提交 a8efed09 编写于 作者: H hedaoyuan 提交者: GitHub

Merge pull request #3792 from hedaoyuan/convolution

Neon Depthwise Convolution Transpose Function
......@@ -94,95 +94,4 @@ public:
int paddingWidth);
};
template <class T>
struct Padding {
static void run(const T* src,
T* dest,
int channels,
int inputHeight,
int inputWidth,
int paddingHeight,
int paddingWidth) {
const int destWidth = inputWidth + 2 * paddingWidth;
for (int c = 0; c < channels; c++) {
if (paddingHeight > 0) {
memset(dest, 0, destWidth * paddingHeight * sizeof(T));
dest += destWidth * paddingHeight;
}
for (int i = 0; i < inputHeight; i++) {
// padding head
for (int j = 0; j < paddingWidth; j++) {
*dest++ = T(0);
}
memcpy(dest, src, inputWidth * sizeof(T));
dest += inputWidth;
src += inputWidth;
// padding tail
for (int j = 0; j < paddingWidth; j++) {
*dest++ = T(0);
}
}
if (paddingHeight > 0) {
memset(dest, 0, destWidth * paddingHeight * sizeof(T));
dest += destWidth * paddingHeight;
}
}
}
};
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <>
struct Padding<float> {
static void run(const float* src,
float* dest,
int channels,
int inputHeight,
int inputWidth,
int paddingHeight,
int paddingWidth) {
const int destWidth = inputWidth + 2 * paddingWidth;
for (int c = 0; c < channels; c++) {
if (paddingHeight > 0) {
memset(dest, 0, destWidth * paddingHeight * sizeof(float));
dest += destWidth * paddingHeight;
}
for (int i = 0; i < inputHeight; i++) {
// padding head
for (int j = 0; j < paddingWidth; j++) {
*dest++ = float(0);
}
int step = inputWidth >> 2;
int remain = inputWidth & 3;
for (int s = 0; s < step; s++) {
float32x4_t s0 = vld1q_f32(src);
vst1q_f32(dest, s0);
src += 4;
dest += 4;
}
for (int r = 0; r < remain; r++) {
*dest++ = *src++;
}
// padding tail
for (int j = 0; j < paddingWidth; j++) {
*dest++ = float(0);
}
}
if (paddingHeight > 0) {
memset(dest, 0, destWidth * paddingHeight * sizeof(float));
dest += destWidth * paddingHeight;
}
}
}
};
#endif
} // namespace paddle
此差异已折叠。
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "NeonDepthwiseConv.h"
#include "paddle/function/ConvOp.h"
namespace paddle {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <DeviceType Device>
class NeonDepthwiseConvTransposeFunction : public ConvFunctionBase {
public:
void init(const FuncConfig& config) override {
ConvFunctionBase::init(config);
}
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
checkShape(input, filter, output);
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(numInputs_, inputs.size());
CHECK_EQ(numOutputs_, outputs.size());
check(inputs, outputs);
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
int batchSize = input[0];
int inputChannels = input[1];
int inputHeight = input[2];
int inputWidth = input[3];
int filterHeight = getFilterHeight(filter);
int filterWidth = getFilterWidth(filter);
int outputChannels = output[1];
int outputHeight = output[2];
int outputWidth = output[3];
int filterMultiplier = outputChannels / groups_;
CHECK_EQ(inputChannels, groups_);
// only support strideH() == strideW() and filterHeight == filterWidth.
CHECK_EQ(strideH(), strideW());
CHECK_EQ(paddingH(), paddingW());
CHECK_EQ(filterHeight, filterWidth);
float* inputData = inputs[0].data<float>();
float* filterData = inputs[1].data<float>();
float* outputData = outputs[0].data<float>();
// padding the input, input -> inputPadding
float* inputPadding = inputData;
int padInputHeight =
(inputHeight - 1) * strideH() + 2 * filterHeight - 1 - 2 * paddingH();
int padInputWidth =
(inputWidth - 1) * strideW() + 2 * filterWidth - 1 - 2 * paddingW();
if (padInputHeight > inputHeight || padInputWidth > inputWidth) {
int newSize = batchSize * inputChannels * padInputHeight * padInputWidth;
resizeBuffer<Device>(newSize);
inputPadding = reinterpret_cast<float*>(memory_->getBuf());
if (strideH() == 1) {
neon::Padding<float>::run(inputData,
inputPadding,
batchSize * inputChannels,
inputHeight,
inputWidth,
padInputHeight,
padInputWidth);
} else if (strideH() == 2) {
neon::StridePadding::run(inputData,
inputPadding,
batchSize * inputChannels,
inputHeight,
inputWidth,
padInputHeight,
padInputWidth);
} else {
LOG(FATAL) << "Not supported";
}
}
std::function<void(
const float*, const float*, int, int, int, int, int, int, float*)>
DepthWiseConv;
if (filterWidth == 3) {
DepthWiseConv = neon::DepthwiseConvKernel<3, 1>::run;
} else if (filterWidth == 4) {
DepthWiseConv = neon::DepthwiseConvKernel<4, 1>::run;
} else {
LOG(FATAL) << "Not supported";
}
for (int i = 0; i < batchSize; i++) {
DepthWiseConv(inputPadding,
filterData,
padInputHeight,
padInputWidth,
outputChannels,
outputHeight,
outputWidth,
filterMultiplier,
outputData);
inputPadding += inputChannels * padInputHeight * padInputWidth;
outputData += outputChannels * outputHeight * outputWidth;
}
}
};
#ifndef PADDLE_TYPE_DOUBLE
REGISTER_TYPED_FUNC(NeonDepthwiseConvTranspose,
CPU,
NeonDepthwiseConvTransposeFunction);
#endif
#endif
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册