提交 ac69f773 编写于 作者: C caoying03

add gated linear unit into config helper.

上级 3c5cc644
......@@ -474,6 +474,11 @@ prelu
.. autoclass:: paddle.v2.layer.prelu
:noindex:
gated_unit
-----------
.. autoclass:: paddle.v2.layer.gated_unit
:noindex:
Detection output Layer
======================
......
......@@ -126,6 +126,7 @@ __all__ = [
'row_conv_layer',
'dropout_layer',
'prelu_layer',
'gated_unit_layer',
]
......@@ -5862,7 +5863,7 @@ def prelu_layer(input,
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
assert isinstance(param_attr, ParameterAttribute)
l = Layer(
......@@ -5876,3 +5877,96 @@ def prelu_layer(input,
layer_type=LayerType.PRELU,
parents=input,
size=l.config.size)
@layer_support(ERROR_CLIPPING, DROPOUT)
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
size,
act=None,
name=None,
gate_attr=None,
gate_bias_attr=True,
gate_param_attr=None,
inproj_param_attr=None,
inproj_bias_attr=True,
inproj_layer_attr=None,
layer_attr=None):
"""
The gated unit layer implements a simple gating mechanism over the input.
The input :math:`X` is first projected into a new space :math:`X'`, and
it is also used to produce a gate weight :math:`\sigma`. Element-wise
prodict between :match:`X'` and :math:`\sigma` is finally returned.
Reference:
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
.. math::
y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
The example usage is:
.. code-block:: python
gated_unit = gated_unit_layer(size=128, input=input_layer))
:param input: input for this layer.
:type input: LayerOutput
:param size: output size of the gated unit.
:type size: int
:param act: activation type of the projected input.
:type act: BaseActivation
:param name: name of this layer.
:type name: basestring
:param gate_attr: Attributes to tune the gate output, for example, error
clipping threshold, dropout and so on. See ExtraLayerAttribute for
more details.
:type gate_attr: ExtraLayerAttribute|None
:param gate_bias_attr: Attributes to tune the learnable bias of the gate.
:type gate_bias_attr: ParameterAttribute|None
:param gate_param_attr: Attributes to tune the learnable projected matrix
parameter of the gate.
:type gate_param_attr: ParameterAttribute|None
:param inproj_param_attr: Attributes to tune the learnable parameter of
the projection of input.
:type inproj_param_attr: ParameterAttribute|None
:param inproj_layer_attr: Attributes to the tune the projected input, for
example, error clipping threshold, dropout and so on. See
ExtraLayerAttribute for more details.
:type inproj_layer_attr: ExtraLayerAttribute|None
:param inproj_bias_attr: Attributes to tune the learnable bias of
projection of the input.
:type inproj_bias_attr: ParameterAttribute|None
:param layer_attr: Attributes to tune the final output of the gated unit,
for example, error clipping threshold, dropout and so on. See
ExtraLayerAttribute for more details.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(
input, LayerOutput), 'The gated linear unit accepts only one input.'
input_proj = fc_layer(
input=input,
name="%s_input_proj" % name,
size=size,
act=act,
param_attr=inproj_param_attr,
layer_attr=inproj_layer_attr,
bias_attr=inproj_bias_attr)
gate = fc_layer(
size=size,
name="%s_gate" % name,
act=SigmoidActivation(),
input=input,
param_attr=gate_param_attr,
layer_attr=gate_attr,
bias_attr=gate_bias_attr)
return mixed_layer(
name="%s_gated_act" % name,
input=dotmul_operator(input_proj, gate),
layer_attr=layer_attr)
......@@ -7,6 +7,6 @@ test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology)
test_recursive_topology test_gated_unit_layer)
export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "input"
type: "data"
size: 256
active_type: ""
}
layers {
name: "__gated_unit_layer_0___input_proj"
type: "fc"
size: 512
active_type: "tanh"
inputs {
input_layer_name: "input"
input_parameter_name: "___gated_unit_layer_0___input_proj.w0"
}
bias_parameter_name: "___gated_unit_layer_0___input_proj.wbias"
error_clipping_threshold: 100.0
}
layers {
name: "__gated_unit_layer_0___gate"
type: "fc"
size: 512
active_type: "sigmoid"
inputs {
input_layer_name: "input"
input_parameter_name: "___gated_unit_layer_0___gate.w0"
}
bias_parameter_name: "___gated_unit_layer_0___gate.wbias"
error_clipping_threshold: 100.0
}
layers {
name: "__gated_unit_layer_0___gated_act"
type: "mixed"
size: 512
active_type: ""
inputs {
input_layer_name: "__gated_unit_layer_0___input_proj"
}
inputs {
input_layer_name: "__gated_unit_layer_0___gate"
}
error_clipping_threshold: 100.0
operator_confs {
type: "dot_mul"
input_indices: 0
input_indices: 1
input_sizes: 512
input_sizes: 512
output_size: 512
dotmul_scale: 1
}
}
parameters {
name: "___gated_unit_layer_0___input_proj.w0"
size: 131072
initial_mean: 0.0
initial_std: 0.0001
dims: 256
dims: 512
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gated_unit_layer_0___input_proj.wbias"
size: 512
initial_mean: 0.0
initial_std: 1
dims: 1
dims: 512
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gated_unit_layer_0___gate.w0"
size: 131072
initial_mean: 0.0
initial_std: 0.0001
dims: 256
dims: 512
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gated_unit_layer_0___gate.wbias"
size: 512
initial_mean: 0.0
initial_std: 1
dims: 1
dims: 512
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
output_layer_names: "__gated_unit_layer_0___gated_act"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__gated_unit_layer_0___input_proj"
layer_names: "__gated_unit_layer_0___gate"
layer_names: "__gated_unit_layer_0___gated_act"
input_layer_names: "input"
output_layer_names: "__gated_unit_layer_0___gated_act"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=256)
glu = gated_unit_layer(
size=512,
input=data,
act=TanhActivation(),
gate_param_attr=ParamAttr(initial_std=1e-4),
gate_attr=ExtraLayerAttribute(error_clipping_threshold=100.0),
gate_bias_attr=ParamAttr(initial_std=1),
inproj_param_attr=ParamAttr(initial_std=1e-4),
inproj_layer_attr=ExtraLayerAttribute(error_clipping_threshold=100.0),
inproj_bias_attr=ParamAttr(initial_std=1),
layer_attr=ExtraLayerAttribute(error_clipping_threshold=100.0))
outputs(glu)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册