Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a79a77ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a79a77ee
编写于
8月 31, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine and clean code
上级
c459fb5b
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
51 addition
and
79 deletion
+51
-79
paddle/fluid/operators/fusion_lstm_op.cc
paddle/fluid/operators/fusion_lstm_op.cc
+51
-79
未找到文件。
paddle/fluid/operators/fusion_lstm_op.cc
浏览文件 @
a79a77ee
...
...
@@ -215,46 +215,53 @@ This operator fuse the X into LSTM, more details can refer to LSTM op.
template
<
typename
T
>
class
FuisonLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
#define INIT_VEC_FUNC \
std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto& act_cell_str = ctx.Attr<std::string>("cell_activation"); \
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation"); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
math::VecActivations<T, platform::jit::avx> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
} else { \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
}
#define INIT_BASE_INPUT_OUTPUT \
auto* x = ctx.Input<LoDTensor>("X"); \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* c0 = ctx.Input<Tensor>("C0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
auto* cell_out = ctx.Output<LoDTensor>("Cell"); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
#define INIT_BASE_SIZES \
auto x_dims = x->dims();
/* T x M*/
\
auto wh_dims = wh->dims();
/* D x 4D*/
\
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const int D3 = D * 3; \
const int D4 = wh_dims[1];
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
auto
x_dims
=
x
->
dims
();
// T x M
auto
wh_dims
=
wh
->
dims
();
// D x 4D
const
int
total_T
=
x_dims
[
0
];
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
wh_dims
[
0
];
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
wh_dims
[
1
];
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
...
...
@@ -343,52 +350,18 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
INIT_BASE_INPUT_OUTPUT
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
// batch size == 1
SeqCompute
(
ctx
);
}
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_c0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedC0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_c_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedCell"
);
auto
*
batched_h_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
auto
x_dims
=
x
->
dims
();
// T x M
auto
wh_dims
=
wh
->
dims
();
// D x 4D
// auto x_lod = x->lod();
// const int N = x_lod[0].size() - 1; // batch size
// if (N == 1) {
// SeqCompute(ctx);
// }
const
int
M
=
x_dims
[
1
];
const
int
D
=
wh_dims
[
0
];
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
wh_dims
[
1
];
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
...
...
@@ -485,16 +458,12 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
// W_ch, W_ih, W_fh, W_oh
act_gate
(
D3
,
cur_in_data
+
D
,
cur_in_data
+
D
);
act_cand
(
D
,
cur_in_data
,
cur_in_data
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_prev_c_data
,
cur_in_data
+
D2
);
// b = input * tilde
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D
,
cur_in_data
+
D
);
// cell out= a+b
blas
.
VADD
(
D
,
cur_in_data
+
D
,
cur_in_data
+
D2
,
cur_c_out_data
);
// hidden out= act_state(cellout) * outgate
act_cell
(
D
,
cur_c_out_data
,
cur_in_data
+
D2
);
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D3
,
cur_h_out_data
);
...
...
@@ -526,6 +495,9 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
BatchCompute
(
ctx
);
}
}
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录