Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a7a4b72b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a7a4b72b
编写于
8月 29, 2019
作者:
C
chengduo
提交者:
GitHub
8月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick] Support feed single persistable variable to PE (#19435)
* update executor feed
上级
5860cc47
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
135 addition
and
8 deletion
+135
-8
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+49
-7
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+7
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/test_parallel_executor_feed_persistable_var.py
.../unittests/test_parallel_executor_feed_persistable_var.py
+78
-0
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
a7a4b72b
...
...
@@ -200,12 +200,17 @@ class ParallelExecutorPrivate {
InitNCCLCtxs
(
scope
,
bst
);
}
#endif
inline
bool
IsPersistable
(
const
std
::
string
&
name
)
const
{
auto
iter
=
is_persistable_
.
find
(
name
);
return
iter
!=
is_persistable_
.
end
()
&&
iter
->
second
;
}
BuildStrategy
build_strategy_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
// not owned
std
::
unique_ptr
<
details
::
SSAGraphExecutor
>
executor_
;
std
::
unordered_map
<
std
::
string
,
bool
>
is_persistable_
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform
::
NCCLCommunicator
*
nccl_ctxs_
{
nullptr
};
...
...
@@ -473,6 +478,8 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
member_
->
is_persistable_
.
emplace
(
node
->
Var
()
->
Name
(),
node
->
Var
()
->
Persistable
());
}
}
...
...
@@ -642,15 +649,19 @@ void ParallelExecutor::FeedTensorsIntoLocalScopes(
void
ParallelExecutor
::
FeedAndSplitTensorIntoLocalScopes
(
const
std
::
unordered_map
<
std
::
string
,
LoDTensor
>
&
tensors
)
{
for
(
auto
pair
:
tensors
)
{
size_t
num_places
=
member_
->
places_
.
size
();
for
(
auto
&
pair
:
tensors
)
{
bool
is_persistable
=
member_
->
IsPersistable
(
pair
.
first
);
VLOG
(
3
)
<<
"Split "
<<
(
is_persistable
?
"persistable"
:
"no persistable"
)
<<
" data ("
<<
pair
.
first
<<
"), dim:"
<<
pair
.
second
.
dims
()
<<
", place: "
<<
pair
.
second
.
place
();
auto
lod_tensors
=
pair
.
second
.
SplitLoDTensor
(
member_
->
places_
);
if
(
member_
->
places_
.
size
()
!=
lod_tensors
.
size
())
{
bool
is_cpu_place
=
platform
::
is_cpu_place
(
member_
->
places_
.
front
());
if
(
!
is_persistable
&&
num_places
!=
lod_tensors
.
size
())
{
auto
error_info
=
string
::
Sprintf
(
"The number(%d) of samples of "
"current batch is less than the count(%d) of "
"devices(%s), currently, it is not allowed. "
,
lod_tensors
.
size
(),
member_
->
places_
.
size
(),
"The number(%d) of samples[%s] of current batch is less than the "
"count(%d) of devices(%s), currently, it is not allowed. "
,
lod_tensors
.
size
(),
pair
.
first
,
num_places
,
(
is_cpu_place
?
"CPU"
:
"GPU"
));
if
(
is_cpu_place
)
{
error_info
+=
...
...
@@ -658,7 +669,38 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
"to determine the number of devices you need."
;
}
PADDLE_THROW
(
error_info
);
}
else
if
(
is_persistable
)
{
if
(
lod_tensors
.
size
()
==
1
)
{
lod_tensors
.
reserve
(
num_places
);
auto
&
tensor
=
lod_tensors
.
front
();
PADDLE_ENFORCE_EQ
(
tensor
.
dims
(),
pair
.
second
.
dims
(),
"The dim doesn't match."
);
PADDLE_ENFORCE_EQ
(
tensor
.
place
(),
member_
->
places_
.
at
(
0
),
"The place doesn't match."
);
for
(
size_t
i
=
1
;
i
<
num_places
;
++
i
)
{
lod_tensors
.
emplace_back
();
auto
&
tmp
=
lod_tensors
.
back
();
framework
::
TensorCopy
(
pair
.
second
,
member_
->
places_
.
at
(
i
),
&
tmp
);
}
}
if
(
lod_tensors
.
size
()
!=
num_places
)
{
auto
error_info
=
string
::
Sprintf
(
"The number(%d) of samples[%s] of the current batch does not match "
"the count(%d) of devices(%s). Because that %s is a persistable "
"variable, you can feed just one sample, in that case, the input "
"sample will be copied in %d copies and be sent to different "
"places separately. If you need that different place has different "
"value, you should feed %d samples."
,
lod_tensors
.
size
(),
pair
.
first
,
num_places
,
(
is_cpu_place
?
"CPU"
:
"GPU"
),
pair
.
first
,
num_places
,
num_places
);
PADDLE_THROW
(
error_info
);
}
}
PADDLE_ENFORCE_EQ
(
lod_tensors
.
size
(),
num_places
,
"The number(%d) of samples of the current batch does not match the "
"count(%d) of devices."
,
lod_tensors
.
size
(),
num_places
);
for
(
size_t
j
=
0
;
j
<
member_
->
places_
.
size
();
++
j
)
{
// TODO(panxy0718): Do I need to delete this var?
auto
t
=
...
...
python/paddle/fluid/executor.py
浏览文件 @
a7a4b72b
...
...
@@ -496,8 +496,11 @@ class Executor(object):
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be split
ted
# always set to CPU place, since the tensor need to be split
# it is fast in CPU
assert
isinstance
(
feed
[
feed_name
],
np
.
ndarray
),
\
"The input({}) should be numpy.array, but not {}."
.
format
(
feed_name
,
type
(
feed
[
feed_name
]))
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
...
...
@@ -518,6 +521,9 @@ class Executor(object):
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
assert
isinstance
(
each
[
feed_name
],
np
.
ndarray
),
\
"The input({}) should be numpy.array, but not {}."
.
format
(
feed_name
,
type
(
each
[
feed_name
]))
tmp
.
set
(
tensor
,
program
.
_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
a7a4b72b
...
...
@@ -230,5 +230,6 @@ if(WITH_DISTRIBUTE)
endif
()
set_tests_properties
(
test_recordio_reader test_parallel_executor_test_while_train test_parallel_executor_mnist
test_parallel_executor_feed_persistable_var
test_parallel_executor_seresnext test_parallel_executor_crf test_sync_batch_norm_op
PROPERTIES LABELS
"RUN_TYPE=DIST"
)
python/paddle/fluid/tests/unittests/test_parallel_executor_feed_persistable_var.py
0 → 100644
浏览文件 @
a7a4b72b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
functools
import
partial
import
numpy
import
unittest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
simple_nets
import
init_data
,
simple_fc_net
import
os
class
TestFeedPersistableVar
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
batch_size
=
4
cls
.
img
,
cls
.
label
=
init_data
(
batch_size
,
img_shape
=
[
784
],
label_range
=
9
)
cls
.
feed_dict
=
{
'image'
:
cls
.
img
,
'label'
:
cls
.
label
,
'learning_rate'
:
numpy
.
array
([
1.0
]).
astype
(
"float32"
)
}
def
optimizer
(
self
):
learning_rate
=
fluid
.
layers
.
create_global_var
(
name
=
"learning_rate"
,
shape
=
[
1
],
value
=
1.0
,
dtype
=
'float32'
,
persistable
=
True
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
learning_rate
)
return
optimizer
def
check_feed_persistable_var
(
self
,
feed_dict
,
use_cuda
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
simple_fc_net
()
optimizer
=
self
.
optimizer
()
optimizer
.
minimize
(
loss
)
exe
.
run
(
program
=
startup
)
compiled_prog
=
fluid
.
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
)
exe
.
run
(
program
=
compiled_prog
,
feed
=
feed_dict
)
def
test_feed_persistable_var
(
self
):
self
.
check_feed_persistable_var
(
self
.
feed_dict
)
self
.
check_feed_persistable_var
(
self
.
feed_dict
,
use_cuda
=
True
)
self
.
feed_dict
[
'learning_rate'
]
=
numpy
.
array
(
[
1.0
,
1.0
]).
astype
(
"float32"
)
self
.
check_feed_persistable_var
(
self
.
feed_dict
,
use_cuda
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录