u9519\u8bef":1,"\u7684demo\u5b66\u4e60\u5982\u4f55\u8fdb\u884c\u591a\u673a\u8bad\u7ec3":13,"\u7684docker\u53ef\u80fd\u7f3a\u4e4f":3,"\u7684matrix":27,"\u7684python\u5305\u662fpaddlepaddle\u7684\u8bad\u7ec3\u4e3b\u8981\u7a0b\u5e8f":9,"\u7684python\u5305\u6765\u505a\u914d\u7f6e\u6587\u4ef6\u89e3\u6790\u7b49\u5de5\u4f5c":9,"\u7684python\u9884\u6d4b\u8fc7\u7a0b":13,"\u76ee\u524d":2,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":0,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":2,"\u76ee\u5f55":13,"\u76ee\u5f55\u4e0b":3,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":14,"\u76f4\u63a5\u52a0\u4e86\u4e00\u5c42group":1,"\u76f4\u63a5\u63d0\u53d6\u51fa\u795e\u7ecf\u7f51\u7edcoutput\u5c42\u7684\u8f93\u51fa\u7ed3\u679c":27,"\u76f8\u5173\u547d\u4ee4\u4e3a":9,"\u76f8\u5173\u7684\u6982":24,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":14,"\u76f8\u5bf9":1,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":23,"\u76f8\u5f53":1,"\u770b\u4e0b\u9762\u7684\u89e3\u51b3\u65b9\u6848":14,"\u77e5\u9053\u5982\u4f55\u4ece":24,"\u793a":13,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":14,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":14,"\u79bb":1,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":0,"\u7a0b\u5e8f\u6216\u8005\u81ea\u5b9a\u4e49\u4e00\u4e2a\u542b\u6709\u542f\u52a8\u811a\u672c\u7684imag":9,"\u7a97\u6237":1,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":23,"\u7aef\u8bfb\u53d6\u6570\u636e":14,"\u7b2c":1,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f":24,"\u7b2c\u4e00\u4e2alast":1,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":24,"\u7b2c\u4e00\u5929":1,"\u7b2c\u4e00\u6bb5\u6570\u636e\u4e3a\u8fd9\u5f20\u56fe\u7247\u7684label":24,"\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662ffilenam":24,"\u7b2c\u4e8c\u6bb5\u6570\u636e\u4e3a\u8fd9\u4e2a\u56fe\u7247\u7684\u50cf\u7d20\u503c":24,"\u7b80\u5355\u4f18\u5316":3,"\u7b80\u5355\u7684\u4f7f\u7528":23,"\u7b80\u5355\u7684\u4f7f\u7528\u573a\u666f":23,"\u7b80\u5355\u7684\u4f7f\u7528\u6837\u4f8b\u4e3a":3,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":14,"\u7b80\u5355\u7684\u542b\u6709ssh\u7684dockerfile\u5982\u4e0b":9,"\u7b80\u5355\u7684pydataprovider\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":24,"\u7b80\u76f4":1,"\u7b97\u6cd5":14,"\u7c7b\u522bid":13,"\u7c7b\u522bid\u7684\u6570\u636e\u7c7b\u578b":13,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":0,"\u7c7b\u578b\u6765\u8bbe\u7f6e":24,"\u7eb5\u5411\u5305\u62ec\u56db\u4e2a\u7248\u672c":9,"\u7ec3":17,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u6570\u5341g\u7684\u5185\u5b58\u548c\u6570g\u7684\u663e\u5b58":14,"\u7ed3\u4e0a\u8ff0\u7f51\u7edc\u7ed3\u6784\u5728amazon":13,"\u7ed9":1,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":2,"\u7ee7\u7eed\u8bad\u7ec3":24,"\u7ef4\u5ea6\u4e3aword":13,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":13,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":13,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":14,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":24,"\u7f16\u8bd1\u53c2\u6570\u9009\u9879\u6587\u4ef6":22,"\u7f16\u8bd1\u73af\u5883\u548c\u6e90\u4ee3\u7801":9,"\u7f16\u8bd1\u9009\u9879":4,"\u7f16\u8bd1\u9009\u9879\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":8,"\u7f16\u8bd1\u9009\u9879\u5217\u8868\u5982\u4e0b":4,"\u7f16\u8bd1paddlepaddle\u7684gpu\u7248\u672c\u5e76\u4e0d\u9700\u8981\u4e00\u5b9a\u5728\u5177\u6709gpu":3,"\u7f51\u7edc\u540d\u79f0":13,"\u7f51\u7edc\u914d\u7f6e":13,"\u7f6e\u8fd9\u4e9b\u53d8\u91cf":4,"\u800c":9,"\u800c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f\u4e3a":24,"\u800c\u4e0d\u4f7f\u7528docker":9,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93\u7ed9paddlepaddl":24,"\u800c\u4e14\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u65f6\u4e00\u6837\u4ee5cost":27,"\u800c\u5728":[4,24],"\u800c\u5982\u679c\u6309\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u5c31\u4e0d\u4f1a\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898":24,"\u800c\u662f\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c":24,"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":14,"\u800c\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":24,"\u800c\u7279\u5f81\u5373\u4e3a":24,"\u800c\u8fd9\u4e2a\u4e00\u822c\u8bf4\u660epaddlepaddle\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6bd5\u4e86":10,"\u800c\u8fd9\u4e2a\u53d8\u91cf\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u7684batch":24,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38":24,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":4,"\u800cexpand":1,"\u800cgpu\u7684\u9a71\u52a8\u548c\u8bbe\u5907\u5168\u90e8\u6620\u5c04\u5230\u4e86\u5bb9\u5668\u5185":9,"\u800cpaddlepaddle\u8fdb\u7a0b\u5e2e\u52a9\u7528\u6237\u505a\u4e86":24,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":2,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":2,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":2,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":2,"\u811a\u672c":9,"\u811a\u672c\u53ef\u4ee5\u542f\u52a8paddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b\u548cpserv":9,"\u811a\u672c\u548c":9,"\u811a\u672c\u7c7b\u4f3c\u4e8e":9,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":2,"\u81ea\u5b9a\u4e49\u4e00\u4e2adataprovid":23,"\u81f3\u5c11\u5177\u67093":9,"\u81f3\u6b64":[9,24],"\u8212\u9002":1,"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":0,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":0,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":0,"\u83b7\u53d6\u5229\u7528one":13,"\u83b7\u53d6\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u5404k\u4e2a\u8fd1\u90bb":13,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":13,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer":1,"\u8868\u793a\u6574\u6570\u6807\u7b7e":24,"\u8868\u793a\u662f\u5426\u5141\u8bb8paddle\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":24,"\u8868\u793a\u7a00\u758f\u7684\u5411\u91cf":24,"\u8868\u793a\u7a00\u758f\u7684\u96f6\u4e00\u5411\u91cf":24,"\u8868\u793a\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":24,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":13,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":13,"\u8868\u793a\u8fd9\u4e2adataprovider\u662f\u8bad\u7ec3\u7528\u7684dataprovider\u6216\u8005\u6d4b\u8bd5\u7528\u7684":24,"\u8868\u793asubseq\u95f4\u4e0d\u5b58\u5728\u8054\u7cfb":1,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":0,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":2,"\u89c1":1,"\u89e3\u51b3\u529e\u6cd5\u662f":14,"\u89e3\u51b3\u529e\u6cd5\u662f\u5c06cuda":10,"\u89e3\u51b3\u65b9\u6cd5\u5f88\u7b80\u5355":10,"\u89e3\u6790\u8bad\u7ec3\u65f6\u7684\u914d\u7f6e\u6587\u4ef6":27,"\u89e3\u91ca":13,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3":23,"\u8bad\u7ec3":9,"\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u7684\u60c5\u51b5\u4e0b":24,"\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":23,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":13,"\u8bad\u7ec3\u7684\u65f6\u5019\u9ed8\u8ba4shuffl":24,"\u8bad\u7ec3\u811a\u672c":13,"\u8bad\u7ec3\u811a\u672c\u5728":13,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":14,"\u8bad\u7ec3\u8f6e\u6b21":13,"\u8bb2\u6570\u636e\u53d1\u9001\u7ed9paddlepaddl":24,"\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":1,"\u8bbe\u7f6e\u4e0b\u5217\u7f16\u8bd1\u9009\u9879\u65f6":4,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":14,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":14,"\u8bbe\u7f6e\u6210":[14,24],"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":14,"\u8bbe\u7f6e\u6210\u4e86\u5e8f\u5217":24,"\u8bbe\u7f6e\u6210true\u7684\u8bdd":24,"\u8bbe\u7f6e\u8f93\u5165\u7c7b\u578b":24,"\u8bc4\u4f30\u4ea7\u54c1\u7684\u8d28\u91cf":13,"\u8bcd\u6027\u6807\u6ce8":12,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":13,"\u8be5\u6570\u636e":24,"\u8be5\u6784\u5efa\u811a\u672c\u5145\u5206\u8003\u8651\u4e86\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":3,"\u8be5\u6a21\u578b\u4f9d\u7136\u662f\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":13,"\u8be5\u76ee\u5f55\u4e0b\u6709\u4e24\u4e2a\u6587\u4ef6":3,"\u8be5\u811a\u672c\u7684\u4f7f\u7528\u65b9\u6cd5\u662f":3,"\u8be5image\u57fa\u4e8eubuntu":3,"\u8be5image\u7684\u6784\u5efa\u5728dock":3,"\u8be6\u60c5\u8bf7\u53c2\u8003":27,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":14,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca\u5982\u4e0b\u9762\u8868\u683c":13,"\u8be6\u7ec6\u7684\u547d\u4ee4\u884c\u53c2\u6570\u8bf7\u53c2\u8003":27,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":4,"\u8be6\u7ec6\u89c1":0,"\u8bed\u4e49\u5b8c\u5168\u76f8\u540c":1,"\u8bf4\u660e":4,"\u8bf4\u660e\u547d\u4ee4\u884c\u53c2\u6570":10,"\u8bf7\u53c2\u8003":[9,24],"\u8bf7\u53c2\u8003\u4e0b\u8282refer":24,"\u8bf7\u53c2\u8003\u4e0b\u8ff0\u6587\u7ae0":23,"\u8bf7\u5b89\u88c5cuda":10,"\u8bf7\u5f53\u6210\u662f\u4e0d\u652f\u6301":14,"\u8bfb\u5165\u89e3\u6790\u8bad\u7ec3\u914d\u7f6e":27,"\u8bfb\u53d6\u6570\u636e":24,"\u8c03\u7528":4,"\u8c03\u7528\u4e00\u6b21":24,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":24,"\u8d1f\u6837\u672c":13,"\u8d1f\u8d23\u591a\u673a\u8bad\u7ec3\u4e2d\u7684\u53c2\u6570\u805a\u5408\u5de5\u4f5c":17,"\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":24,"\u8d77":1,"\u8def\u5f84\u53d8\u91cf\u4e3a":4,"\u8f83":1,"\u8f93\u5165":0,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":2,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":2,"\u8f93\u5165n\u4e2a\u5355\u8bcd":13,"\u8f93\u51fa":0,"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":2,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":2,"\u8f93\u51fa\u4e3an\u4e2aword":13,"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":0,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":2,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurr":1,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":14,"\u8fd0\u884c":[9,10],"\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u5c3d\u91cf\u662f\u540c\u4e00\u4e2a\u7248\u672c":4,"\u8fd0\u884c\u8fd9\u4e2acontain":9,"\u8fd0\u884cpaddlepaddle\u7684gpu\u7248\u672c\u4e00\u5b9a\u8981\u5728\u5177\u6709cuda\u7684\u673a\u5668\u4e0a\u8fd0\u884c":3,"\u8fd1":1,"\u8fd4\u56de0":24,"\u8fd4\u56de\u4e00\u4e2alist\u6216\u8005tupl":24,"\u8fd4\u56de\u6570\u636e\u5728paddlepaddle\u4e2d\u662f\u4ec5\u4ec5\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u8bad\u7ec3\u6837\u672c":24,"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548c":24,"\u8fd4\u56debatch_size\u7684\u5927\u5c0f":24,"\u8fd8\u4f1a":1,"\u8fd8\u662f":1,"\u8fd8\u6709":1,"\u8fd9":[1,13,14],"\u8fd93\u4e2a\u5b50\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":13,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":2,"\u8fd9\u4e09\u4e2alayer\u5c06\u5b83\u5148\u53d8\u6210\u4e00\u4e2a\u5143\u7d20":1,"\u8fd9\u4e24\u5c42\u4ec5\u662f\u4e3a\u4e86\u5c55\u793a\u5b83\u4eec\u7684\u7528\u6cd5":1,"\u8fd9\u4e2a":1,"\u8fd9\u4e2a\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":24,"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":14,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":14,"\u8fd9\u4e2a\u51fd\u6570\u4ee5\u4e00\u6761\u6570\u636e\u4e3a\u53c2\u6570":24,"\u8fd9\u4e2a\u51fd\u6570\u4f1a\u5728":24,"\u8fd9\u4e2a\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":24,"\u8fd9\u4e2a\u51fd\u6570\u7684\u53c2\u6570\u662f":24,"\u8fd9\u4e2a\u521d\u59cb\u5316\u51fd\u6570\u5177\u6709\u5982\u4e0b\u53c2\u6570":24,"\u8fd9\u4e2a\u53c2\u6570\u5728\u8fd9\u4e2a\u6837\u4f8b\u91cc\u6ca1\u6709\u4f7f\u7528":24,"\u8fd9\u4e2a\u53c2\u6570\u88abpaddlepaddle\u8fdb\u7a0b\u4f20\u5165":24,"\u8fd9\u4e2a\u548c\u5728":24,"\u8fd9\u4e2a\u58f0\u660e\u57fa\u672c\u4e0a\u548cmnist\u7684\u6837\u4f8b\u4e00\u81f4":24,"\u8fd9\u4e2a\u5916\u5c42memori":1,"\u8fd9\u4e2a\u5b57\u5178\u53ef\u4ee5\u5728":24,"\u8fd9\u4e2a\u5bf9\u5e94\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":24,"\u8fd9\u4e2a\u5bf9\u8c61\u548cprocess\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u4e00\u81f4":24,"\u8fd9\u4e2a\u5de5\u5177\u7c7b\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e":27,"\u8fd9\u4e2a\u5e8f\u5217\u6a21\u578b\u6bd4\u8f83\u590d\u6742":24,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":2,"\u8fd9\u4e2a\u63a5\u53e3\u5e76\u4e0d\u7528\u6237\u53cb\u597d":27,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":13,"\u8fd9\u4e2a\u672c\u8eab\u4e0d\u662f\u4e00\u4e2a\u5f88":24,"\u8fd9\u4e2a\u6a21\u5757\u4e2d\u7684":24,"\u8fd9\u4e2a\u8bbe\u7f6e\u4e3a":24,"\u8fd9\u4e2a\u8f6f\u4ef6\u5305\u6587\u6863\u76f8\u5bf9\u5b8c\u5584":27,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":2,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":24,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":2,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":14,"\u8fd9\u4e9b\u5185\u5b58\u5c31\u4e0d\u8003\u8651\u5982\u4f55\u7f29\u51cf\u4e86":14,"\u8fd9\u4e9b\u53c2\u6570\u5305\u62ecpaddle\u5b9a\u4e49\u7684\u53c2\u6570":24,"\u8fd9\u4e9b\u53d8":4,"\u8fd9\u4e9b\u53d8\u91cf\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":4,"\u8fd9\u4e9b\u53d8\u91cf\u5747\u53ef\u4ee5\u4f7f\u7528":4,"\u8fd9\u4e9b\u5b50\u53e5\u7684\u957f\u5ea6\u5f80\u5f80\u4e0d\u7b49\u957f":1,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":14,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":14,"\u8fd9\u4e9b\u6d41\u7a0b\u4e2d\u7684\u6570\u636e\u4e0b\u8f7d":13,"\u8fd9\u5176\u4e2d":14,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":0,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":14,"\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":24,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":14,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":2,"\u8fd9\u884c\u7684\u4f5c\u7528\u662f\u8bbe\u7f6edataprovider\u7684\u4e00\u4e9b\u5c5e\u6027":24,"\u8fd9\u91cc":[14,24],"\u8fd9\u91cc\u4e3e\u4f8b\u7684\u6570\u636e\u662f\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":24,"\u8fd9\u91cc\u4ee5":13,"\u8fd9\u91cc\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":24,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":14,"\u8fd9\u91cc\u53ef\u4ee5\u53c2\u8003paddle\u7684":22,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7b80\u5355\u7684\u6587\u672c\u6587\u4ef6\u8868\u793amnist\u56fe\u7247":24,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":13,"\u8fd9\u91cc\u6ca1\u6709\u4ecb\u7ecd\u591a\u673a\u5206\u5e03\u5f0f\u8bad\u7ec3":13,"\u8fd9\u91cc\u7684":24,"\u8fd9\u91cc\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":24,"\u8fd9\u91cc\u8981\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38":27,"\u8fd9\u91cc\u8bbe\u7f6e\u7684\u662f\u8fd4\u56de\u4e00\u4e2a":24,"\u8fd9\u91cc\u8bf4\u660e\u4e86\u8bad\u7ec3\u6570\u636e\u662f":24,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":13,"\u8fdb\u5165\u8be5\u6e90\u7801\u76ee\u5f55":3,"\u8fdb\u5165docker":9,"\u8fdc\u7a0b\u8bbf\u95ee":9,"\u8fde\u63a5":2,"\u8fde\u63a5\u8bf7\u53c2\u8003":13,"\u9002\u4e2d":1,"\u9009":1,"\u9009\u62e9":1,"\u9009\u62e9\u666e\u901acpu\u7248\u672c\u7684devel\u7248\u672c\u7684imag":9,"\u9009\u9879":4,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":14,"\u901a\u5e38\u6765\u8bf4\u6267\u884c\u4e0bgrep":14,"\u901a\u5e38\u6839\u636e\u4efb\u52a1\u9700\u6c42\u8fdb\u884c\u4e0d\u540c\u8bbe\u7f6e":1,"\u901a\u77e5":1,"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":2,"\u901a\u8fc7\u591a\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u5355\u53cc\u5c42rnn\u914d\u7f6e":1,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":2,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":2,"\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":4,"\u901a\u8fc7data":2,"\u903b\u8f91\u56de\u5f52":13,"\u9053\u6b49":1,"\u9069":1,"\u90a3\u4e48":[2,24],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":2,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":14,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":23,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":14,"\u90a3\u4e48\u5bf9\u5e94\u7684dataprovider\u65e2\u4e3a":24,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":14,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":14,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":14,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":14,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":14,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":14,"\u90a3\u4e48\u8fd9\u4e2a\u4e0b\u8f7d\u7ebf\u7a0b\u5c06\u4f1a\u5173\u95ed":3,"\u90a3\u4e48paddlepaddle\u4f1a\u7c97\u7565\u7684\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":24,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":14,"\u90e8\u5206\u8001\u7684cpu\u578b\u53f7\u65e0\u6cd5\u652f\u6301\u8fd9\u6837\u7684\u6307\u4ee4":14,"\u90fd":1,"\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":24,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":0,"\u914d\u7f6e":1,"\u914d\u7f6e\u4e86":24,"\u914d\u7f6e\u53c2\u6570\u914d\u7f6e\u7ed9dataprovider\u7684":24,"\u914d\u7f6e\u6587\u4ef6":13,"\u914d\u7f6eapi":0,"\u9152\u5e97":1,"\u91c7\u7528multi":14,"\u91cc\u4f1a\u7ee7\u7eed\u5b89\u88c5":10,"\u91cc\u63d0\u4f9b\u4e86\u6570\u636e\u4e0b\u8f7d\u811a\u672c":13,"\u91cc\u9762\u8bfb\u53d6":24,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":14,"\u91cf\u4e5f\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528cmake\u547d\u4ee4\u524d\u901a\u8fc7\u73af\u5883\u53d8\u91cf\u6307\u5b9a":4,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":14,"\u9488\u5bf9\u672c\u95ee\u9898":13,"\u94fe\u63a5\u4f55\u79cdblas\u7b49\u7b49":4,"\u9519\u8bef\u7387":13,"\u957f\u5ea6":14,"\u95f4\u63a5\u4f7f\u7528":1,"\u95f4\u9694":24,"\u9664\u4e86":24,"\u9664\u4e86boot":1,"\u9664\u8fc7data\u5c42":13,"\u9700\u8981\u5148\u5728\u6bcf\u4e2a\u8282\u70b9\u542f\u52a8":14,"\u9700\u8981\u53c2\u8003":9,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":14,"\u9700\u8981\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":9,"\u9700\u8981\u6ce8\u610f":24,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[4,10],"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":2,"\u9884\u6d4b\u6570\u636e\u6307\u5b9atest":13,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":13,"\u9884\u6d4b\u811a\u672c":13,"\u9884\u6d4bid":13,"\u989d\u5916\u7684\u53c2\u6570":13,"\u9996\u5148":1,"\u9996\u5148\u5217\u4e3e\u903b\u8f91\u56de\u5f52\u7f51\u7edc":13,"\u9996\u5148\u6211\u4eec\u5c06\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6":24,"\u9996\u5148\u8bf7\u53c2\u8003":13,"\u9aa43":13,"\u9ad8\u65af\u5206\u5e03":14,"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":13,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":2,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":2,"\u9ed8\u8ba4\u503c":[0,4],"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":2,"\u9ed8\u8ba4\u5355\u4f4d\u662fbyte":3,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":14,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4e00\u6761\u6570\u636e":24,"adamax\u7b49":13,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":13,"api\u9884\u6d4b":13,"argument\u4f20\u5165":24,"argument\u5f62\u5f0f\u4f20\u5165":24,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":14,"atlas\u5e93\u7684\u8def\u5f84":4,"batch\u4e2d\u5305\u542b":14,"batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":13,"bool\u53c2\u6570":24,"case":[13,26],"cd\u5230\u542b\u6709dockerfile\u7684\u8def\u5f84\u4e2d":9,"check\u662ffalse\u7684\u8bdd":24,"class":14,"cmake\u53ef\u4ee5\u5c06cmake\u9879\u76ee\u6587\u4ef6":4,"cmake\u662f\u4e00\u4e2a\u8de8\u5e73\u53f0\u7684\u7f16\u8bd1\u811a\u672c":4,"cmake\u7684\u5b98\u65b9\u6587\u6863":4,"cmake\u7f16\u8bd1\u65f6\u4f1a\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":4,"container\u540e":9,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":14,"cpu\u7248\u672c":9,"cpuinfo\u770b\u770b\u662f\u5426\u6709\u8f93\u51fa\u5373\u53ef\u77e5\u9053\u662f\u5426\u652f\u6301":14,"cuda\u76f8\u5173\u7684driver\u548c\u8bbe\u5907\u6620\u5c04\u8fdbcontainer\u4e2d":9,"d\u547d\u4ee4\u5373\u53ef":4,"d\u547d\u4ee4\u6307\u5b9a":4,"dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":24,"dataprovider\u53ef\u4ee5\u662f":24,"dataprovider\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":24,"dataprovider\u7684\u5177\u4f53\u7528\u6cd5\u548c\u5982\u4f55\u5b9e\u73b0\u4e00\u4e2a\u65b0\u7684dataprovid":23,"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":14,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":2,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":2,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":2,"decoer\u67b6\u6784":2,"devel\u548cdemo":9,"dim\u7684\u65b0\u7684\u5411\u91cf":13,"dim\u7ef4\u5ea6\u5411\u91cf":13,"docker\u662f\u4e00\u4e2a\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u7ea7\u865a\u62df\u73af\u5883":9,"docker\u7684\u5b98\u65b9\u6587\u6863":9,"dockerfile\u548cbuild":3,"dockerfile\u662fdock":3,"dockerfile\u7684\u6587\u6863":9,"dockerfile\u7684\u6700\u4f73\u5b9e\u8df5":9,"driver\u6dfb\u52a0\u5230ld_library_path\u4e2d":10,"elec\u6d4b\u8bd5\u96c6":13,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u6570\u636e\u63d0\u4f9b\u7684\u811a\u672c":13,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":2,"encoder\u8f93\u51fa":2,"entropy\u4f5c\u4e3acost":14,"export":[4,9,10],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":24,"float":24,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":24,"generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559":24,"generator\u81f3\u5c11\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":24,"gpu\u53cc\u7f13\u5b58":24,"gpu\u7248\u672c":9,"gpu\u7248\u672c\u4e8c\u8fdb\u5236":4,"group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":1,"group\u5916":1,"gru\u6a21\u578b":13,"gru\u6a21\u578b\u914d\u7f6e":13,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":24,"id\u4e3a0\u7684\u6982\u7387":13,"id\u4e3a1\u7684\u6982\u7387":13,"image\u6784\u5efa\u6e90\u7801\u653e\u7f6e\u5728":3,"image\u7684\u4e3b\u8981\u63cf\u8ff0\u6587\u4ef6":3,"image\u7684\u4e3b\u8981\u6784\u5efa\u6b65\u9aa4":3,"image\u7684\u6784\u5efa\u6b65\u9aa4":3,"import":[13,14,24,27],"include\u4e0b\u9700\u8981\u5305\u542bcbla":4,"include\u4e0b\u9700\u8981\u5305\u542bmkl":4,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":24,"int":[1,13,24],"key\u662fdata_layer\u7684\u540d\u5b57":24,"label\u662finteg":1,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"layer2\u4e00\u81f4":0,"layer2\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":0,"layer2\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":0,"layer\u4e0d\u5173\u5fc3\u6570\u636e\u662f\u5426\u662f\u5e8f\u5217\u683c\u5f0f":1,"layer\u4e0d\u80fd\u94fe\u63a5\u5916\u5c42\u7684\u8fd9\u4e2amemori":1,"layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":1,"layer\u4f5c\u4e3a\u8f93\u51fa":27,"layer\u540e":1,"layer\u548caverag":1,"layer\u548cembed":1,"layer\u548clstmemori":1,"layer\u5c42":1,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":2,"layer\u6587\u6863":13,"layer\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":0,"ld_library_path\u7b49\u7b49":10,"ld_library_path\u91cc\u9762\u627e\u4e0d\u5230\u8fd9\u4e9b\u52a8\u6001":10,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":4,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":4,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":4,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542b":4,"list\u4e0d\u8bbe\u7f6e":23,"list\u4e2d":[23,24],"list\u4e2d\u7684\u4e00\u884c":24,"list\u4e2d\u7684\u6bcf\u4e00\u884c":24,"list\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":23,"list\u4e5f\u53ef\u4ee5\u653e\u7f6ehdfs\u6587\u4ef6\u8def\u5f84":23,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":24,"list\u5373\u4e3a":24,"list\u548ctest":23,"list\u5747\u4e3a\u672c\u5730\u7684\u4e24\u4e2a\u6587\u4ef6":23,"list\u6307\u5b9a\u7684\u6570\u636e":13,"list\u7684\u4f4d\u7f6e":13,"list\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a\u8def\u5f84":24,"lstm\u6a21\u578b\u7b49":13,"lstm\u6a21\u578b\u914d\u7f6e":13,"make\u548cmak":5,"mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":1,"mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":1,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":2,"memory\u53ea\u80fd\u5728":2,"memory\u6307\u5411\u4e00\u4e2alay":2,"memory\u7684\u521d\u59cb\u72b6\u6001":2,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":2,"memory\u7684i":2,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":2,"mkl\u7684\u8def\u5f84":4,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":4,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u6709":24,"movielens\u6570\u636e\u96c6":12,"movielens\u8bc4\u5206\u56de\u5f52":12,"name\u90fd\u662f":9,"no_avx\u7684":14,"osx\u6216\u8005\u662fwindows\u673a\u5668":9,"osx\u7684\u5b89\u88c5\u6587\u6863":9,"paddle\u5728\u8fdb\u884c\u8ba1\u7b97\u7684\u65f6\u5019\u4e3a\u4e86\u63d0\u5347\u8ba1\u7b97\u6027\u80fd":14,"paddle\u5b9a\u4e49\u7684\u53c2\u6570\u5305\u62ec":24,"paddle\u7684":10,"paddlepaddle\u4e2d":[0,2],"paddlepaddle\u4f7f\u7528\u5747\u503c0":14,"paddlepaddle\u4f7f\u7528\u8fd0\u884c\u65f6\u52a8\u6001\u8fde\u63a5cuda\u7684so":10,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":24,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528":4,"paddlepaddle\u53ef\u4ee5\u8bfb\u53d6python\u5199\u7684\u4f20\u8f93\u6570\u636e\u811a\u672c":13,"paddlepaddle\u5728\u8fd0\u884c\u65f6\u627e\u4e0d\u5230\u5bf9\u5e94\u7684config\u6587\u4ef6":10,"paddlepaddle\u5c06train":24,"paddlepaddle\u63a8\u8350\u4f7f\u7528docker\u8fdb\u884cpaddlepaddle\u7684\u90e8\u7f72\u548c":9,"paddlepaddle\u63d0\u4f9b\u4e86docker\u7684\u4f7f\u7528\u955c\u50cf":9,"paddlepaddle\u63d0\u4f9b\u6570\u4e2a\u9884\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6765\u8fdb\u884c\u5b89\u88c5":8,"paddlepaddle\u63d0\u4f9b\u7684\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u547d\u4ee4\u8fd0\u884c":9,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":14,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":14,"paddlepaddle\u662f\u795e\u7ecf\u7f51\u7edc\u8bad\u7ec3\u5e73\u53f0":14,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":14,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":14,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":24,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879\u53ef\u4ee5\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e":4,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879\u662f\u53ef\u4ee5\u63a7\u5236paddlepaddle\u751f\u6210cpu":4,"paddlepaddle\u7684dock":3,"paddlepaddle\u7684python\u9884\u6d4b\u63a5\u53e3":26,"paddlepaddle\u7684ubuntu\u5b89\u88c5\u5305\u5206\u4e3a\u56db\u4e2a\u7248\u672c":10,"paddlepaddle\u76ee\u524d\u4f7f\u7528swig\u5bf9\u5176\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":27,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":14,"paddlepaddle\u76ee\u524d\u652f\u6301\u4f7f\u7528deb\u5305\u5b89\u88c5":10,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":2,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":2,"paddlepaddle\u8fd0\u884c\u65f6\u5982\u679c\u6ca1\u6709\u5bfb\u627e\u5230cuda\u7684driv":10,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":23,"period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":13,"process\u51fd\u6570":24,"process\u51fd\u6570\u662f\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u7684\u4e3b\u51fd\u6570":24,"process\u51fd\u6570\u8c03\u7528\u591a\u6b21":24,"pserver\u4e3apaddlepaddle\u7684paramet":17,"pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570":17,"pserver\u7ec4\u5408\u4f7f\u7528":17,"py\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":13,"pydataprovider2\u4f1a\u5c3d\u91cf\u4f7f\u7528\u5185\u5b58":24,"pydataprovider2\u6587\u6863":27,"pydataprovider2\u7684\u4f7f\u7528":23,"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":14,"pydataprovider\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":24,"python\u5305":9,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":24,"python\u7684":9,"python\u7684swig\u63a5\u53e3\u53ef\u4ee5\u65b9\u4fbf\u8fdb\u884c\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":4,"return":[1,13,24],"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":2,"search\u7684\u751f\u6210":1,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":2,"seq\u540e":1,"seq\u5c42":1,"seq\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":0,"seq\u7c7b\u4f3c":0,"sequence\u7c7b\u578b":1,"server\u8fdb\u7a0b":17,"sh\u662fdocker":3,"shuffle\u8bad\u7ec3\u6570\u636e":24,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":14,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":14,"slot\u662finteg":1,"softmax\u8f93\u51fa":13,"sparse\u8bad\u7ec3\u7684\u6587\u6863":14,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":14,"state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":1,"step\u4e2d":1,"step\u51fd\u6570\u4e2d\u7684memori":2,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":2,"step\u7684recurr":1,"string\u7684\u683c\u5f0f\u6253\u5370\u51fa\u6765":17,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":0,"swig_paddle\u63a5\u53d7\u7684\u539f\u59cb\u6570\u636e\u662fc":27,"tag\u5206\u522b\u4e3a":9,"train\u5373\u4e3apaddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b":17,"train\u5b8c\u6210\u5355\u673a\u591a\u663e\u5361\u591a\u7ebf\u7a0b\u7684\u8bad":17,"train\u7684\u547d\u4ee4\u884c\u53c2\u6570":17,"true":[1,14],"true\u7684memory\u65f6":1,"types\u7684\u8be6\u7ec6\u7528\u6cd5":1,"ubuntu\u7684deb\u5b89\u88c5\u5305\u7b49":8,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2acudnn\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":4,"value\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":27,"value\u662f\u7279\u5f81\u503c":24,"value\u7c7b\u578b":1,"var":9,"vector\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":13,"version\u53ef\u4ee5\u6253\u5370\u51fapaddle\u7684\u7248\u672c\u4fe1\u606f\u548c\u7f16\u8bd1\u7684\u9009\u9879":22,"version\u53ef\u4ee5\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u7f16\u8bd1\u65f6\u4fe1\u606f":17,"version\u7684\u547d\u4ee4\u884c\u53c2\u6570":17,"yield\u6587\u672c\u4fe1\u606f\u548c\u7c7b\u522bid":13,__main__:27,__name__:27,abov:24,act:[1,13,14],act_typ:13,activ:13,adadelta:[13,14],adagrad:13,adam:13,adamoptim:13,afi:24,agg_level:[0,1],aggregatelevel:[0,1],all:[2,24],allow:13,alreadi:10,also:13,append:[1,24],apt:[9,10],arg:[3,13,24],around:24,arrai:27,assert:27,atla:4,atlas_root:4,averag:1,avg:13,avgcost:13,avgpool:[0,1,13],avx:[9,14],bag:13,baidu:[9,10],batch:13,batch_siz:[1,13,14],batchsiz:1,beam:1,beam_search:2,befor:14,bias_attr:[1,14],bias_param:14,binari:13,bla:4,bool:13,boot:2,boot_lay:1,both:13,bow:13,build:[3,9],cach:[13,14,23],cache_pass_in_mem:[13,14,24],cachetyp:[13,14,24],calc_batch_s:24,call:13,can:13,can_over_batch_s:24,cat:9,categori:13,check:[1,10,24],check_fail_continu:24,chines:12,chpasswd:9,classif:13,classification_cost:[1,13,14],classification_error_evalu:13,close:24,cmake:4,cmd:9,cnn:13,code:[3,14,24,27],com:[9,10],comment:[1,13],compil:[10,22],conf:[1,27],config:[10,13],config_arg:13,config_pars:27,connect:13,contain:[13,24],context:24,context_len:13,context_start:13,convert:[13,24,27],couldn:10,cpp:[10,13],cpu:[9,10,24],cpuinfo:9,createfromconfigproto:27,cross:[13,14],cuda_so:9,cudastat:10,cudasuccess:10,cudnn:4,cudnn_root:4,cudnnv5:4,current:[13,24],currentcost:13,currentev:13,dalla:24,data:[1,10],data_config:27,data_initialz:13,data_lay:[1,13,14,24],dataprovid:[13,14],dataprovider_bow:13,dataprovider_emb:13,dataproviderconvert:27,dataset:13,deb:10,debian:10,decod:2,decor:24,def:[1,13,14,24,27],defin:[13,14,24],define_py_data_sources2:[13,24],delar:13,demo:[9,13],dense_vector:[24,27],describ:13,descript:26,detail:26,dev:9,devel:9,devic:9,devices:9,dict:[13,24],dict_dim:[1,14],dict_fil:[1,13],dictionai:13,dictionari:[13,14,24],dictrionari:13,differ:13,dim:13,dimens:[13,14],dir:13,doc:27,documentari:24,dpkg:10,driver:10,dso_handl:10,dtype:27,dump_config:17,dure:[13,24],dwith_avx:14,dynam:24,each:[13,24],each_pixel_str:24,each_sequence:[0,1],each_word:24,echo:9,either:13,els:[1,9,13],emb:[1,13,14],emb_group:1,emb_sum:14,embed:12,embedding_lay:[1,13,14],entropi:13,enumer:13,equal:1,error:[10,13],error_clipping_threshold:1,etc:9,eval:13,exampl:13,expand:[0,1],expand_a:[0,1],expand_level:[0,1],expandlevel:[0,1],expose:9,extralayerattribut:1,f0831:10,fail:[1,10],fals:[13,14],fc_layer:[1,13,14],fc_param:14,fdata:1,featur:[13,24],feature_a:14,feature_b:14,festiv:24,file:[13,24],file_list:24,file_nam:[1,13],filenam:[14,24],fill:13,find:10,first:[0,13],float32:27,fly:13,forwardtest:27,framework:13,from:[2,9,13,14,24,27],from_sequence:[0,1],from_timestep:0,full_matrix_project:1,fulli:13,func:24,gate_act:1,gdebi:10,gener:[13,24],generatedinput:2,get:[9,10,13,24],get_config_arg:13,get_data:13,get_sample_from_lin:14,github:10,give:24,given:13,globe:24,gpu:[9,10],gradient_clipping_threshold:13,gradientmachin:27,grep:9,group:1,group_input:1,gru:13,gru_siz:13,gserver:1,hassubseq:1,help:27,hidden:14,hidden_a:14,hidden_b:14,hidden_dim:1,hierach:2,hint:27,hl_cuda_devic:10,hl_dso_load:10,hook2:1,hook:1,host:9,hot:13,hous:24,howardjohnson:1,http:10,ignor:24,imag:[9,14],imagenet:12,img:24,inarg:27,includ:13,init:13,init_hook:[1,13,23],init_model_path:13,initi:[13,24],initial_max:14,initial_mean:14,initial_min:14,initial_std:14,initpaddl:27,inner:14,inner_mem:1,inner_rnn_output:1,inner_rnn_st:1,inner_step:1,input:[0,1,2,13,14,24],input_typ:[1,13,14,23],instal:5,insuffici:10,integ:[13,24],integer_sequ:[14,24],integer_valu:[1,13,14,24],integer_value_sequ:[1,13],integer_value_sub_sequ:1,invok:24,ipt:14,is_predict:13,is_train:24,isinst:27,iterat:24,job:13,join:1,kernel:9,kwarg:[1,13,24],l2regular:13,label:[1,13,14,24],label_dim:[1,13],label_list:1,lake:24,last:[0,1],later:13,latest:[3,9],layer1:0,layer2:0,layer:[0,1,2,13],ld_library_path:10,learning_method:13,learning_r:[13,14],len:[1,13,24],level:2,lib64:[9,10],lib:4,libcuda:9,libnvidia:9,librari:10,line:1,link:2,list:[13,23,24],load_data_arg:27,loadparamet:27,local:[4,10],log_period:13,logger:24,look:[13,24],loss:13,lowest_dl_speed:3,lstm:[1,13],lstm_averag:1,lstm_expand:1,lstm_group:1,lstm_group_input:1,lstm_input:1,lstm_last:1,lstm_layer_attr:1,lstm_nest_group:1,lstm_output:1,lstm_size:13,lstmemori:1,lstmemory_group:1,mac:9,machin:2,main:27,maintainer:9,make:[10,24],make_diagram:17,maxid:13,maxid_lay:13,maxpool:0,mean:[13,14],mem:1,memori:1,merge_model:17,method:24,min_pool_s:[14,24],mixed_lay:1,mkdir:9,mkl:4,mkl_core:4,mkl_root:4,mnist:24,mnist_model:27,mnist_provid:24,mnist_train:24,model_config:27,modul:[13,24],momentum:[13,14],movi:24,must:10,name:[1,9,13,14,24],necessari:13,need:13,neg:[13,24],nest:1,net:9,neural:2,next:24,no_cache:24,no_sequence:24,noavx:[9,10],none:[13,24,27],normal:9,note:10,now:2,nullptr:10,num:13,num_pass:13,nvidia:9,obj:[13,24],object:[13,24],off:[3,4,10,14,22],omit:[13,14],on_init:24,onli:[2,13],open:[1,13,14,24],openbla:4,openblas_root:4,openssh:9,opt:4,other:13,out:[1,2],outer:1,outer_mem:1,outer_rnn_st:1,outer_step:1,outlin:26,output:[1,13,14],outsid:24,paddl:[1,3,9,10,13,14,17],paddle_gpu:3,paddle_ssh:9,paddle_ssh_machin:9,paddledev:9,paddlepaddl:[9,10,22,27],param_attr:14,paramattr:14,paramet:13,parse_config:27,pass:[13,14,24],path:[10,13],period:13,permitrootlogin:9,pixel:24,pixels_float:24,pixels_str:24,place:24,pleas:10,pool:0,pool_siz:24,pooling_typ:[0,1,13,14],posit:[13,24],pred:13,predict_output_dir:13,predict_sampl:27,preprocess:13,print:27,proc:[9,14],process2:1,process:[1,13,14,24],process_pr:13,process_seq:1,process_subseq:1,properli:13,provid:1,pserver:14,pull:9,put:13,py_paddl:[9,27],pydataprovid:[14,23],pydataprovider2:[13,24,27],pydataproviderwrapp:13,python:[13,14],quick_start:13,rang:13,rank:13,rare:24,read:[13,24],read_next_from_fil:14,real_process:24,recurrent_group:[1,2],refer:23,reference_cblas_root:4,reffer:4,regular:13,releas:10,repres:13,represent:13,resnet:12,result:[13,24],revers:2,rmsprop:13,rnn:2,rnn_data_provid:1,rnn_state:1,roce:9,root:9,run:9,runtim:[10,24],same:[13,24],sampl:[13,24],save:[13,24],save_dir:13,saw:24,sbin:9,script:3,second:13,sed:9,see:13,sentanc:14,sentenc:24,sentiment:24,sentimental_provid:24,separ:13,seq:[0,1],seq_pool:0,seq_typ:24,seqlastin:1,sequel:24,sequenc:[1,2],sequence:24,sequence_conv_pool:13,sequence_layer_group:1,sequence_nest_layer_group:1,sequence_nest_rnn:1,sequence_nest_rnn_readonly_memori:1,sequence_rnn:1,sequencegen:1,sequencestartposit:1,sequencetyp:24,server:9,set:[1,13,14,24],setup:13,should:2,should_shuffl:24,shuf:14,shuffl:14,sigmoidactiv:1,simple_gru:13,simple_lstm:13,size:[1,13,14,24],softmax:[13,14],softmax_param:14,softmaxactiv:[1,13,14],sourc:13,spars:[13,14],sparse_binary_vector:[13,14,24],sparse_float_vector:24,sparse_upd:14,sparse_vector:14,specifi:[10,13],split:[1,13,24],src_root:27,ssh:9,sshd:9,sshd_config:9,stat:13,state:2,state_act:1,staticinput:2,step:[1,2],stop:9,store:13,string:24,strip:[1,13],structur:13,stun:24,sub:1,sub_sequence:24,subseq:[0,2],subsequenceinput:1,sudo:10,sumpool:14,support:9,sure:10,swig_paddl:27,system:14,tag:3,take:24,tanhactiv:1,tbd:[1,25],team:9,test:[1,13,23],test_data:27,test_list:[13,24],test_recurrentgradientmachin:1,text:[13,24],text_conv:13,them:13,thi:[13,24],thing:24,timestep:0,tmp:24,tour_train_wdseg:1,train:10,train_list:[13,24],trainer:[13,24,27],trainer_config:[13,23,24,27],trainer_config_help:[13,14,24],trainer_count:14,trainerintern:13,trainermain:10,travel:24,trn:13,tst:13,turn:2,two:13,txt:[13,24],type:[13,24],unk_idx:13,updat:9,use:[13,26],use_dynamic_ord:24,use_gpu:[13,14,27],usepam:9,user:13,usr:[4,9,10],valid:10,valu:[1,13,24,27],version:[9,10],via:10,want:24,what:13,when:24,which:13,whole:24,wilder:24,window:9,with_avx:[4,10,22],with_doc:4,with_doc_cn:4,with_doubl:[10,22],with_double:4,with_dso:4,with_gflag:[10,22],with_gflags:4,with_glog:[4,10,22],with_gpu:[3,4,10,22],with_metric_learn:[10,22],with_predict_sdk:[10,22],with_python:[4,10,22],with_rdma:[4,10,22],with_style_check:4,with_swig_py:4,with_testing:4,with_tim:[10,22],with_timer:4,without:9,wonder:24,word2vec:14,word:[1,2,12],word_dict:[1,13],word_dim:[1,13],word_id:[14,24],word_slot:1,word_slot_list:1,word_vector:13,xarg:9,yield:[1,13,14,24],you:[10,24],your_host_machine:9,your_param_name:14},titles:["\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u53cc\u5c42RNN\u914d\u7f6e\u4e0e\u793a\u4f8b","Recurrent Group\u6559\u7a0b","\u6784\u5efaPaddlePaddle Docker Image","\u8bbe\u7f6ePaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","\u4f7f\u7528cmake\u7f16\u8bd1PaddlePaddle","\u5b89\u88c5\u7f16\u8bd1PaddlePaddle\u9700\u8981\u7684\u4f9d\u8d56","make\u548cmake install","\u7f16\u8bd1\u4e0e\u5b89\u88c5","\u5b89\u88c5PaddlePaddle\u7684Docker\u955c\u50cf","\u4f7f\u7528deb\u5305\u5728Ubuntu\u4e0a\u5b89\u88c5PaddlePaddle","\u96c6\u7fa4\u8bad\u7ec3","\u4f7f\u7528\u793a\u4f8b","PaddlePaddle\u5feb\u901f\u5165\u95e8\u6559\u7a0b","PaddlePaddle\u5e38\u89c1\u95ee\u9898","PaddlePaddle\u6587\u6863","<no title>","\u547d\u4ee4\u884c\u53c2\u6570","<no title>","<no title>","paddle pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570","paddle train\u7684\u547d\u4ee4\u884c\u53c2\u6570","paddle version\u7684\u547d\u4ee4\u884c\u53c2\u6570","PaddlePaddle\u7684\u6570\u636e\u63d0\u4f9b(DataProvider)\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","\u81ea\u5b9a\u4e49\u4e00\u4e2aDataProvider","\u7528\u6237\u63a5\u53e3","PaddlePaddle\u7684Python\u9884\u6d4b\u63a5\u53e3"],titleterms:{"\u4e0b\u8f7d\u548c\u8fd0\u884cdocker\u955c\u50cf":9,"\u4ecb\u7ecd":23,"\u4f18\u5316\u7b97\u6cd5":13,"\u4f7f\u7528\u6307\u5357":15,"\u4f7f\u7528\u6982\u8ff0":13,"\u4f7f\u7528\u793a\u4f8b":12,"\u4f7f\u7528\u811a\u672c\u6784\u5efapaddlepaddl":3,"\u4f7f\u7528cmake\u7f16\u8bd1paddlepaddl":5,"\u4f7f\u7528deb\u5305\u5728ubuntu\u4e0a\u5b89\u88c5paddlepaddl":10,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":24,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":14,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":14,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":14,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":14,"\u5377\u79ef\u6a21\u578b":13,"\u53c2\u6570\u5185\u5b58":14,"\u53c2\u8003":24,"\u53cc\u5c42rnn\u4ecb\u7ecd":2,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":2,"\u53cc\u5c42rnn\u914d\u7f6e\u4e0e\u793a\u4f8b":1,"\u53cc\u8fdb\u53cc\u51fa":1,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":24,"\u53ef\u80fd\u9047\u5230\u7684\u95ee\u9898":10,"\u547d\u4ee4\u884c\u53c2\u6570":[13,17,26],"\u548c":0,"\u56fe\u50cf":12,"\u57fa\u672c\u539f\u7406":2,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":14,"\u5982\u4f55\u51cf\u5c11paddlepaddle\u7684\u5185\u5b58\u5360\u7528":14,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":14,"\u5982\u4f55\u52a0\u901fpaddlepaddle\u7684\u8bad\u7ec3\u901f\u5ea6":14,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":14,"\u5b89\u88c5":[8,13],"\u5b89\u88c5\u7f16\u8bd1paddlepaddle\u9700\u8981\u7684\u4f9d\u8d56":6,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":9,"\u5e38\u7528\u6a21\u578b":12,"\u5e38\u89c1\u95ee\u9898":15,"\u5e8f\u5217\u6a21\u578b\u6570\u636e\u63d0\u4f9b":24,"\u5f00\u53d1\u6307\u5357":15,"\u6027\u80fd\u95ee\u9898":9,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":13,"\u6216\u8005\u662f":14,"\u63a8\u8350":12,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":0,"\u6570\u636e\u5411\u6a21\u578b\u4f20\u9001":13,"\u6570\u636e\u63d0\u4f9b":26,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":13,"\u65f6\u5e8f\u6a21\u578b":13,"\u6784\u5efapaddlepaddl":3,"\u6982\u8ff0":[0,2],"\u6a21\u578b\u4e2d\u7684\u914d\u7f6e":1,"\u6ce8\u610f\u4e8b\u9879":[9,24],"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":2,"\u7528\u6237\u63a5\u53e3":26,"\u76f8\u5173\u6982\u5ff5":2,"\u793a\u4f8b1":1,"\u793a\u4f8b2":1,"\u793a\u4f8b3":1,"\u793a\u4f8b4":1,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":14,"\u7b80\u5355\u7684\u4f7f\u7528\u573a\u666f":24,"\u7b97\u6cd5\u6559\u7a0b":15,"\u7f16\u8bd1":8,"\u7f16\u8bd1\u4e0e\u5b89\u88c5":8,"\u7f51\u7edc\u7ed3\u6784":13,"\u81ea\u5b9a\u4e49\u4e00\u4e2adataprovid":25,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":12,"\u8bad\u7ec3\u6a21\u578b":13,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":2,"\u8bbe\u7f6epaddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":4,"\u8bcd\u5411\u91cf\u6a21\u578b":13,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u7684\u65b9\u6cd5":1,"\u8f93\u5165":2,"\u8f93\u5165\u4e0d\u7b49\u957f":1,"\u8f93\u5165\u793a\u4f8b":2,"\u8f93\u51fa":2,"\u8f93\u51fa\u65e5\u5fd7":13,"\u8fdc\u7a0b\u8bbf\u95ee\u95ee\u9898\u548c\u4e8c\u6b21\u5f00\u53d1":9,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":13,"\u9047\u5230":14,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":13,"\u9644\u5f55":13,"\u96c6\u7fa4\u8bad\u7ec3":11,"\u975e\u6cd5\u6307\u4ee4":14,"\u9884\u6d4b":[13,26],"beam_search\u7684\u751f\u6210":1,"blas\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":4,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":4,"config\u6587\u4ef6\u627e\u4e0d\u5230":10,"cudnn\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":4,"driver\u627e\u4e0d\u5230":10,"group\u6559\u7a0b":2,"make\u548cmak":7,"paddlepaddle\u5e38\u89c1\u95ee\u9898":14,"paddlepaddle\u5feb\u901f\u5165\u95e8\u6559\u7a0b":13,"paddlepaddle\u63d0\u4f9b\u7684docker\u955c\u50cf\u7248\u672c":9,"paddlepaddle\u6587\u6863":15,"paddlepaddle\u7684\u6570\u636e\u63d0\u4f9b":23,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":4,"paddlepaddle\u7684bool\u578b\u7f16\u8bd1\u9009\u9879":4,"paddlepaddle\u7684cblas\u7f16\u8bd1\u9009\u9879":4,"paddlepaddle\u7684python\u9884\u6d4b\u63a5\u53e3":27,"pserver\u7684\u547d\u4ee4\u884c\u53c2\u6570":20,"pydataprovider2\u7684\u4f7f\u7528":24,"python\u6570\u636e\u52a0\u8f7d\u811a\u672c":13,"so\u627e\u4e0d\u5230":10,"subseq\u95f4\u65e0memori":1,"subseq\u95f4\u6709memori":1,"train\u7684\u547d\u4ee4\u884c\u53c2\u6570":21,"version\u7684\u547d\u4ee4\u884c\u53c2\u6570":22,algorithm:13,appendix:13,architectur:13,argument:13,cach:24,command:13,configur:13,content:14,convolut:13,cuda:[4,10],data:13,dataprovid:23,docker:3,expand_lay:0,first_seq:0,illeg:14,image:3,init_hook:24,input_typ:24,instal:7,install:13,instruct:14,last_seq:0,libcudart:10,libcudnn:10,line:13,log:13,logist:13,memori:2,model:13,network:13,optimiz:13,overview:13,paddl:[20,21,22],pooling_lay:0,predict:13,prepar:13,provid:[13,24],recurr:2,refer:24,regress:13,script:13,sequenc:13,summari:13,time:13,train:13,transfer:13,vector:13,word:13}})
\ No newline at end of file