未验证 提交 ac75a9a6 编写于 作者: Y Yuanle Liu 提交者: GitHub

[Paddle Inference] fix mixed precision diff (#49475)

上级 04aa80e6
......@@ -78,11 +78,11 @@ inline bool VarNodeHasDtype(Node* var_node) {
(type == VarType::VOCAB);
}
inline bool IsFloatType(VarType::Type type) {
inline bool IsFP32AndFP64(VarType::Type type) {
return (type == VarType::FP64) || (type == VarType::FP32);
}
inline bool IsHalfType(VarType::Type type) {
inline bool IsFP16AndBFP16(VarType::Type type) {
return (type == VarType::FP16) || (type == VarType::BF16);
}
......@@ -159,23 +159,14 @@ bool OpSupportPrecision(const std::string& op_type,
// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
black_list_.insert({
// numerically-dangerous
"acos",
"asin",
"cosh",
"tan",
"exp",
"expm1",
"square",
"log",
"log2",
"log10",
"log1p",
"logsumexp",
"mean",
"rsqrt",
"sum",
"cos_sim",
"softmax_with_cross_entropy",
......@@ -271,6 +262,9 @@ void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
VLOG(4) << "InsertCastOp done";
RestoreOpOriginType();
VLOG(4) << "RestoreOpOriginType done";
LOG(INFO) << "The number of ops run at low precision ["
<< op_run_low_precision_.size() << "/" << op_original_type_.size()
<< "]";
}
void AutoMixedPrecisionPass::SetOpUniqueType() const {
......@@ -314,11 +308,26 @@ void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
for (const auto& nodes : all_op_nodes_) {
for (auto* op_node : nodes) {
auto op_type = op_node->Op()->Type();
if (op_node->Op()->HasAttr("in_dtype")) {
auto* var_node = op_node->inputs[0];
auto* real_var_node = real_vars_[var_node->Var()->Name()];
if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
op_node->Op()->SetAttr(
"in_dtype",
static_cast<int>(framework::TransToProtoVarType(low_precision_)));
op_node->Op()->Flush();
VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
<< static_cast<int>(real_var_node->Var()->GetDataType())
<< " --->" << static_cast<int>(low_precision_) << " )";
}
}
if (op_run_low_precision_.count(op_type) == 0) continue;
if (op_node->Op()->HasAttr("dtype")) {
auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
if (IsFloatType(static_cast<VarType::Type>(dtype))) {
if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
op_node->Op()->SetAttr(
"dtype",
static_cast<int>(framework::TransToProtoVarType(low_precision_)));
......@@ -326,10 +335,9 @@ void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
<< " --->" << static_cast<int>(low_precision_) << " )";
}
}
if (op_node->Op()->HasAttr("out_dtype")) {
} else if (op_node->Op()->HasAttr("out_dtype")) {
auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
if (IsFloatType(static_cast<VarType::Type>(out_dtype))) {
if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
op_node->Op()->SetAttr(
"out_dtype",
static_cast<int>(framework::TransToProtoVarType(low_precision_)));
......@@ -358,14 +366,34 @@ void AutoMixedPrecisionPass::GetOpPrecision() const {
if (op_node->Op()->HasAttr("dtype")) {
auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
support_low_precision = support_low_precision &&
IsFloatType(static_cast<VarType::Type>(dtype));
support_low_precision =
support_low_precision &&
IsFP32AndFP64(static_cast<VarType::Type>(dtype));
} else if (op_node->Op()->HasAttr("out_dtype")) {
auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
support_low_precision =
support_low_precision &&
IsFloatType(static_cast<VarType::Type>(out_dtype));
} else {
IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
}
// If scale op's "scale" and "bias" attr value exceed the range of fp16
// and bf16, it cannot run at low precision.
if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
if (low_precision_ == phi::DataType::FLOAT16) {
support_low_precision =
support_low_precision &&
phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
} else if (low_precision_ == phi::DataType::BFLOAT16) {
support_low_precision =
support_low_precision &&
phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(scale)) &&
phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
}
}
// if op's input var and output var is not dense tensor, the op should
// not run at low precision.
for (auto* in_var_node : op_node->inputs) {
......@@ -377,7 +405,6 @@ void AutoMixedPrecisionPass::GetOpPrecision() const {
support_low_precision &&
(real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
}
for (auto* out_var_node : op_node->outputs) {
CHECK_EQ(out_var_node->IsVar(), true);
auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
......@@ -387,7 +414,6 @@ void AutoMixedPrecisionPass::GetOpPrecision() const {
support_low_precision &&
(real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
}
}
if (support_low_precision) {
op_run_low_precision_.insert(op_type);
......@@ -438,7 +464,7 @@ void AutoMixedPrecisionPass::UpdateOpPrecision() const {
}
// when op_1 only support cpu kernel. if op_2's intput var is op_1's
// output var, then op_2 should not run half.
// output var, then op_2 should not run at low precision.
if (GetOpOriginalType(op_type) != "feed" &&
!GpuKernelSupportPrecision(GetOpOriginalType(op_type),
phi::DataType::FLOAT32)) {
......@@ -596,7 +622,7 @@ void AutoMixedPrecisionPass::SetVarPrecision() const {
auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
auto in_var_name = real_in_var_node->Var()->Name();
if (!IsFloatType(real_in_var_node->Var()->GetDataType())) continue;
if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
if (!VarNodeHasDtype(real_in_var_node)) continue;
if (InputVarsNotConvert(op_node, in_var_name)) continue;
......@@ -615,7 +641,7 @@ void AutoMixedPrecisionPass::SetVarPrecision() const {
auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
auto out_var_name = real_out_var_node->Var()->Name();
if (!IsFloatType(real_out_var_node->Var()->GetDataType())) continue;
if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
if (!VarNodeHasDtype(real_out_var_node)) continue;
if (OutputVarsNotConvert(op_node, out_var_name)) continue;
......@@ -655,7 +681,7 @@ void AutoMixedPrecisionPass::ConvertWeightsData() const {
auto var_names = scope->LocalVarNames();
for (const auto& var_name : var_names) {
if (vars_convert_to_low_precision_.count(var_name)) {
VLOG(4) << var_name << "'s data type was convert to half";
VLOG(4) << var_name << "'s data type was convert to low precision";
auto* var = scope->FindLocalVar(var_name);
CHECK_EQ(var->IsType<phi::DenseTensor>(), true);
......@@ -682,16 +708,18 @@ void AutoMixedPrecisionPass::ConvertWeightsData() const {
}
}
} else if (low_precision_ == phi::DataType::BFLOAT16) {
auto* half_data =
auto* low_precision_data =
low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
phi::CPUPlace{});
for (int64_t i = 0; i < origin_tensor->numel(); i++) {
if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
auto* origin_data = origin_tensor->data<double>();
half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
low_precision_data[i] =
static_cast<phi::dtype::bfloat16>(origin_data[i]);
} else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
auto* origin_data = origin_tensor->data<float>();
half_data[i] = static_cast<phi::dtype::bfloat16>(origin_data[i]);
low_precision_data[i] =
static_cast<phi::dtype::bfloat16>(origin_data[i]);
}
}
}
......@@ -731,27 +759,46 @@ void AutoMixedPrecisionPass::InsertCastOp() const {
VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
<< " with type " << in_var_type;
if (IsFloatType(in_var_type) && op_run_low_precision_.count(op_type)) {
if (IsFP32AndFP64(in_var_type) &&
op_run_low_precision_.count(op_type)) {
auto to_type = framework::TransToProtoVarType(low_precision_);
auto* prev_op =
in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
in_var_node->Var()->SetDataType(to_type);
prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
prev_op->Op()->Flush();
} else {
DoInsertCastOp(subgraphes_[i],
in_var_node,
op_node,
in_var_type,
framework::TransToProtoVarType(low_precision_),
to_type,
block_desc,
&suffix,
&cache);
} else if (IsHalfType(in_var_type) &&
}
} else if (IsFP16AndBFP16(in_var_type) &&
op_run_low_precision_.count(op_type) == 0) {
auto to_type = VarType::FP32;
auto* prev_op =
in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
in_var_node->Var()->SetDataType(to_type);
prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
prev_op->Op()->Flush();
} else {
DoInsertCastOp(subgraphes_[i],
in_var_node,
op_node,
in_var_type,
VarType::FP32,
to_type,
block_desc,
&suffix,
&cache);
}
}
}
// Special op.
// fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
......
......@@ -164,7 +164,7 @@ TEST(Ernie_gpu_fp16_no_ir, compare_results) {
}
float *result = reinterpret_cast<float *>(output.data.data());
for (size_t j = 0; j < outputs_size; ++j) {
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 5e-2);
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 8e-3);
}
}
}
......@@ -175,8 +175,6 @@ TEST(Ernie_gpu_fp16_with_ir, compare_results) {
config.SetModel(FLAGS_infer_model);
config.EnableUseGpu(512, 0, paddle_infer::PrecisionType::kHalf);
config.SwitchIrOptim(true);
// The fc_fuse_pass has diff, which will be repaired later.
config.pass_builder()->DeletePass("fc_fuse_pass");
// There is a problem with the model itself, which has nothing to do with
// constant_folding_pass.
config.pass_builder()->DeletePass("constant_folding_pass");
......@@ -206,7 +204,7 @@ TEST(Ernie_gpu_fp16_with_ir, compare_results) {
}
float *result = reinterpret_cast<float *>(output.data.data());
for (size_t j = 0; j < outputs_size; ++j) {
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 5e-2);
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 2e-2);
}
}
}
......@@ -243,7 +241,7 @@ TEST(Ernie_gpu_bf16_no_ir, compare_results) {
}
float *result = reinterpret_cast<float *>(output.data.data());
for (size_t j = 0; j < outputs_size; ++j) {
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 7e-2);
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 1e-2);
}
}
}
......@@ -254,8 +252,6 @@ TEST(Ernie_gpu_bf16_with_ir, compare_results) {
config.SetModel(FLAGS_infer_model);
config.EnableUseGpu(512, 0, paddle_infer::PrecisionType::kBf16);
config.SwitchIrOptim(true);
// The fc_fuse_pass has diff, which will be repaired later.
config.pass_builder()->DeletePass("fc_fuse_pass");
// There is a problem with the model itself, which has nothing to do with
// constant_folding_pass.
config.pass_builder()->DeletePass("constant_folding_pass");
......@@ -285,7 +281,7 @@ TEST(Ernie_gpu_bf16_with_ir, compare_results) {
}
float *result = reinterpret_cast<float *>(output.data.data());
for (size_t j = 0; j < outputs_size; ++j) {
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 7e-2);
EXPECT_NEAR(ref[i * outputs_size + j], result[j], 5e-3);
}
}
}
......
......@@ -223,13 +223,7 @@ __global__ void InplaceAddReluAddLayerNormKernel(const float16* y_data,
// For layer_norm, reduce to calculate mean and std
sum_i += static_cast<float>(tmp_3);
#if defined(PADDLE_WITH_CUDA) && __CUDA_ARCH__ >= 530
square_sum_i += static_cast<float>(__hmul(tmp_3, tmp_3));
#elif defined(PADDLE_WITH_CUDA)
square_sum_i += static_cast<float>(tmp_3) * static_cast<float>(tmp_3);
#else
square_sum_i += static_cast<float>(tmp_3 * tmp_3);
#endif
}
auto pair = BlockReduce(temp_storage)
.Reduce(PairForLayerNorm<float>(sum_i, square_sum_i),
......@@ -282,7 +276,7 @@ __global__ void InplaceAddReluAddLayerNormKernel(const float16* y_data,
half tmp_0 = __hdiv(__hsub(save_ptr[save_index], mean_i), std_i);
half tmp_1 = scale ? __hmul(scale[j], tmp_0) : tmp_0;
#else
half tmp_0 = static_cast<float>(static_cast<float>(save_ptr[save_index]) +
half tmp_0 = static_cast<half>(static_cast<float>(save_ptr[save_index]) -
static_cast<float>(mean_i) /
static_cast<float>(std_i));
half tmp_1 = scale ? static_cast<half>(static_cast<float>(scale[j]) *
......
......@@ -164,7 +164,7 @@ __global__ void bias_relu_v4_half2(const int num,
data_vec[unroll_idx] = __hmax2(__half2(0, 0), data_vec[unroll_idx]);
#elif __CUDA_ARCH__ >= 530
data_vec[unroll_idx] = __hmul2(
__hgt2(__half2(0, 0), data_vec[unroll_idx]), data_vec[unroll_idx]);
__hgt2(data_vec[unroll_idx], __half2(0, 0)), data_vec[unroll_idx]);
#else
data_vec[unroll_idx].x =
static_cast<int>(static_cast<float>(data_vec[unroll_idx].x) > 0) *
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册