Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ab89c546
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ab89c546
编写于
11月 22, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable both fp32 and int8 init
上级
ce7add88
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
176 addition
and
140 deletion
+176
-140
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+176
-140
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
ab89c546
...
@@ -369,153 +369,191 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -369,153 +369,191 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ctx
.
op
().
Output
(
"Output"
));
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
std
::
vector
<
primitive
>
pipeline
;
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
if
(
!
is_INT8
){
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
bool
need_s8_to_u8
=
false
;
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
if
(
fuse_residual_conn
&&
is_INT8
&&
fuse_relu
)
{
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
need_s8_to_u8
=
true
;
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
}
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
vector
<
primitive
>
pipeline
;
auto
prim_key
=
key
+
"@conv_p"
;
auto
dst_key
=
key
+
"@dst_mem_p"
;
auto
src_key
=
key
+
"@src_mem_p"
;
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx
.
GetBlob
(
prim_key
));
src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_key
));
dst_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
dst_key
));
if
(
src_memory_p
)
{
src_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
input_data
));
}
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
conv_pd
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_conv_pd
));
std
::
shared_ptr
<
ConvMKLDNNHandler
>
handler
;
if
(
conv_pd
){
handler
.
reset
(
new
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
));
}
if
(
!
is_INT8
&&
dst_memory_p
){
if
(
fuse_residual_conn
)
{
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
auto
output_data
=
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
auto
residual_data_tz
=
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
auto
user_residual_memory_p
=
handler
->
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
dst_memory_p
=
handler
->
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
}
else
{
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
dst_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
output_data
));
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
}
else
{
}
else
{
auto
output_data
=
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
dst_memory_p
=
dst_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
output_data
));
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
}
// create convolution op primitive
if
(
!
is_INT8
){
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
if
(
conv_p
==
nullptr
){
if
(
bias
)
{
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
const
T
*
bias_data
=
bias
->
data
<
T
>
();
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
auto
user_bias_memory_p
=
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
/* create memory descriptor for convolution without specified format
pipeline
.
push_back
(
*
conv_p
);
* ('any') which lets a primitive (convolution in this case) choose
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
}
else
{
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
bool
need_s8_to_u8
=
false
;
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
if
(
fuse_residual_conn
&&
fuse_relu
)
{
need_s8_to_u8
=
true
;
// create a conv primitive descriptor and save it for usage in backward
}
if
(
bias
)
{
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
;
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
std
::
vector
<
primitive
>
pipeline
;
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
auto
prim_key
=
key
+
"@conv_p"
;
fuse_relu
,
fuse_residual_conn
);
auto
dst_key
=
key
+
"@dst_mem_p"
;
}
else
{
auto
src_key
=
key
+
"@src_mem_p"
;
conv_pd
=
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx
.
GetBlob
(
prim_key
));
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
src_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
src_key
));
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
);
dst_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
dst_key
));
}
// Save conv_pd/src_memory/weights_memory for backward pass
if
(
src_memory_p
)
{
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
src_memory_p
->
set_data_handle
(
to_void_cast
<
T
>
(
input_data
));
handler
.
reset
(
new
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
));
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
->
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
handler
->
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
->
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
auto
user_residual_memory_p
=
handler
->
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
dst_memory_p
=
handler
->
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
dst_memory_p
=
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
// create convolution op primitive
if
(
bias
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
);
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
else
{
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
}
}
else
{
if
(
conv_p
==
nullptr
){
if
(
conv_p
==
nullptr
){
auto
*
scale_in
=
ctx
.
HasInput
(
"Scale_in"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in"
)
:
nullptr
;
auto
*
scale_in
=
ctx
.
HasInput
(
"Scale_in"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in"
)
:
nullptr
;
auto
*
scale_in_eltwise
=
ctx
.
HasInput
(
"Scale_in_eltwise"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in_eltwise"
)
:
nullptr
;
auto
*
scale_in_eltwise
=
ctx
.
HasInput
(
"Scale_in_eltwise"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in_eltwise"
)
:
nullptr
;
...
@@ -621,8 +659,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -621,8 +659,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
if
(
bias
)
{
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
...
@@ -639,21 +675,21 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -639,21 +675,21 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
// Save conv_pd/src_memory/weights_memory for backward pass
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
handler
.
reset
(
new
ConvMKLDNNHandler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
)
);
// create mkldnn memory from input tensors (data/weights)
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
handler
->
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
auto
user_weights_memory_p
=
handler
->
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
// create reorder primitive if the input format is not the preferred one
src_memory_p
=
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
handler
->
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
weights_memory_p
=
handler
->
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
if
(
fuse_residual_conn
)
{
if
(
fuse_residual_conn
)
{
...
@@ -662,27 +698,27 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -662,27 +698,27 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Output and elementwise parameter need to have the "
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
PADDLE_ENFORCE_EQ
(
residual_param
->
format
(),
handler
.
GetDstFormat
(),
PADDLE_ENFORCE_EQ
(
residual_param
->
format
(),
handler
->
GetDstFormat
(),
"Conv input dimension and filter dimension should be the same."
);
"Conv input dimension and filter dimension should be the same."
);
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
}
else
{
}
else
{
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
}
}
else
{
}
else
{
if
(
fuse_relu
){
if
(
fuse_relu
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
}
else
{
}
else
{
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
->
GetDstMemorySize
());
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
handler
->
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
}
}
}
...
@@ -694,7 +730,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -694,7 +730,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
if
(
!
scale_reuse
){
if
(
!
scale_reuse
){
...
@@ -709,11 +745,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -709,11 +745,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
scale_bias_data
=
GetScaleMap
(
scale_map
,
scale_bias_key
);
scale_bias_data
=
GetScaleMap
(
scale_map
,
scale_bias_key
);
}
}
bias_memory_p
=
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
bias_memory_p
,
dst_memory_p
);
}
else
{
}
else
{
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
conv_p
=
handler
->
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
dst_memory_p
);
}
}
...
@@ -735,7 +771,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -735,7 +771,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
need_s8_to_u8
)
{
if
(
need_s8_to_u8
)
{
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
}
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录