Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a6a1a92e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a6a1a92e
编写于
1月 31, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 31, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15586 from tensor-tang/jit/cache
refine bert
上级
e887d719
2b0811c3
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
41 addition
and
59 deletion
+41
-59
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+4
-0
paddle/fluid/operators/jit/gen/blas.cc
paddle/fluid/operators/jit/gen/blas.cc
+1
-1
paddle/fluid/operators/jit/gen/blas.h
paddle/fluid/operators/jit/gen/blas.h
+1
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+15
-8
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+10
-43
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+1
-1
paddle/fluid/operators/math/fc_compute.h
paddle/fluid/operators/math/fc_compute.h
+6
-4
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+3
-2
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
a6a1a92e
...
...
@@ -93,6 +93,7 @@ std::vector<int> TestSizes() {
template
<
typename
KernelTuples
,
typename
...
Args
>
struct
BenchFunc
{
// return this function avg time
// TODO(TJ): clear cache every time
double
operator
()(
const
typename
KernelTuples
::
func_type
tgt
,
Args
...
args
)
{
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
++
i
)
{
tgt
(
args
...);
...
...
@@ -172,6 +173,9 @@ void BenchXYZNKernel() {
RandomVec
<
T
>
(
d
,
y_data
);
BenchAllImpls
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
z_data
,
d
);
// test inplace
BenchAllImpls
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
z_data
,
z_data
,
d
);
}
}
...
...
paddle/fluid/operators/jit/gen/blas.cc
浏览文件 @
a6a1a92e
...
...
@@ -155,7 +155,7 @@ class NCHW16CMulNCCreator : public JitCodeCreator<int> {
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx)
;
\
return platform::MayIUse(platform::avx)
&& attr <= 1024;
\
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
...
...
paddle/fluid/operators/jit/gen/blas.h
浏览文件 @
a6a1a92e
...
...
@@ -61,6 +61,7 @@ class VXXJitCode : public JitCode {
base
+=
"_Vec"
;
}
base
+=
(
with_relu_
?
"_Relu"
:
""
);
base
+=
"_D"
+
std
::
to_string
(
num_
);
return
base
.
c_str
();
}
void
genCode
()
override
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
a6a1a92e
...
...
@@ -118,26 +118,33 @@ typename KernelTuples::func_type Get(
return
GetRefer
<
KT
,
KernelTuples
>
();
}
template
<
KernelType
KT
,
typename
KernelTuples
>
class
KernelFuncs
Cache
{
template
<
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
>
class
KernelFuncs
{
public:
KernelFuncs
Cache
()
=
default
;
static
KernelFuncs
Cache
&
Instanc
e
()
{
static
thread_local
KernelFuncs
Cache
<
KT
,
KernelTuples
>
g_func_cache
;
KernelFuncs
()
=
default
;
static
KernelFuncs
&
Cach
e
()
{
static
thread_local
KernelFuncs
<
KT
,
KernelTuples
,
PlaceType
>
g_func_cache
;
return
g_func_cache
;
}
bool
Has
(
int
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
return
funcs_
.
at
(
key
);
}
void
Insert
(
int
key
,
typename
KernelTuples
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
if
(
Has
(
key
))
{
return
funcs_
.
at
(
key
);
}
auto
func
=
Get
<
KT
,
KernelTuples
,
PlaceType
>
(
key
);
Insert
(
key
,
func
);
return
func
;
}
private:
std
::
unordered_map
<
int
,
typename
KernelTuples
::
func_type
>
funcs_
;
DISABLE_COPY_AND_ASSIGN
(
KernelFuncs
Cache
);
DISABLE_COPY_AND_ASSIGN
(
KernelFuncs
);
};
const
char
*
to_string
(
KernelType
kt
);
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
a6a1a92e
...
...
@@ -49,49 +49,16 @@ void VTanh(const T* x, T* y, int n) {
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
typename
XRNTuples
<
T
>::
func_type
compute_hmax
{
nullptr
};
typename
XRNTuples
<
T
>::
func_type
compute_hsum
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vscal
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vaddbias
{
nullptr
};
typename
XYNTuples
<
T
>::
func_type
compute_vexp
{
nullptr
};
if
(
!
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hmax
);
}
else
{
compute_hmax
=
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hsum
);
}
else
{
compute_hsum
=
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vscal
);
}
else
{
compute_vscal
=
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vaddbias
);
}
else
{
compute_vaddbias
=
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vexp
);
}
else
{
compute_vexp
=
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
auto
compute_hmax
=
KernelFuncs
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vaddbias
=
KernelFuncs
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vexp
=
KernelFuncs
<
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
a6a1a92e
...
...
@@ -136,7 +136,7 @@ bool VMulKernel<float>::UseMe(const int& d) const {
template
<
>
bool
VAddKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
512f
)
&&
d
>
512
;
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
>
512
;
}
template
<
>
...
...
paddle/fluid/operators/math/fc_compute.h
浏览文件 @
a6a1a92e
...
...
@@ -30,15 +30,17 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
return
;
}
if
(
relu
)
{
auto
compute
=
jit
::
Get
<
jit
::
kVAddRelu
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>
(
N
);
auto
compute
=
jit
::
KernelFuncs
<
jit
::
kVAddRelu
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
N
);
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
T
*
dst
=
Y
+
i
*
N
;
compute
(
B
,
dst
,
dst
,
N
);
}
}
else
{
auto
compute
=
jit
::
Get
<
jit
::
kVAdd
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>
(
N
);
auto
compute
=
jit
::
KernelFuncs
<
jit
::
kVAdd
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
N
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
a6a1a92e
...
...
@@ -82,8 +82,9 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const
int
kClassDim
=
1
;
// 2D data. Batch x C
auto
compute_softmax
=
jit
::
Get
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>
(
in_dims
[
kClassDim
]);
jit
::
KernelFuncs
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录