Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a6e935f4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a6e935f4
编写于
12月 14, 2019
作者:
J
juncaipeng
提交者:
GitHub
12月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update op test framework (#21599)
* update op test framework
上级
7c386123
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
315 addition
and
18 deletion
+315
-18
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+196
-16
python/paddle/fluid/tests/unittests/test_sequence_concat.py
python/paddle/fluid/tests/unittests/test_sequence_concat.py
+2
-2
python/paddle/fluid/tests/unittests/white_list/__init__.py
python/paddle/fluid/tests/unittests/white_list/__init__.py
+13
-0
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
...luid/tests/unittests/white_list/op_accuracy_white_list.py
+104
-0
未找到文件。
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
a6e935f4
...
...
@@ -33,6 +33,7 @@ from paddle.fluid.executor import Executor
from
paddle.fluid.framework
import
Program
,
OpProtoHolder
,
Variable
from
testsuite
import
create_op
,
set_input
,
append_input_output
,
append_loss_ops
from
paddle.fluid
import
unique_name
from
white_list
import
op_accuracy_white_list
def
_set_use_system_allocator
(
value
=
None
):
...
...
@@ -141,7 +142,7 @@ def get_numeric_gradient(place,
return
gradient_flat
.
reshape
(
tensor_to_check
.
shape
())
class
OpTest
(
unittest
.
TestCase
):
class
OpTest
Base
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
'''Fix random seeds to remove randomness from tests'''
...
...
@@ -170,24 +171,47 @@ class OpTest(unittest.TestCase):
self
.
dtype
=
data_type
def
infer_dtype_from_inputs_outputs
(
self
,
inputs
,
outputs
):
def
infer_dtype
(
numpy_dict
):
def
is_np_data
(
input
):
return
isinstance
(
input
,
(
np
.
ndarray
,
np
.
generic
))
def
infer_dtype
(
numpy_dict
,
dtype_set
):
assert
isinstance
(
numpy_dict
,
dict
),
"self.inputs, self.outputs must be numpy_dict"
for
var_name
,
var_value
in
six
.
iteritems
(
numpy_dict
):
if
isinstance
(
var_value
,
(
np
.
ndarray
,
np
.
generic
)):
self
.
try_call_once
(
var_value
.
dtype
)
elif
isinstance
(
var_value
,
(
list
,
tuple
)):
# the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
if
len
(
var_value
)
>
1
and
isinstance
(
var_value
[
1
],
(
np
.
ndarray
,
np
.
generic
)):
instance
=
var_value
[
1
]
self
.
try_call_once
(
instance
[
1
].
dtype
)
else
:
self
.
try_call_once
(
"float32"
)
infer_dtype
(
inputs
)
infer_dtype
(
outputs
)
# the inputs are as follows:
# case 1: inputs = {'X': x}
# case 2: inputs = {'X': (x, x_lod)}
# case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
# case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
# TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
for
_
,
var_value
in
six
.
iteritems
(
numpy_dict
):
if
is_np_data
(
var_value
):
# case 1
dtype_set
.
add
(
var_value
.
dtype
)
elif
isinstance
(
var_value
,
(
list
,
tuple
)):
# case 2, 3, 4
for
sub_val_value
in
var_value
:
if
is_np_data
(
sub_val_value
):
# case 2
dtype_set
.
add
(
sub_val_value
.
dtype
)
elif
len
(
sub_val_value
)
>
1
and
is_np_data
(
sub_val_value
[
1
]):
# case 3
dtype_set
.
add
(
sub_val_value
[
1
].
dtype
)
elif
len
(
sub_val_value
)
>
1
and
isinstance
(
sub_val_value
[
1
],
(
list
,
tuple
))
\
and
is_np_data
(
sub_val_value
[
1
][
0
]):
# case 4
dtype_set
.
add
(
sub_val_value
[
1
][
0
].
dtype
)
# infer dtype from inputs, and dtype means the precision of the test
# collect dtype of all inputs
dtype_set
=
set
()
infer_dtype
(
inputs
,
dtype_set
)
dtype_list
=
[
np
.
dtype
(
np
.
float64
),
np
.
dtype
(
np
.
float32
),
np
.
dtype
(
np
.
float16
),
np
.
dtype
(
np
.
int64
),
np
.
dtype
(
np
.
int32
),
np
.
dtype
(
np
.
int16
),
np
.
dtype
(
np
.
int8
)
]
# check the dtype in dtype_list in order, select the first dtype that in dtype_set
for
dtype
in
dtype_list
:
if
dtype
in
dtype_set
:
self
.
dtype
=
dtype
break
def
feed_var
(
self
,
input_vars
,
place
):
feed_map
=
{}
...
...
@@ -214,6 +238,7 @@ class OpTest(unittest.TestCase):
return
feed_map
def
_append_ops
(
self
,
block
):
self
.
__class__
.
op_type
=
self
.
op_type
# for ci check, please not delete it for now
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
self
.
op_type
)
"infer datatype from inputs and outputs for this test case"
self
.
infer_dtype_from_inputs_outputs
(
self
.
inputs
,
self
.
outputs
)
...
...
@@ -352,6 +377,7 @@ class OpTest(unittest.TestCase):
return
var_dict
def
_calc_dygraph_output
(
self
,
place
,
parallel
=
False
,
no_check_set
=
None
):
self
.
__class__
.
op_type
=
self
.
op_type
# for ci check, please not delete it for now
with
fluid
.
dygraph
.
base
.
guard
(
place
=
place
):
block
=
fluid
.
default_main_program
().
global_block
()
...
...
@@ -1263,3 +1289,157 @@ class OpTest(unittest.TestCase):
return
list
(
map
(
np
.
array
,
executor
.
run
(
prog
,
feed_dict
,
fetch_list
,
return_numpy
=
False
)))
'''
The op test with int8 precision should inherit OpTestInt8.
'''
class
OpTestInt8
(
OpTestBase
):
pass
'''
The op test with float16 precision should inherit OpTestFp16,
which requires the test to call check_grad.
'''
class
OpTestFp16
(
OpTestBase
):
def
check_output
(
self
,
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
,
check_dygraph
=
True
,
inplace_atol
=
None
,
check_compile_vs_runtime
=
False
):
self
.
__class__
.
op_type
=
self
.
op_type
OpTestBase
.
check_output
(
self
,
atol
,
no_check_set
,
equal_nan
,
check_dygraph
,
inplace_atol
,
check_compile_vs_runtime
)
def
_check_grad_helper
(
self
):
self
.
infer_dtype_from_inputs_outputs
(
self
.
inputs
,
self
.
outputs
)
assert
self
.
dtype
==
np
.
float16
,
"The dtype of this test should be float16."
self
.
__class__
.
op_type
=
self
.
op_type
self
.
__class__
.
exist_check_grad
=
True
def
check_grad
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
numeric_grad_delta
=
0.005
,
in_place
=
False
,
max_relative_error
=
0.005
,
user_defined_grads
=
None
,
check_dygraph
=
True
):
self
.
_check_grad_helper
()
OpTestBase
.
check_grad
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
user_defined_grads
,
check_dygraph
)
def
check_grad_with_place
(
self
,
place
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
numeric_grad_delta
=
0.005
,
in_place
=
False
,
max_relative_error
=
0.005
,
user_defined_grads
=
None
,
check_dygraph
=
True
):
self
.
_check_grad_helper
()
OpTestBase
.
check_grad_with_place
(
self
,
place
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
user_defined_grads
,
check_dygraph
)
@
classmethod
def
tearDownClass
(
cls
):
"""Restore random seeds"""
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
if
cls
.
__name__
not
in
op_accuracy_white_list
.
NO_NEED_FP16_CHECK_GRAD_CASES
\
and
not
hasattr
(
cls
,
"exist_check_grad"
)
\
and
cls
.
op_type
not
in
op_accuracy_white_list
.
NO_FP16_CHECK_GRAD_OP_LIST
:
raise
AssertionError
(
"This test of %s op needs check_grad."
%
cls
.
op_type
)
'''
The op test with float32/64 precision should inherit OpTest,
which requires the test to call check_grad with float64 precision.
'''
class
OpTest
(
OpTestBase
):
def
check_output
(
self
,
atol
=
1e-5
,
no_check_set
=
None
,
equal_nan
=
False
,
check_dygraph
=
True
,
inplace_atol
=
None
,
check_compile_vs_runtime
=
False
):
self
.
__class__
.
op_type
=
self
.
op_type
OpTestBase
.
check_output
(
self
,
atol
,
no_check_set
,
equal_nan
,
check_dygraph
,
inplace_atol
,
check_compile_vs_runtime
)
def
_check_grad_helper
(
self
):
self
.
infer_dtype_from_inputs_outputs
(
self
.
inputs
,
self
.
outputs
)
assert
self
.
dtype
in
[
np
.
float16
,
np
.
float32
,
np
.
float64
],
\
"self.dtype = %s."
%
self
.
dtype
if
self
.
dtype
==
np
.
float16
and
\
self
.
op_type
not
in
op_accuracy_white_list
.
FP16_CHECK_OP_LIST
:
raise
AssertionError
(
"The dtype of this test should be float32 "
"or float64. op: %s dtype: %s."
%
(
self
.
op_type
,
self
.
dtype
))
self
.
__class__
.
op_type
=
self
.
op_type
if
self
.
dtype
==
np
.
float64
:
self
.
__class__
.
exist_fp64_check_grad
=
True
def
check_grad
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
numeric_grad_delta
=
0.005
,
in_place
=
False
,
max_relative_error
=
0.005
,
user_defined_grads
=
None
,
check_dygraph
=
True
):
self
.
_check_grad_helper
()
OpTestBase
.
check_grad
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
user_defined_grads
,
check_dygraph
)
def
check_grad_with_place
(
self
,
place
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
numeric_grad_delta
=
0.005
,
in_place
=
False
,
max_relative_error
=
0.005
,
user_defined_grads
=
None
,
check_dygraph
=
True
):
self
.
_check_grad_helper
()
OpTestBase
.
check_grad_with_place
(
self
,
place
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
user_defined_grads
,
check_dygraph
)
@
classmethod
def
tearDownClass
(
cls
):
"""Restore random seeds"""
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
if
cls
.
__name__
not
in
op_accuracy_white_list
.
NO_NEED_FP64_CHECK_GRAD_CASES
\
and
not
hasattr
(
cls
,
'exist_fp64_check_grad'
)
\
and
cls
.
op_type
not
in
op_accuracy_white_list
.
NO_FP64_CHECK_GRAD_OP_LIST
:
raise
AssertionError
(
"This test of %s op needs fp64 check_grad."
%
cls
.
op_type
)
python/paddle/fluid/tests/unittests/test_sequence_concat.py
浏览文件 @
a6e935f4
...
...
@@ -26,8 +26,8 @@ class TestSequenceConcat(OpTest):
self
.
out_lod
=
[
19
,
11
]
def
setUp
(
self
):
x1
=
np
.
random
.
random
(
size
=
(
10
,
80
))
x2
=
np
.
random
.
random
(
size
=
(
20
,
80
))
x1
=
np
.
random
.
random
(
size
=
(
10
,
80
))
.
astype
(
'float32'
)
x2
=
np
.
random
.
random
(
size
=
(
20
,
80
))
.
astype
(
'float32'
)
self
.
setLoD
()
out
=
np
.
concatenate
((
x1
[
0
:
self
.
lod1
[
0
]],
x2
[
0
:
self
.
lod2
[
0
]],
...
...
python/paddle/fluid/tests/unittests/white_list/__init__.py
0 → 100644
浏览文件 @
a6e935f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
0 → 100644
浏览文件 @
a6e935f4
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# For op in FP16_CHECK_OP_LIST, the op test of fp16 precision should inherit OpTestFp16
FP16_CHECK_OP_LIST
=
[
'abs'
,
'acos'
,
'asin'
,
'atan'
,
'brelu'
,
'concat'
,
'cos'
,
'elementwise_div'
,
'elementwise_mul'
,
'elu'
,
'exp'
,
'gelu'
,
'hard_shrink'
,
'hard_swish'
,
'log'
,
'logsigmoid'
,
'mean'
,
'mul'
,
'pad'
,
'pool2d'
,
'pow'
,
'reciprocal'
,
'relu'
,
'relu6'
,
'scale'
,
'sigmoid'
,
'sin'
,
'slice'
,
'soft_relu'
,
'softmax'
,
'softmax_with_cross_entropy'
,
'softshrink'
,
'softsign'
,
'sqrt'
,
'square'
,
'stanh'
,
'sum'
,
'swish'
,
'tanh'
,
'tanh_shrink'
,
'thresholded_relu'
]
# For op in NO_FP64_CHECK_GRAD_OP_LIST, the op test requires check_grad with fp64 precision
NO_FP64_CHECK_GRAD_OP_LIST
=
[
'abs'
,
'accuracy'
,
'acos'
,
'adadelta'
,
'adagrad'
,
'adam'
,
'adamax'
,
'add_position_encoding'
,
'affine_grid'
,
'anchor_generator'
,
'arg_max'
,
'arg_min'
,
'argsort'
,
'asin'
,
'assign_value'
,
'atan'
,
'attention_lstm'
,
'auc'
,
'bilinear_interp'
,
'bilinear_tensor_product'
,
'bipartite_match'
,
'box_clip'
,
'box_coder'
,
'box_decoder_and_assign'
,
'brelu'
,
'cast'
,
'ceil'
,
'center_loss'
,
'chunk_eval'
,
'clip'
,
'clip_by_norm'
,
'coalesce_tensor'
,
'collect_fpn_proposals'
,
'concat'
,
'conv2d'
,
'conv2d_fusion'
,
'conv2d_transpose'
,
'conv3d'
,
'conv3d_transpose'
,
'conv_shift'
,
'cos'
,
'cos_sim'
,
'crf_decoding'
,
'crop'
,
'crop_tensor'
,
'cross_entropy'
,
'cross_entropy2'
,
'ctc_align'
,
'cudnn_lstm'
,
'cvm'
,
'data_norm'
,
'decayed_adagrad'
,
'deformable_conv'
,
'deformable_conv_v1'
,
'deformable_psroi_pooling'
,
'density_prior_box'
,
'depthwise_conv2d'
,
'depthwise_conv2d_transpose'
,
'dequantize'
,
'dequantize_abs_max'
,
'detection_map'
,
'diag'
,
'distribute_fpn_proposals'
,
'dpsgd'
,
'dropout'
,
'edit_distance'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_floordiv'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_mod'
,
'elementwise_mul'
,
'elementwise_pow'
,
'elementwise_sub'
,
'elu'
,
'equal'
,
'exp'
,
'expand'
,
'eye'
,
'fake_channel_wise_dequantize_max_abs'
,
'fake_channel_wise_quantize_abs_max'
,
'fake_dequantize_max_abs'
,
'fake_quantize_abs_max'
,
'fake_quantize_dequantize_moving_average_abs_max'
,
'fake_quantize_moving_average_abs_max'
,
'fake_quantize_range_abs_max'
,
'fc'
,
'fill'
,
'fill_any_like'
,
'fill_constant'
,
'fill_constant_batch_size_like'
,
'fill_zeros_like'
,
'fill_zeros_like2'
,
'flatten'
,
'flatten2'
,
'floor'
,
'ftrl'
,
'fused_elemwise_activation'
,
'fused_embedding_fc_lstm'
,
'fused_embedding_seq_pool'
,
'fused_fc_elementwise_layernorm'
,
'fusion_gru'
,
'fusion_lstm'
,
'fusion_repeated_fc_relu'
,
'fusion_seqconv_eltadd_relu'
,
'fusion_seqexpand_concat_fc'
,
'fusion_seqpool_concat'
,
'fusion_seqpool_cvm_concat'
,
'fusion_squared_mat_sub'
,
'fusion_transpose_flatten_concat'
,
'gather'
,
'gather_nd'
,
'gather_tree'
,
'gaussian_random_batch_size_like'
,
'gelu'
,
'generate_mask_labels'
,
'generate_proposal_labels'
,
'generate_proposals'
,
'greater_equal'
,
'greater_than'
,
'grid_sampler'
,
'group_norm'
,
'hard_shrink'
,
'hard_sigmoid'
,
'hard_swish'
,
'hash'
,
'hierarchical_sigmoid'
,
'hinge_loss'
,
'huber_loss'
,
'im2sequence'
,
'increment'
,
'iou_similarity'
,
'is_empty'
,
'isfinite'
,
'isinf'
,
'isnan'
,
'kldiv_loss'
,
'l1_norm'
,
'lamb'
,
'lars_momentum'
,
'leaky_relu'
,
'less_equal'
,
'less_than'
,
'linspace'
,
'locality_aware_nms'
,
'lod_reset'
,
'log'
,
'log_loss'
,
'logical_and'
,
'logical_not'
,
'logical_or'
,
'logical_xor'
,
'logsigmoid'
,
'lookup_table'
,
'lookup_table_v2'
,
'lrn'
,
'margin_rank_loss'
,
'match_matrix_tensor'
,
'matmul'
,
'max_pool2d_with_index'
,
'max_pool3d_with_index'
,
'maxout'
,
'mean'
,
'mean_iou'
,
'merge_ids'
,
'mine_hard_examples'
,
'minus'
,
'modified_huber_loss'
,
'momentum'
,
'moving_average_abs_max_scale'
,
'mul'
,
'multiclass_nms'
,
'multiclass_nms2'
,
'multihead_matmul'
,
'multiplex'
,
'nce'
,
'nearest_interp'
,
'not_equal'
,
'one_hot'
,
'one_hot_v2'
,
'pad'
,
'pad2d'
,
'pad_constant_like'
,
'pixel_shuffle'
,
'polygon_box_transform'
,
'pool2d'
,
'pool3d'
,
'positive_negative_pair'
,
'pow'
,
'precision_recall'
,
'prelu'
,
'prior_box'
,
'proximal_adagrad'
,
'proximal_gd'
,
'prroi_pool'
,
'psroi_pool'
,
'quantize'
,
'random_crop'
,
'range'
,
'rank_loss'
,
'reciprocal'
,
'reduce_all'
,
'reduce_any'
,
'reduce_max'
,
'reduce_min'
,
'ref_by_trainer_id'
,
'relu'
,
'relu6'
,
'requantize'
,
'reshape2'
,
'retinanet_detection_output'
,
'retinanet_target_assign'
,
'reverse'
,
'roi_align'
,
'roi_perspective_transform'
,
'roi_pool'
,
'round'
,
'row_conv'
,
'rpn_target_assign'
,
'rsqrt'
,
'sampling_id'
,
'scale'
,
'scatter'
,
'scatter_nd_add'
,
'seed'
,
'selu'
,
'sequence_concat'
,
'sequence_conv'
,
'sequence_enumerate'
,
'sequence_erase'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_mask'
,
'sequence_pad'
,
'sequence_pool'
,
'sequence_reshape'
,
'sequence_reverse'
,
'sequence_scatter'
,
'sequence_slice'
,
'sequence_softmax'
,
'sequence_topk_avg_pooling'
,
'sequence_unpad'
,
'sgd'
,
'shape'
,
'shard_index'
,
'shuffle_channel'
,
'sigmoid'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_focal_loss'
,
'sign'
,
'similarity_focus'
,
'sin'
,
'size'
,
'slice'
,
'smooth_l1_loss'
,
'soft_relu'
,
'softmax'
,
'softshrink'
,
'softsign'
,
'space_to_depth'
,
'spectral_norm'
,
'split'
,
'split_ids'
,
'spp'
,
'sqrt'
,
'square'
,
'squared_l2_distance'
,
'squared_l2_norm'
,
'squeeze'
,
'squeeze2'
,
'stack'
,
'stanh'
,
'strided_slice'
,
'sum'
,
'swish'
,
'tanh'
,
'tanh_shrink'
,
'target_assign'
,
'teacher_student_sigmoid_loss'
,
'temporal_shift'
,
'thresholded_relu'
,
'top_k'
,
'transpose2'
,
'tree_conv'
,
'trilinear_interp'
,
'unfold'
,
'uniform_random'
,
'uniform_random_batch_size_like'
,
'unique'
,
'unique_with_counts'
,
'unpool'
,
'unsqueeze'
,
'unsqueeze2'
,
'unstack'
,
'var_conv_2d'
,
'warpctc'
,
'where'
,
'yolo_box'
,
'yolov3_loss'
]
NO_NEED_FP64_CHECK_GRAD_CASES
=
[
'TestFSPOp'
]
NO_FP16_CHECK_GRAD_OP_LIST
=
[]
NO_NEED_FP16_CHECK_GRAD_CASES
=
[]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录