Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a86f11b5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a86f11b5
编写于
12月 19, 2019
作者:
C
Chengmo
提交者:
GitHub
12月 19, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Speed GEO dense calc & communication (#21579)
* test=develop, speed dense calc & communication
上级
666c3bb9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
218 addition
and
108 deletion
+218
-108
paddle/fluid/operators/distributed/communicator.cc
paddle/fluid/operators/distributed/communicator.cc
+171
-93
paddle/fluid/operators/distributed/communicator.h
paddle/fluid/operators/distributed/communicator.h
+22
-9
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
+24
-5
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
+1
-1
未找到文件。
paddle/fluid/operators/distributed/communicator.cc
浏览文件 @
a86f11b5
...
@@ -183,20 +183,20 @@ void AsyncCommunicator::SendThread() {
...
@@ -183,20 +183,20 @@ void AsyncCommunicator::SendThread() {
while
(
running_
)
{
while
(
running_
)
{
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
task_futures
.
reserve
(
send_varname_to_ctx_
.
size
());
task_futures
.
reserve
(
send_varname_to_ctx_
.
size
());
VLOG
(
3
)
<<
"run send graph"
;
VLOG
(
4
)
<<
"run send graph"
;
auto
before_run_send_graph
=
GetCurrentUS
();
auto
before_run_send_graph
=
GetCurrentUS
();
for
(
auto
&
iter
:
send_varname_to_queue_
)
{
for
(
auto
&
iter
:
send_varname_to_queue_
)
{
auto
&
var_name
=
iter
.
first
;
auto
&
var_name
=
iter
.
first
;
auto
&
var_queue
=
iter
.
second
;
auto
&
var_queue
=
iter
.
second
;
if
(
var_queue
->
Size
()
>
0
)
{
if
(
var_queue
->
Size
()
>
0
)
{
auto
send_task
=
[
this
,
&
var_name
,
&
var_queue
]
{
auto
send_task
=
[
this
,
&
var_name
,
&
var_queue
]
{
VLOG
(
3
)
<<
var_name
<<
" merge and send"
;
VLOG
(
4
)
<<
var_name
<<
" merge and send"
;
std
::
vector
<
std
::
shared_ptr
<
Variable
>>
vars
;
std
::
vector
<
std
::
shared_ptr
<
Variable
>>
vars
;
int
merged_var_num
=
0
;
int
merged_var_num
=
0
;
int
wait_times
=
0
;
int
wait_times
=
0
;
while
(
merged_var_num
<
FLAGS_communicator_max_merge_var_num
)
{
while
(
merged_var_num
<
FLAGS_communicator_max_merge_var_num
)
{
if
(
var_queue
->
Size
()
==
0
)
{
if
(
var_queue
->
Size
()
==
0
)
{
VLOG
(
3
)
<<
"wait_times -> "
<<
wait_times
;
VLOG
(
4
)
<<
"wait_times -> "
<<
wait_times
;
if
(
wait_times
>=
FLAGS_communicator_send_wait_times
)
{
if
(
wait_times
>=
FLAGS_communicator_send_wait_times
)
{
break
;
break
;
}
}
...
@@ -223,14 +223,14 @@ void AsyncCommunicator::SendThread() {
...
@@ -223,14 +223,14 @@ void AsyncCommunicator::SendThread() {
ctx
.
merge_add
);
ctx
.
merge_add
);
}
}
auto
after_merge
=
GetCurrentUS
();
auto
after_merge
=
GetCurrentUS
();
VLOG
(
3
)
<<
"merge "
<<
merged_var_num
<<
" "
<<
var_name
VLOG
(
4
)
<<
"merge "
<<
merged_var_num
<<
" "
<<
var_name
<<
" use time "
<<
after_merge
-
before_merge
;
<<
" use time "
<<
after_merge
-
before_merge
;
auto
send_functor
=
distributed
::
ParameterSend
<
float
>
();
auto
send_functor
=
distributed
::
ParameterSend
<
float
>
();
if
(
!
FLAGS_communicator_fake_rpc
)
{
if
(
!
FLAGS_communicator_fake_rpc
)
{
send_functor
(
ctx
,
*
send_scope_
,
true
,
1
);
send_functor
(
ctx
,
*
send_scope_
,
true
,
1
);
}
}
auto
after_send
=
GetCurrentUS
();
auto
after_send
=
GetCurrentUS
();
VLOG
(
3
)
<<
"send "
<<
var_name
<<
" use time "
VLOG
(
4
)
<<
"send "
<<
var_name
<<
" use time "
<<
after_send
-
after_merge
;
<<
after_send
-
after_merge
;
};
};
task_futures
.
emplace_back
(
task_futures
.
emplace_back
(
...
@@ -244,7 +244,7 @@ void AsyncCommunicator::SendThread() {
...
@@ -244,7 +244,7 @@ void AsyncCommunicator::SendThread() {
}
}
auto
after_run_send_graph
=
GetCurrentUS
();
auto
after_run_send_graph
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run send graph use time "
VLOG
(
4
)
<<
"run send graph use time "
<<
after_run_send_graph
-
before_run_send_graph
;
<<
after_run_send_graph
-
before_run_send_graph
;
Recv
();
Recv
();
}
}
...
@@ -323,7 +323,7 @@ void AsyncCommunicator::RecvAll() {
...
@@ -323,7 +323,7 @@ void AsyncCommunicator::RecvAll() {
task
.
wait
();
task
.
wait
();
}
}
auto
after_recv
=
GetCurrentUS
();
auto
after_recv
=
GetCurrentUS
();
VLOG
(
1
)
<<
"run recv graph use time "
<<
after_recv
-
before_send
;
VLOG
(
3
)
<<
"run recv graph use time "
<<
after_recv
-
before_send
;
}
}
void
AsyncCommunicator
::
Start
()
{
void
AsyncCommunicator
::
Start
()
{
...
@@ -446,13 +446,15 @@ void GeoSgdCommunicator::InitImpl(
...
@@ -446,13 +446,15 @@ void GeoSgdCommunicator::InitImpl(
recv_varname_to_ctx_
[
var_name
]
=
operators
::
distributed
::
RpcContext
(
recv_varname_to_ctx_
[
var_name
]
=
operators
::
distributed
::
RpcContext
(
var_name
,
vars_names
,
vars_epmap
,
vars_sections_int
,
0
);
var_name
,
vars_names
,
vars_epmap
,
vars_sections_int
,
0
);
// record sparse section
absolute_section_
[
var_name
]
=
operators
::
ToAbsoluteSection
(
if
(
is_sparse
)
{
send_varname_to_ctx_
[
send_var_name
].
height_sections
);
need_thread_nums_
+=
send_varname_to_ctx_
[
send_var_name
].
height_sections
.
size
()
;
vars_first_dimension_
[
var_name
]
=
0
;
absolute_section_
[
var_name
]
=
operators
::
ToAbsoluteSection
(
for
(
int64_t
section
:
vars_sections_int
)
{
send_varname_to_ctx_
[
send_var_name
].
height_sections
)
;
vars_first_dimension_
[
var_name
]
+=
section
;
}
}
send_var_nums_
+=
vars_names
.
size
();
}
}
if
(
send_varname_to_ctx_
.
size
()
==
0
&&
recv_varname_to_ctx_
.
size
()
==
0
)
{
if
(
send_varname_to_ctx_
.
size
()
==
0
&&
recv_varname_to_ctx_
.
size
()
==
0
)
{
...
@@ -548,7 +550,7 @@ void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
...
@@ -548,7 +550,7 @@ void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
}
}
need_push_queue_
->
Push
(
ids_table
);
need_push_queue_
->
Push
(
ids_table
);
auto
after_run_send
=
GetCurrentUS
();
auto
after_run_send
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run send_op use time "
<<
after_run_send
-
before_run_send
;
VLOG
(
4
)
<<
"run send_op use time "
<<
after_run_send
-
before_run_send
;
}
}
void
GeoSgdCommunicator
::
SendThread
()
{
void
GeoSgdCommunicator
::
SendThread
()
{
...
@@ -557,7 +559,7 @@ void GeoSgdCommunicator::SendThread() {
...
@@ -557,7 +559,7 @@ void GeoSgdCommunicator::SendThread() {
while
(
running_
)
{
while
(
running_
)
{
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
std
::
vector
<
std
::
future
<
void
>>
task_futures
;
task_futures
.
reserve
(
send_var
name_to_ctx_
.
size
()
);
task_futures
.
reserve
(
send_var
_nums_
);
int
wait_times
=
0
;
int
wait_times
=
0
;
while
(
ids_send_vec_
.
size
()
<
geo_need_push_nums_
)
{
while
(
ids_send_vec_
.
size
()
<
geo_need_push_nums_
)
{
...
@@ -567,7 +569,7 @@ void GeoSgdCommunicator::SendThread() {
...
@@ -567,7 +569,7 @@ void GeoSgdCommunicator::SendThread() {
ids_send_vec_
.
push_back
(
*
(
need_push_queue_
->
Pop
()));
ids_send_vec_
.
push_back
(
*
(
need_push_queue_
->
Pop
()));
VLOG
(
4
)
<<
"ids_send_vec_ pushed"
;
VLOG
(
4
)
<<
"ids_send_vec_ pushed"
;
}
else
if
(
need_push_queue_
->
Size
()
==
0
)
{
}
else
if
(
need_push_queue_
->
Size
()
==
0
)
{
VLOG
(
3
)
<<
"wait_times -> "
<<
wait_times
;
VLOG
(
4
)
<<
"wait_times -> "
<<
wait_times
;
if
(
wait_times
>=
FLAGS_communicator_send_wait_times
)
{
if
(
wait_times
>=
FLAGS_communicator_send_wait_times
)
{
break
;
break
;
}
}
...
@@ -579,10 +581,10 @@ void GeoSgdCommunicator::SendThread() {
...
@@ -579,10 +581,10 @@ void GeoSgdCommunicator::SendThread() {
if
(
ids_send_vec_
.
size
()
>=
geo_need_push_nums_
)
{
if
(
ids_send_vec_
.
size
()
>=
geo_need_push_nums_
)
{
auto
after_run_training
=
GetCurrentUS
();
auto
after_run_training
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run Training use time "
VLOG
(
4
)
<<
"run Training use time "
<<
after_run_training
-
before_run_training
;
<<
after_run_training
-
before_run_training
;
before_run_training
=
GetCurrentUS
();
before_run_training
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Start send after get need_push_num"
;
VLOG
(
4
)
<<
"Start send after get need_push_num"
;
for
(
auto
&
iter
:
send_varname_to_ctx_
)
{
for
(
auto
&
iter
:
send_varname_to_ctx_
)
{
auto
&
var_name
=
iter
.
first
;
auto
&
var_name
=
iter
.
first
;
...
@@ -591,28 +593,31 @@ void GeoSgdCommunicator::SendThread() {
...
@@ -591,28 +593,31 @@ void GeoSgdCommunicator::SendThread() {
for
(
auto
&
splited_var_name
:
iter
.
second
.
splited_var_names
)
{
for
(
auto
&
splited_var_name
:
iter
.
second
.
splited_var_names
)
{
auto
send_task
=
[
this
,
&
var_name
,
&
splited_var_name
]
{
auto
send_task
=
[
this
,
&
var_name
,
&
splited_var_name
]
{
auto
before_run_geo
=
GetCurrentUS
();
auto
before_run_geo
=
GetCurrentUS
();
VLOG
(
4
)
<<
"ids_send_vec_ size: "
<<
ids_send_vec_
.
size
();
auto
ids_set
=
auto
ids_set
=
SparseIdsMerge
(
ids_send_vec_
,
var_name
,
splited_var_name
);
SparseIdsMerge
(
ids_send_vec_
,
var_name
,
splited_var_name
);
SendUpdateSparseVars
(
var_name
,
splited_var_name
,
ids_set
);
SendUpdateSparseVars
(
var_name
,
splited_var_name
,
ids_set
);
RecvUpdateSparseVars
(
var_name
,
splited_var_name
);
RecvUpdateSparseVars
(
var_name
,
splited_var_name
);
auto
after_run_geo
=
GetCurrentUS
();
auto
after_run_geo
=
GetCurrentUS
();
VLOG
(
1
)
<<
"run GEO-SGD var "
<<
splited_var_name
<<
" use time "
VLOG
(
3
)
<<
"run GEO-SGD var "
<<
splited_var_name
<<
" use time "
<<
after_run_geo
-
before_run_geo
;
<<
after_run_geo
-
before_run_geo
;
};
};
task_futures
.
emplace_back
(
task_futures
.
emplace_back
(
send_threadpool_
->
enqueue
(
std
::
move
(
send_task
)));
send_threadpool_
->
enqueue
(
std
::
move
(
send_task
)));
}
}
}
else
{
}
else
{
auto
send_task
=
[
this
,
&
var_name
]
{
for
(
auto
&
splited_var_name
:
iter
.
second
.
splited_var_names
)
{
auto
before_run_geo
=
GetCurrentUS
();
auto
send_task
=
[
this
,
&
var_name
,
&
splited_var_name
]
{
SendUpdateDenseVars
(
var_name
);
auto
before_run_geo
=
GetCurrentUS
();
RecvUpdateDenseVars
(
var_name
);
SendUpdateDenseVars
(
var_name
,
splited_var_name
);
auto
after_run_geo
=
GetCurrentUS
();
RecvUpdateDenseVars
(
var_name
,
splited_var_name
);
VLOG
(
3
)
<<
"run GEO-SGD var "
<<
var_name
<<
" use time "
auto
after_run_geo
=
GetCurrentUS
();
<<
after_run_geo
-
before_run_geo
;
VLOG
(
3
)
<<
"run GEO-SGD var "
<<
splited_var_name
<<
" use time "
};
<<
after_run_geo
-
before_run_geo
;
task_futures
.
emplace_back
(
};
send_threadpool_
->
enqueue
(
std
::
move
(
send_task
)));
task_futures
.
emplace_back
(
send_threadpool_
->
enqueue
(
std
::
move
(
send_task
)));
}
}
}
}
}
for
(
auto
&
task_f
:
task_futures
)
{
for
(
auto
&
task_f
:
task_futures
)
{
...
@@ -627,31 +632,36 @@ std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
...
@@ -627,31 +632,36 @@ std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
const
std
::
vector
<
SparseIdsMap
>
&
ids_send_vec
,
const
std
::
string
&
var_name
,
const
std
::
vector
<
SparseIdsMap
>
&
ids_send_vec
,
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
)
{
const
std
::
string
&
splited_var_name
)
{
// every batch has some sparse id, merge them into one unoredered_set
// every batch has some sparse id, merge them into one unoredered_set
VLOG
(
3
)
<<
"Sparse Ids merge var: "
<<
var_name
VLOG
(
4
)
<<
"Sparse Ids merge var: "
<<
var_name
<<
" splited var: "
<<
splited_var_name
;
<<
" splited var: "
<<
splited_var_name
;
auto
before_run_ids_merge_
=
GetCurrentUS
();
auto
before_run_ids_merge_
=
GetCurrentUS
();
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
std
::
unordered_set
<
int64_t
>
ids_set
;
std
::
unordered_set
<
int64_t
>
ids_set
;
for
(
auto
ids_map
:
ids_send_vec
)
{
for
(
auto
ids_map
:
ids_send_vec
)
{
for
(
auto
id
:
ids_map
[
origin_var_name
][
splited_var_index
])
{
for
(
auto
id
:
ids_map
[
origin_var_name
][
splited_var_index
])
{
ids_set
.
insert
(
id
);
ids_set
.
insert
(
id
);
}
}
}
}
auto
after_run_ids_merge_
=
GetCurrentUS
();
auto
after_run_ids_merge_
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run SparseIdsMerge "
<<
splited_var_name
<<
" has nums "
VLOG
(
4
)
<<
"run SparseIdsMerge "
<<
splited_var_name
<<
" has nums "
<<
ids_set
.
size
()
<<
" use time "
<<
ids_set
.
size
()
<<
" use time "
<<
after_run_ids_merge_
-
before_run_ids_merge_
;
<<
after_run_ids_merge_
-
before_run_ids_merge_
;
return
ids_set
;
return
ids_set
;
}
}
void
GeoSgdCommunicator
::
SendUpdateDenseVars
(
const
std
::
string
&
var_name
)
{
void
GeoSgdCommunicator
::
SendUpdateDenseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
)
{
// calc var_delata = (var_training - var_old)/trainer_nums
// calc var_delata = (var_training - var_old)/trainer_nums
// calc var_old += var_delta
// calc var_old += var_delta
// var_name: param.delta
// var_name: param.delta
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
VLOG
(
4
)
<<
"Dense var: "
<<
var_name
<<
" 's splited var: "
<<
splited_var_name
<<
" splited var index: "
<<
splited_var_index
;
auto
before_run_send_dense
=
GetCurrentUS
();
auto
before_run_send_dense
=
GetCurrentUS
();
auto
cpu_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
auto
*
var_x
=
training_scope_
->
FindVar
(
origin_var_name
);
auto
*
var_x
=
training_scope_
->
FindVar
(
origin_var_name
);
auto
var_x_tensor
=
var_x
->
Get
<
framework
::
LoDTensor
>
();
auto
var_x_tensor
=
var_x
->
Get
<
framework
::
LoDTensor
>
();
...
@@ -659,55 +669,73 @@ void GeoSgdCommunicator::SendUpdateDenseVars(const std::string &var_name) {
...
@@ -659,55 +669,73 @@ void GeoSgdCommunicator::SendUpdateDenseVars(const std::string &var_name) {
auto
*
var_y
=
old_scope_
->
FindVar
(
origin_var_name
);
auto
*
var_y
=
old_scope_
->
FindVar
(
origin_var_name
);
auto
var_y_tensor
=
var_y
->
Get
<
framework
::
LoDTensor
>
();
auto
var_y_tensor
=
var_y
->
Get
<
framework
::
LoDTensor
>
();
auto
cpu_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
auto
dims
=
var_x_tensor
.
dims
();
auto
dims
=
var_x_tensor
.
dims
();
auto
total_element
=
var_x_tensor
.
numel
();
int64_t
section
=
0
;
int64_t
begin_loc
=
0
;
int64_t
dimension
=
0
;
size_t
out_num
=
send_varname_to_ctx_
[
var_name
].
height_sections
.
size
();
if
(
out_num
>
1
)
{
section
=
send_varname_to_ctx_
[
var_name
].
height_sections
[
splited_var_index
];
dims
[
0
]
=
section
;
begin_loc
=
absolute_section_
[
origin_var_name
][
splited_var_index
];
dimension
=
total_element
/
vars_first_dimension_
[
origin_var_name
];
total_element
=
section
*
dimension
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" section: "
<<
section
<<
" dimension: "
<<
dimension
<<
" begin loc: "
<<
begin_loc
<<
" total_element "
<<
total_element
;
}
// create temp var for sub
auto
*
var_x_data
=
var_x_tensor
.
mutable_data
<
float
>
(
var_x_tensor
.
place
())
+
auto
*
var_y_sub
=
old_scope_
->
Var
(
var_name
);
begin_loc
*
dimension
;
framework
::
CopyVariable
(
*
var_y
,
var_y_sub
);
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_x_data[0] "
auto
var_y_sub_tensor
=
var_y_sub
->
Get
<
framework
::
LoDTensor
>
();
<<
var_x_data
[
0
]
<<
" var_x_data[end] "
<<
var_x_data
[
total_element
-
1
];
auto
*
var_y_data
=
var_y_tensor
.
mutable_data
<
float
>
(
var_y_tensor
.
place
())
+
begin_loc
*
dimension
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_data[0] "
<<
var_y_data
[
0
]
<<
" var_y_data[end] "
<<
var_y_data
[
total_element
-
1
];
// create delta var in delta scope
// create delta var in delta scope
auto
*
var_z
=
delta_scope_
->
Var
(
var_name
);
auto
*
var_z_tensor
=
auto
*
var_z_tensor
=
var_z
->
GetMutable
<
framework
::
LoDTensor
>
();
delta_scope_
->
Var
(
splited_var_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
var_z_tensor
->
mutable_data
<
float
>
(
dims
,
var_x_tensor
.
place
());
var_z_tensor
->
Resize
(
dims
);
var_z_tensor
->
set_lod
(
var_x_tensor
.
lod
());
var_z_tensor
->
mutable_data
<
float
>
(
dims
,
cpu_ctx
.
GetPlace
());
auto
*
var_z_data
=
var_z_tensor
->
mutable_data
<
float
>
(
cpu_ctx
.
GetPlace
());
math
::
SetConstant
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
constant_functor
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
"var_z_data[0] "
constant_functor
(
cpu_ctx
,
var_z_tensor
,
static_cast
<
float
>
(
0
));
<<
var_z_data
[
0
]
<<
" var_z_data[end] "
<<
var_z_data
[
total_element
-
1
];
// calc sub = var_training - var_old
// calc sub = var_training - var_old
auto
blas
=
math
::
GetBlas
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
(
cpu_ctx
);
auto
blas
=
math
::
GetBlas
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
(
cpu_ctx
);
blas
.
SCAL
(
var_y_sub_tensor
.
numel
(),
-
1
,
blas
.
VSUB
(
total_element
,
var_x_data
,
var_y_data
,
var_z_data
);
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()));
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_z_data[0] "
blas
.
VADD
(
var_x_tensor
.
numel
(),
<<
var_z_data
[
0
]
<<
" var_z_data[end] "
var_x_tensor
.
mutable_data
<
float
>
(
var_x_tensor
.
place
()),
<<
var_z_data
[
total_element
-
1
];
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()),
var_z_tensor
->
mutable_data
<
float
>
(
var_z_tensor
->
place
()));
// calc var_delta = sub / trainer_nums
// calc var_delta = sub / trainer_nums
float
trainer_param
=
1.0
/
static_cast
<
float
>
(
trainer_nums_
);
float
trainer_param
=
1.0
/
static_cast
<
float
>
(
trainer_nums_
);
blas
.
SCAL
(
var_z_tensor
->
numel
(),
trainer_param
,
blas
.
SCAL
(
total_element
,
trainer_param
,
var_z_data
);
var_z_tensor
->
mutable_data
<
float
>
(
var_z_tensor
->
place
()));
// calc var_old += var_delta
// calc var_old += var_delta
blas
.
VADD
(
var_y_tensor
.
numel
(),
blas
.
VADD
(
total_element
,
var_y_data
,
var_z_data
,
var_y_data
);
var_y_tensor
.
mutable_data
<
float
>
(
var_y_tensor
.
place
()),
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_data[0] "
var_z_tensor
->
mutable_data
<
float
>
(
var_z_tensor
->
place
()),
<<
var_y_data
[
0
]
<<
" var_y_data[end] "
var_y_tensor
.
mutable_data
<
float
>
(
var_y_tensor
.
place
()))
;
<<
var_y_data
[
total_element
-
1
]
;
auto
after_run_send_dense
=
GetCurrentUS
();
auto
after_run_send_dense
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run send update dense var "
<<
var_name
<<
" use time "
VLOG
(
4
)
<<
"run send update dense var "
<<
var_name
<<
" use time "
<<
after_run_send_dense
-
before_run_send_dense
;
<<
after_run_send_dense
-
before_run_send_dense
;
auto
send_functor
=
distributed
::
ParameterSend
<
float
>
();
auto
&
ctx
=
send_varname_to_ctx_
.
at
(
var_name
);
auto
before_send_dense
=
GetCurrentUS
();
auto
before_send_dense
=
GetCurrentUS
();
send_functor
(
ctx
,
*
delta_scope_
.
get
(),
true
,
1
);
RpcSend
(
var_name
,
splited_var_name
,
splited_var_index
);
auto
after_send_den
x
e
=
GetCurrentUS
();
auto
after_send_den
s
e
=
GetCurrentUS
();
VLOG
(
3
)
<<
"send "
<<
var_name
<<
" use time "
VLOG
(
4
)
<<
"send "
<<
splited_
var_name
<<
" use time "
<<
after_send_den
x
e
-
before_send_dense
;
<<
after_send_den
s
e
-
before_send_dense
;
}
}
void
GeoSgdCommunicator
::
SendUpdateSparseVars
(
void
GeoSgdCommunicator
::
SendUpdateSparseVars
(
...
@@ -755,14 +783,14 @@ void GeoSgdCommunicator::SendUpdateSparseVars(
...
@@ -755,14 +783,14 @@ void GeoSgdCommunicator::SendUpdateSparseVars(
float
*
z_val
=
z_value
+
y
*
row_numel
;
float
*
z_val
=
z_value
+
y
*
row_numel
;
std
::
vector
<
float
>
row_delta
(
row_numel
,
0
);
std
::
vector
<
float
>
row_delta
(
row_numel
,
0
);
VSUB
<
float
>
(
row_numel
,
x_val
,
y_val
,
row_delta
.
data
());
blas
.
VSUB
(
row_numel
,
x_val
,
y_val
,
row_delta
.
data
());
blas
.
SCAL
(
row_numel
,
avg
,
row_delta
.
data
());
blas
.
SCAL
(
row_numel
,
avg
,
row_delta
.
data
());
blas
.
VADD
(
row_numel
,
row_delta
.
data
(),
y_val
,
y_val
);
blas
.
VADD
(
row_numel
,
row_delta
.
data
(),
y_val
,
y_val
);
blas
.
VCOPY
(
row_numel
,
row_delta
.
data
(),
z_val
);
blas
.
VCOPY
(
row_numel
,
row_delta
.
data
(),
z_val
);
}
}
auto
after_run_send_sparse
=
GetCurrentUS
();
auto
after_run_send_sparse
=
GetCurrentUS
();
VLOG
(
3
)
<<
"run send update sparse var "
<<
splited_var_name
<<
" use time "
VLOG
(
4
)
<<
"run send update sparse var "
<<
splited_var_name
<<
" use time "
<<
after_run_send_sparse
-
before_run_send_sparse
;
<<
after_run_send_sparse
-
before_run_send_sparse
;
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
...
@@ -779,23 +807,29 @@ void GeoSgdCommunicator::SendUpdateSparseVars(
...
@@ -779,23 +807,29 @@ void GeoSgdCommunicator::SendUpdateSparseVars(
auto
before_send_sparse
=
GetCurrentUS
();
auto
before_send_sparse
=
GetCurrentUS
();
RpcSend
(
var_name
,
splited_var_name
,
splited_var_index
);
RpcSend
(
var_name
,
splited_var_name
,
splited_var_index
);
auto
after_send_sparse
=
GetCurrentUS
();
auto
after_send_sparse
=
GetCurrentUS
();
VLOG
(
3
)
<<
"send "
<<
splited_var_name
<<
" has nums "
<<
new_rows
.
size
()
VLOG
(
4
)
<<
"send "
<<
splited_var_name
<<
" has nums "
<<
new_rows
.
size
()
<<
" use time "
<<
after_send_sparse
-
before_send_sparse
;
<<
" use time "
<<
after_send_sparse
-
before_send_sparse
;
}
}
void
GeoSgdCommunicator
::
RecvUpdateDenseVars
(
const
std
::
string
&
var_name
)
{
void
GeoSgdCommunicator
::
RecvUpdateDenseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
)
{
// calc var_training += var_pserver - var_old
// calc var_training += var_pserver - var_old
// calc var_old = var_pserver
// calc var_old = var_pserver
// var_name: param.delta
// var_name: param.delta
// step1: recv dense var from pserver
// step1: recv dense var from pserver
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
origin_var_name
=
DeltaVarToVar
(
var_name
);
auto
origin_splited_var_name
=
DeltaVarToVar
(
splited_var_name
);
auto
splited_var_index
=
GetSplitedVarIndex
(
var_name
,
splited_var_name
);
auto
cpu_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
auto
before_run_recv
=
GetCurrentUS
();
auto
before_run_recv
=
GetCurrentUS
();
auto
recv_functor
=
distributed
::
ParameterRecv
<
float
>
();
VLOG
(
4
)
<<
"Dense recv origin_var_name: "
<<
origin_var_name
recv_functor
(
recv_varname_to_ctx_
[
origin_var_name
],
*
pserver_scope_
.
get
());
<<
" origin_splited_var_name: "
<<
origin_splited_var_name
<<
" splited_var_index: "
<<
splited_var_index
;
RpcRecv
(
origin_var_name
,
origin_splited_var_name
,
splited_var_index
);
auto
after_run_recv
=
GetCurrentUS
();
auto
after_run_recv
=
GetCurrentUS
();
VLOG
(
3
)
<<
"recv var "
<<
origin
_var_name
<<
" use time "
VLOG
(
4
)
<<
"recv var "
<<
origin_splited
_var_name
<<
" use time "
<<
after_run_recv
-
before_run_recv
;
<<
after_run_recv
-
before_run_recv
;
// step2: update dense var
// step2: update dense var
...
@@ -806,31 +840,75 @@ void GeoSgdCommunicator::RecvUpdateDenseVars(const std::string &var_name) {
...
@@ -806,31 +840,75 @@ void GeoSgdCommunicator::RecvUpdateDenseVars(const std::string &var_name) {
auto
*
var_y
=
old_scope_
->
FindVar
(
origin_var_name
);
auto
*
var_y
=
old_scope_
->
FindVar
(
origin_var_name
);
auto
var_y_tensor
=
var_y
->
Get
<
framework
::
LoDTensor
>
();
auto
var_y_tensor
=
var_y
->
Get
<
framework
::
LoDTensor
>
();
auto
*
var_y_sub
=
old_scope_
->
Var
(
origin_var_name
);
auto
*
var_z
=
pserver_scope_
.
get
()
->
FindVar
(
origin_splited_var_name
);
framework
::
CopyVariable
(
*
var_y
,
var_y_sub
);
auto
var_y_sub_tensor
=
var_y_sub
->
Get
<
framework
::
LoDTensor
>
();
auto
*
var_z
=
pserver_scope_
.
get
()
->
FindVar
(
origin_var_name
);
auto
var_z_tensor
=
var_z
->
Get
<
framework
::
LoDTensor
>
();
auto
var_z_tensor
=
var_z
->
Get
<
framework
::
LoDTensor
>
();
auto
dims
=
var_z_tensor
.
dims
();
auto
total_element
=
var_z_tensor
.
numel
();
int64_t
section
=
0
;
int64_t
begin_loc
=
0
;
int64_t
dimension
=
0
;
size_t
out_num
=
recv_varname_to_ctx_
[
origin_var_name
].
height_sections
.
size
();
if
(
out_num
>
1
)
{
section
=
dims
[
0
];
begin_loc
=
absolute_section_
[
origin_var_name
][
splited_var_index
];
dimension
=
total_element
/
section
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" section: "
<<
section
<<
" dimension: "
<<
dimension
<<
" begin loc: "
<<
begin_loc
<<
" total_element "
<<
total_element
;
}
auto
*
var_x_data
=
var_x_tensor
.
mutable_data
<
float
>
(
var_x_tensor
.
place
())
+
begin_loc
*
dimension
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_x_data[0] "
<<
var_x_data
[
0
]
<<
" var_x_data[end] "
<<
var_x_data
[
total_element
-
1
];
auto
*
var_y_data
=
var_y_tensor
.
mutable_data
<
float
>
(
var_y_tensor
.
place
())
+
begin_loc
*
dimension
;
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_data[0] "
<<
var_y_data
[
0
]
<<
" var_y_data[end] "
<<
var_y_data
[
total_element
-
1
];
auto
*
var_z_data
=
var_z_tensor
.
mutable_data
<
float
>
(
cpu_ctx
.
GetPlace
());
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_z_data[0] "
<<
var_z_data
[
0
]
<<
" var_z_data[end] "
<<
var_z_data
[
total_element
-
1
];
auto
*
var_y_sub_tensor
=
old_scope_
->
Var
(
origin_splited_var_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
var_y_sub_tensor
->
Resize
(
dims
);
var_y_sub_tensor
->
mutable_data
<
float
>
(
dims
,
cpu_ctx
.
GetPlace
());
auto
*
var_y_sub_data
=
var_y_sub_tensor
->
mutable_data
<
float
>
(
cpu_ctx
.
GetPlace
());
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_sub_data[0] "
<<
var_y_sub_data
[
0
]
<<
" var_y_sub_data[end] "
<<
var_y_sub_data
[
total_element
-
1
];
auto
cpu_ctx
=
paddle
::
platform
::
CPUDeviceContext
();
auto
blas
=
math
::
GetBlas
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
(
cpu_ctx
);
auto
blas
=
math
::
GetBlas
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
(
cpu_ctx
);
// calc sub = pserver - old
// calc sub = pserver - old
blas
.
SCAL
(
var_y_sub_tensor
.
numel
(),
-
1
,
blas
.
VSUB
(
total_element
,
var_z_data
,
var_y_data
,
var_y_sub_data
);
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()));
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_sub_data[0] "
blas
.
VADD
(
var_y_tensor
.
numel
(),
<<
var_y_sub_data
[
0
]
<<
" var_y_sub_data[end] "
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()),
<<
var_y_sub_data
[
total_element
-
1
];
var_z_tensor
.
mutable_data
<
float
>
(
var_z_tensor
.
place
()),
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()));
// calc train += sub
// calc recv += sub
blas
.
VADD
(
total_element
,
var_x_data
,
var_y_sub_data
,
var_x_data
);
blas
.
VADD
(
var_x_tensor
.
numel
(),
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_x_data[0] "
var_x_tensor
.
mutable_data
<
float
>
(
var_x_tensor
.
place
()),
<<
var_x_data
[
0
]
<<
" var_x_data[end] "
var_y_sub_tensor
.
mutable_data
<
float
>
(
var_y_sub_tensor
.
place
()),
<<
var_x_data
[
total_element
-
1
];
var_x_tensor
.
mutable_data
<
float
>
(
var_x_tensor
.
place
()));
// calc old = pserver
// calc old = pserver
framework
::
CopyVariable
(
*
var_z
,
var_y
);
blas
.
VCOPY
(
total_element
,
var_z_data
,
var_y_data
);
VLOG
(
4
)
<<
"Dense splited var: "
<<
splited_var_name
<<
" var_y_data[0] "
<<
var_y_data
[
0
]
<<
" var_y_data[end] "
<<
var_y_data
[
total_element
-
1
];
auto
after_run_update
=
GetCurrentUS
();
auto
after_run_update
=
GetCurrentUS
();
VLOG
(
3
)
<<
"dese var update "
<<
origin
_var_name
<<
" use time "
VLOG
(
4
)
<<
"dense var update "
<<
origin_splited
_var_name
<<
" use time "
<<
after_run_update
-
before_run_update
;
<<
after_run_update
-
before_run_update
;
}
}
...
@@ -844,7 +922,7 @@ void GeoSgdCommunicator::RecvUpdateSparseVars(
...
@@ -844,7 +922,7 @@ void GeoSgdCommunicator::RecvUpdateSparseVars(
auto
before_run_recv
=
GetCurrentUS
();
auto
before_run_recv
=
GetCurrentUS
();
RpcRecv
(
origin_var_name
,
origin_splited_var_name
,
splited_var_index
);
RpcRecv
(
origin_var_name
,
origin_splited_var_name
,
splited_var_index
);
auto
after_run_recv
=
GetCurrentUS
();
auto
after_run_recv
=
GetCurrentUS
();
VLOG
(
3
)
<<
"recv var "
<<
origin_splited_var_name
<<
" use time "
VLOG
(
4
)
<<
"recv var "
<<
origin_splited_var_name
<<
" use time "
<<
after_run_recv
-
before_run_recv
;
<<
after_run_recv
-
before_run_recv
;
// step 2: update sparse var
// step 2: update sparse var
...
@@ -885,13 +963,13 @@ void GeoSgdCommunicator::RecvUpdateSparseVars(
...
@@ -885,13 +963,13 @@ void GeoSgdCommunicator::RecvUpdateSparseVars(
float
*
y_val
=
y_value
+
ids
*
row_numel
;
float
*
y_val
=
y_value
+
ids
*
row_numel
;
float
*
z_val
=
z_value
+
y
*
row_numel
;
float
*
z_val
=
z_value
+
y
*
row_numel
;
VSUB
(
row_numel
,
z_val
,
y_val
,
row_delta
.
data
());
blas
.
VSUB
(
row_numel
,
z_val
,
y_val
,
row_delta
.
data
());
blas
.
VADD
(
row_numel
,
row_delta
.
data
(),
x_val
,
x_val
);
blas
.
VADD
(
row_numel
,
row_delta
.
data
(),
x_val
,
x_val
);
blas
.
VCOPY
(
row_numel
,
z_val
,
y_val
);
blas
.
VCOPY
(
row_numel
,
z_val
,
y_val
);
}
}
auto
after_run_update
=
GetCurrentUS
();
auto
after_run_update
=
GetCurrentUS
();
VLOG
(
3
)
<<
"sparse var recv update "
<<
origin_splited_var_name
<<
" has num "
VLOG
(
4
)
<<
"sparse var recv update "
<<
origin_splited_var_name
<<
" has num "
<<
new_rows
.
size
()
<<
" use time "
<<
new_rows
.
size
()
<<
" use time "
<<
after_run_update
-
before_run_update
;
<<
after_run_update
-
before_run_update
;
}
}
...
...
paddle/fluid/operators/distributed/communicator.h
浏览文件 @
a86f11b5
...
@@ -364,12 +364,14 @@ class GeoSgdCommunicator : public Communicator {
...
@@ -364,12 +364,14 @@ class GeoSgdCommunicator : public Communicator {
const
std
::
vector
<
SparseIdsMap
>&
ids_send_vec
,
const
std
::
vector
<
SparseIdsMap
>&
ids_send_vec
,
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
);
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
);
void
SendUpdateDenseVars
(
const
std
::
string
&
var_name
);
void
SendUpdateDenseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
);
void
SendUpdateSparseVars
(
const
std
::
string
&
var_name
,
void
SendUpdateSparseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
,
const
std
::
string
&
splited_var_name
,
const
std
::
unordered_set
<
int64_t
>&
ids_table
);
const
std
::
unordered_set
<
int64_t
>&
ids_table
);
void
RecvUpdateDenseVars
(
const
std
::
string
&
var_name
);
void
RecvUpdateDenseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
);
void
RecvUpdateSparseVars
(
const
std
::
string
&
var_name
,
void
RecvUpdateSparseVars
(
const
std
::
string
&
var_name
,
const
std
::
string
&
splited_var_name
);
const
std
::
string
&
splited_var_name
);
...
@@ -420,21 +422,32 @@ class GeoSgdCommunicator : public Communicator {
...
@@ -420,21 +422,32 @@ class GeoSgdCommunicator : public Communicator {
int
trainer_nums_
=
1
;
int
trainer_nums_
=
1
;
size_t
geo_need_push_nums_
=
100
;
size_t
geo_need_push_nums_
=
100
;
bool
is_geo_sgd_
=
false
;
bool
is_geo_sgd_
=
false
;
Scope
*
training_scope_
;
int
send_var_nums_
=
0
;
std
::
shared_ptr
<
Scope
>
delta_scope_
;
// parameter local delta: recv - old
std
::
shared_ptr
<
Scope
>
old_scope_
;
// parameter local, storage the param after last recv
std
::
shared_ptr
<
Scope
>
pserver_scope_
;
// parameter on pserver,gloabl scope
RpcCtxMap
send_varname_to_ctx_
;
RpcCtxMap
send_varname_to_ctx_
;
RpcCtxMap
recv_varname_to_ctx_
;
RpcCtxMap
recv_varname_to_ctx_
;
std
::
unordered_map
<
std
::
string
,
bool
>
var_list_
;
// if var is sparse, using selected rows, bool=true
// parameter for local training
Scope
*
training_scope_
;
// parameter for delta calc and send
std
::
shared_ptr
<
Scope
>
delta_scope_
;
// parameter for storage the pserver param after last recv
std
::
shared_ptr
<
Scope
>
old_scope_
;
// parameter on pserver
std
::
shared_ptr
<
Scope
>
pserver_scope_
;
// if var is sparse, using selected rows, bool=true
std
::
unordered_map
<
std
::
string
,
bool
>
var_list_
;
std
::
shared_ptr
<
BlockingQueue
<
std
::
shared_ptr
<
SparseIdsMap
>>>
std
::
shared_ptr
<
BlockingQueue
<
std
::
shared_ptr
<
SparseIdsMap
>>>
need_push_queue_
;
need_push_queue_
;
std
::
vector
<
SparseIdsMap
>
ids_send_vec_
;
std
::
vector
<
SparseIdsMap
>
ids_send_vec_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
absolute_section_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
absolute_section_
;
std
::
unordered_map
<
std
::
string
,
int64_t
>
vars_first_dimension_
;
std
::
unique_ptr
<::
ThreadPool
>
send_threadpool_
{
nullptr
};
std
::
unique_ptr
<::
ThreadPool
>
send_threadpool_
{
nullptr
};
std
::
unique_ptr
<
std
::
thread
>
send_thread_
{
nullptr
};
std
::
unique_ptr
<
std
::
thread
>
send_thread_
{
nullptr
};
...
...
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
浏览文件 @
a86f11b5
...
@@ -11,6 +11,9 @@
...
@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""
Distribute CTR model for test fleet api
"""
from
__future__
import
print_function
from
__future__
import
print_function
...
@@ -30,10 +33,22 @@ fluid.default_main_program().random_seed = 1
...
@@ -30,10 +33,22 @@ fluid.default_main_program().random_seed = 1
class
TestDistCTR2x2
(
FleetDistRunnerBase
):
class
TestDistCTR2x2
(
FleetDistRunnerBase
):
"""
For test CTR model, using Fleet api
"""
def
net
(
self
,
batch_size
=
4
,
lr
=
0.01
):
def
net
(
self
,
batch_size
=
4
,
lr
=
0.01
):
"""
network definition
Args:
batch_size(int): the size of mini-batch for training
lr(float): learning rate of training
Returns:
avg_cost: LoDTensor of cost.
"""
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
)
""" network definition """
dnn_data
=
fluid
.
layers
.
data
(
dnn_data
=
fluid
.
layers
.
data
(
name
=
"dnn_data"
,
name
=
"dnn_data"
,
shape
=
[
-
1
,
1
],
shape
=
[
-
1
,
1
],
...
@@ -56,7 +71,8 @@ class TestDistCTR2x2(FleetDistRunnerBase):
...
@@ -56,7 +71,8 @@ class TestDistCTR2x2(FleetDistRunnerBase):
datas
=
[
dnn_data
,
lr_data
,
label
]
datas
=
[
dnn_data
,
lr_data
,
label
]
# build dnn model
# build dnn model
dnn_layer_dims
=
[
128
,
64
,
32
,
1
]
# add 12800 for test huge dense Variable
dnn_layer_dims
=
[
128
,
128000
,
64
,
32
,
1
]
dnn_embedding
=
fluid
.
layers
.
embedding
(
dnn_embedding
=
fluid
.
layers
.
embedding
(
is_distributed
=
False
,
is_distributed
=
False
,
input
=
dnn_data
,
input
=
dnn_data
,
...
@@ -116,6 +132,11 @@ class TestDistCTR2x2(FleetDistRunnerBase):
...
@@ -116,6 +132,11 @@ class TestDistCTR2x2(FleetDistRunnerBase):
wn
.
write
(
str
(
program
))
wn
.
write
(
str
(
program
))
def
do_training
(
self
,
fleet
):
def
do_training
(
self
,
fleet
):
"""
do training using dataset, using fetch handler to catch variable
Args:
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
"""
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
)
...
@@ -163,9 +184,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
...
@@ -163,9 +184,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
exe
.
train_from_dataset
(
exe
.
train_from_dataset
(
program
=
fleet
.
main_program
,
program
=
fleet
.
main_program
,
dataset
=
dataset
,
dataset
=
dataset
,
fetch_handler
=
FH
([
self
.
avg_cost
.
name
],
fetch_handler
=
FH
([
self
.
avg_cost
.
name
],
period_secs
=
2
),
period_secs
=
2
,
return_np
=
True
),
debug
=
False
)
debug
=
False
)
pass_time
=
time
.
time
()
-
pass_start
pass_time
=
time
.
time
()
-
pass_start
...
...
python/paddle/fluid/tests/unittests/test_dist_fleet_geo.py
浏览文件 @
a86f11b5
...
@@ -46,7 +46,7 @@ class TestDistGeoCtr_2x2(TestFleetBase):
...
@@ -46,7 +46,7 @@ class TestDistGeoCtr_2x2(TestFleetBase):
required_envs
.
update
(
need_envs
)
required_envs
.
update
(
need_envs
)
if
check_error_log
:
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"
3
"
required_envs
[
"GLOG_v"
]
=
"
4
"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录