Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a741056d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a741056d
编写于
10月 18, 2016
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
45280a07
上级
aafb7043
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
287 addition
and
4 deletion
+287
-4
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
+137
-1
doc_cn/algorithm/rnn/hierarchical-rnn.html
doc_cn/algorithm/rnn/hierarchical-rnn.html
+149
-2
doc_cn/searchindex.js
doc_cn/searchindex.js
+1
-1
未找到文件。
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
浏览文件 @
a741056d
...
...
@@ -260,7 +260,143 @@ out = recurrent_group(step=outer_step, input=SubsequenceInput(emb))
## 示例3:双进双出,输入不等长
TBD
**输入不等长**是指recurrent_group的多个输入在各时刻的长度可以不相等, 但需要指定一个和输出长度一致的input,用<font color="red">targetInlink</font>表示。参考配置:单层RNN(`sequence_rnn_multi_unequalength_inputs.conf`),双层RNN(`sequence_nest_rnn_multi_unequalength_inputs.conf`)
### 读取双层序列的方法
我们看一下单双层序列的数据组织形式和dataprovider(见`rnn_data_provider.py`)
```python
data2 = [
[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]
@provider(input_types=[integer_value_sub_sequence(10),
integer_value_sub_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_subseq(settings, file_name): #双层RNN的dataprovider
for d in data2:
yield d
@provider(input_types=[integer_value_sequence(10),
integer_value_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_seq(settings, file_name): #单层RNN的dataprovider
for d in data2:
words1=reduce(lambda x,y: x+y, d[0])
words2=reduce(lambda x,y: x+y, d[1])
yield words1, words2, d[2]
```
data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
- 单层序列:两个样本分别为[[1, 2, 4, 5, 2], [5, 4, 1, 3, 1]] 和 [[0, 2, 2, 5, 0, 1, 2], [1, 5, 4, 2, 3, 6, 1]]
- 双层序列:两个样本分别为
- **样本1**:[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]]]。fea1和fea2都分别有2个子句,fea1=[[1, 2], [4, 5, 2]], fea2=[[5, 4, 1], [3, 1]]
- **样本2**:[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]]]。fea1和fea2都分别有3个子句, fea1=[[0, 2], [2, 5], [0, 1, 2]], fea2=[[1, 5], [4], [2, 3, 6, 1]]。<br/>
- **注意**:每个样本中,各特征的子句数目需要相等。这里说的“双进双出,输入不等长”是指fea1在i时刻的输入的长度可以不等于fea2在i时刻的输入的长度。如对于第1个样本,时刻i=2, fea1[2]=[4, 5, 2],fea2[2]=[3, 1],3≠2。
- 单双层序列中,两个样本的label都分别是0和1
### 模型中的配置
单层RNN(`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN(`sequence_nest_rnn_multi_unequalength_inputs.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
- 单层序列:
- 过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中`sequence_rnn.conf`的`step`函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
- 注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。
```python
def step(x1, x2):
def calrnn(y):
mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
out = fc_layer(input = [y, mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'rnn_state_' + y.name)
return out
encoder1 = calrnn(x1)
encoder2 = calrnn(x2)
return [encoder1, encoder2]
encoder1_rep, encoder2_rep = recurrent_group(
name="stepout",
step=step,
input=[emb1, emb2])
encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)
```
- 双层序列:
- 双层RNN中,对输入的两个特征分别求时序上的连续全连接(`inner_step1`和`inner_step2`分别处理fea1和fea2),其功能与示例2中`sequence_nest_rnn.conf`的`outer_step`函数完全相同。不同之处是,此时输入`[SubsequenceInput(emb1), SubsequenceInput(emb2)]`在各时刻并不等长。
- 函数`outer_step`中可以分别处理这两个特征,但我们需要用<font color=red>targetInlink</font>指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
- 最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
```python
def outer_step(x1, x2):
outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim)
outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim)
def inner_step1(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem1)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out
def inner_step2(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem2)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out
encoder1 = recurrent_group(
step = inner_step1,
name = 'inner1',
input = x1)
encoder2 = recurrent_group(
step = inner_step2,
name = 'inner2',
input = x2)
sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1')
sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2')
encoder1_expand = expand_layer(input = sentence_last_state1,
expand_as = encoder2)
return [encoder1_expand, encoder2]
encoder1_rep, encoder2_rep = recurrent_group(
name="outer",
step=outer_step,
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
targetInlink=emb2)
encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)
```
## 示例4:beam_search的生成
...
...
doc_cn/algorithm/rnn/hierarchical-rnn.html
浏览文件 @
a741056d
...
...
@@ -333,7 +333,150 @@ var _hmt = _hmt || [];
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id6"
></span><h2>
示例3:双进双出,输入不等长
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
TBD
</p>
<p><strong>
输入不等长
</strong>
是指recurrent_group的多个输入在各时刻的长度可以不相等, 但需要指定一个和输出长度一致的input,用
<font
color=
"red"
>
targetInlink
</font>
表示。参考配置:单层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_rnn_multi_unequalength_inputs.conf
</span></code>
),双层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_rnn_multi_unequalength_inputs.conf
</span></code>
)
</p>
<div
class=
"section"
id=
""
>
<span
id=
"id7"
></span><h3>
读取双层序列的方法
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
我们看一下单双层序列的数据组织形式和dataprovider(见
<code
class=
"docutils literal"
><span
class=
"pre"
>
rnn_data_provider.py
</span></code>
)
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
data2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span>
<span
class=
"p"
>
[[[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
]],
</span>
<span
class=
"p"
>
[[
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
]]
</span>
<span
class=
"p"
>
,
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[[[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
5
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
]],[[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
5
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
6
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
]],
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
]
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
input_types
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sub_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value_sub_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
)],
</span>
<span
class=
"n"
>
should_shuffle
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
False
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process_unequalength_subseq
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"c1"
>
#双层RNN的dataprovider
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
data2
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
yield
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
input_types
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
)],
</span>
<span
class=
"n"
>
should_shuffle
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
False
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process_unequalength_seq
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"c1"
>
#单层RNN的dataprovider
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
data2
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
words1
</span><span
class=
"o"
>
=
</span><span
class=
"nb"
>
reduce
</span><span
class=
"p"
>
(
</span><span
class=
"k"
>
lambda
</span>
<span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
x
</span><span
class=
"o"
>
+
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
d
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
])
</span>
<span
class=
"n"
>
words2
</span><span
class=
"o"
>
=
</span><span
class=
"nb"
>
reduce
</span><span
class=
"p"
>
(
</span><span
class=
"k"
>
lambda
</span>
<span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
x
</span><span
class=
"o"
>
+
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
d
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
])
</span>
<span
class=
"k"
>
yield
</span>
<span
class=
"n"
>
words1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
words2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
d
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
]
</span>
</pre></div>
</div>
<p>
data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
</p>
<ul
class=
"simple"
>
<li>
单层序列:两个样本分别为[[1, 2, 4, 5, 2], [5, 4, 1, 3, 1]] 和 [[0, 2, 2, 5, 0, 1, 2], [1, 5, 4, 2, 3, 6, 1]]
</li>
<li>
双层序列:两个样本分别为
<ul>
<li><strong>
样本1
</strong>
:[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]]]。fea1和fea2都分别有2个子句,fea1=[[1, 2], [4, 5, 2]], fea2=[[5, 4, 1], [3, 1]]
</li>
<li><strong>
样本2
</strong>
:[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]]]。fea1和fea2都分别有3个子句, fea1=[[0, 2], [2, 5], [0, 1, 2]], fea2=[[1, 5], [4], [2, 3, 6, 1]]。
<br/></li>
<li><strong>
注意
</strong>
:每个样本中,各特征的子句数目需要相等。这里说的“双进双出,输入不等长”是指fea1在i时刻的输入的长度可以不等于fea2在i时刻的输入的长度。如对于第1个样本,时刻i=2, fea1[2]=[4, 5, 2],fea2[2]=[3, 1],3≠2。
</li>
</ul>
</li>
<li>
单双层序列中,两个样本的label都分别是0和1
</li>
</ul>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id8"
></span><h3>
模型中的配置
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
单层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_rnn_multi_unequalength_inputs.conf
</span></code>
)和双层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_rnn_multi_unequalength_inputs.conf
</span></code>
)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
</p>
<ul
class=
"simple"
>
<li>
单层序列:
<ul>
<li>
过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_rnn.conf
</span></code>
的
<code
class=
"docutils literal"
><span
class=
"pre"
>
step
</span></code>
函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
</li>
<li>
注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
step
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
x2
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
calrnn
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
mem
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
True
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"n"
>
encoder1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
calrnn
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x1
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
calrnn
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x2
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
encoder1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
encoder2
</span><span
class=
"p"
>
]
</span>
<span
class=
"n"
>
encoder1_rep
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
encoder2_rep
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
stepout
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
emb1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
emb2
</span><span
class=
"p"
>
])
</span>
<span
class=
"n"
>
encoder1_last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder1_rep
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder1_expandlast
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
expand_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder1_last
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_as
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder2_rep
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
context
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
identity_projection
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
encoder1_expandlast
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
identity_projection
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
encoder2_rep
</span><span
class=
"p"
>
)],
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
双层序列:
<ul>
<li>
双层RNN中,对输入的两个特征分别求时序上的连续全连接(
<code
class=
"docutils literal"
><span
class=
"pre"
>
inner_step1
</span></code>
和
<code
class=
"docutils literal"
><span
class=
"pre"
>
inner_step2
</span></code>
分别处理fea1和fea2),其功能与示例2中
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_rnn.conf
</span></code>
的
<code
class=
"docutils literal"
><span
class=
"pre"
>
outer_step
</span></code>
函数完全相同。不同之处是,此时输入
<code
class=
"docutils literal"
><span
class=
"pre"
>
[SubsequenceInput(emb1),
</span>
<span
class=
"pre"
>
SubsequenceInput(emb2)]
</span></code>
在各时刻并不等长。
</li>
<li>
函数
<code
class=
"docutils literal"
><span
class=
"pre"
>
outer_step
</span></code>
中可以分别处理这两个特征,但我们需要用
<font
color=
red
>
targetInlink
</font>
指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
</li>
<li>
最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
outer_step
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
x2
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
outer_mem1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s2"
>
"
outer_rnn_state1
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
outer_mem2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s2"
>
"
outer_rnn_state2
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
inner_step1
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
inner_mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner_rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
boot_layer
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
outer_mem1
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
inner_mem
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
True
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner_rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
inner_step2
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
inner_mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner_rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
boot_layer
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
outer_mem2
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
inner_mem
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"bp"
>
True
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner_rnn_state_
'
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
name
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"n"
>
encoder1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span>
<span
class=
"n"
>
step
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
inner_step1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner1
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x1
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder2
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span>
<span
class=
"n"
>
step
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
inner_step2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
inner2
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x2
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
sentence_last_state1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
outer_rnn_state1
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
sentence_last_state2_
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"s1"
>
'
outer_rnn_state2
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder1_expand
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
expand_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
sentence_last_state1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_as
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder2
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
encoder1_expand
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
encoder2
</span><span
class=
"p"
>
]
</span>
<span
class=
"n"
>
encoder1_rep
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
encoder2_rep
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
outer
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
outer_step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
SubsequenceInput
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
emb1
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
SubsequenceInput
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
emb2
</span><span
class=
"p"
>
)],
</span>
<span
class=
"n"
>
targetInlink
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
emb2
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder1_last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder1_rep
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
encoder1_expandlast
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
expand_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder1_last
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_as
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
encoder2_rep
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
context
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
identity_projection
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
encoder1_expandlast
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
identity_projection
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
encoder2_rep
</span><span
class=
"p"
>
)],
</span>
<span
class=
"n"
>
size
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
</div>
</div>
<div
class=
"section"
id=
"beam-search"
>
<span
id=
"beam-search"
></span><h2>
示例4:beam_search的生成
<a
class=
"headerlink"
href=
"#beam-search"
title=
"Permalink to this headline"
>
¶
</a></h2>
...
...
@@ -360,7 +503,11 @@ var _hmt = _hmt || [];
<li><a
class=
"reference internal"
href=
"#"
>
模型中的配置
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#"
>
示例3:双进双出,输入不等长
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
示例3:双进双出,输入不等长
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
读取双层序列的方法
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
模型中的配置
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#beam-search"
>
示例4:beam_search的生成
</a></li>
</ul>
</li>
...
...
doc_cn/searchindex.js
浏览文件 @
a741056d
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录