Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a679fcbb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a679fcbb
编写于
10月 11, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
10月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add more tests and fix bugs for cudnn_norm_conv_test and cudnn_bn_and_relu_test (#36314)
上级
830debc2
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
599 addition
and
122 deletion
+599
-122
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
+542
-108
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
+57
-14
未找到文件。
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
浏览文件 @
a679fcbb
...
@@ -33,6 +33,8 @@ namespace op = paddle::operators;
...
@@ -33,6 +33,8 @@ namespace op = paddle::operators;
using
Tensor
=
paddle
::
framework
::
Tensor
;
using
Tensor
=
paddle
::
framework
::
Tensor
;
USE_OP
(
batch_norm
);
USE_OP
(
batch_norm
);
USE_CUDA_ONLY_OP
(
fused_bn_add_activation
);
USE_CUDA_ONLY_OP
(
fused_bn_add_activation_grad
);
template
<
typename
T
>
template
<
typename
T
>
void
InitRandomTensor
(
const
std
::
vector
<
int64_t
>
&
dims
,
void
InitRandomTensor
(
const
std
::
vector
<
int64_t
>
&
dims
,
...
@@ -40,7 +42,7 @@ void InitRandomTensor(const std::vector<int64_t> &dims,
...
@@ -40,7 +42,7 @@ void InitRandomTensor(const std::vector<int64_t> &dims,
T
*
cpu_out_ptr
=
cpu_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
T
*
cpu_out_ptr
=
cpu_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
platform
::
CPUPlace
());
platform
::
CPUPlace
());
std
::
default_random_engine
random
(
0
);
std
::
default_random_engine
random
(
0
);
std
::
uniform_real_distribution
<
float
>
dis
(
0
.0
,
1.0
);
std
::
uniform_real_distribution
<
float
>
dis
(
-
1
.0
,
1.0
);
for
(
int
i
=
0
;
i
<
cpu_out
->
numel
();
++
i
)
{
for
(
int
i
=
0
;
i
<
cpu_out
->
numel
();
++
i
)
{
cpu_out_ptr
[
i
]
=
static_cast
<
T
>
(
dis
(
random
));
cpu_out_ptr
[
i
]
=
static_cast
<
T
>
(
dis
(
random
));
}
}
...
@@ -89,7 +91,7 @@ void CheckOutput(std::string name, const framework::Tensor &cpu_res,
...
@@ -89,7 +91,7 @@ void CheckOutput(std::string name, const framework::Tensor &cpu_res,
}
}
}
}
std
::
string
error_type
=
is_relative_atol
?
"relative"
:
"absolute"
;
std
::
string
error_type
=
is_relative_atol
?
"relative"
:
"absolute"
;
LOG
(
INFO
)
<<
"["
<<
name
<<
"]
,
The dims is ["
<<
cpu_res
.
dims
()
LOG
(
INFO
)
<<
"["
<<
name
<<
"] The dims is ["
<<
cpu_res
.
dims
()
<<
"], maximum "
<<
error_type
<<
" error is "
<<
max_diff
<<
": "
<<
"], maximum "
<<
error_type
<<
" error is "
<<
max_diff
<<
": "
<<
cpu_res_ptr
[
index
]
<<
" vs "
<<
cpu_base_ptr
[
index
];
<<
cpu_res_ptr
[
index
]
<<
" vs "
<<
cpu_base_ptr
[
index
];
}
}
...
@@ -121,13 +123,33 @@ void ComputeSumAndSquareSum(const framework::Tensor &cpu_x,
...
@@ -121,13 +123,33 @@ void ComputeSumAndSquareSum(const framework::Tensor &cpu_x,
}
}
}
}
// get paddle batchnorm op results as baseline
template
<
typename
T
>
void
ComputeInplaceAdd
(
const
framework
::
Tensor
&
cpu_x
,
framework
::
Tensor
*
cpu_y
)
{
EXPECT_EQ
(
cpu_x
.
dims
(),
cpu_y
->
dims
());
const
T
*
cpu_x_ptr
=
cpu_x
.
data
<
T
>
();
T
*
cpu_y_ptr
=
cpu_y
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
cpu_x
.
numel
();
++
i
)
{
cpu_y_ptr
[
i
]
+=
cpu_x_ptr
[
i
];
}
}
template
<
typename
T
>
void
ComputeInplaceRelu
(
framework
::
Tensor
*
cpu_x
)
{
T
*
cpu_x_ptr
=
cpu_x
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
cpu_x
->
numel
();
++
i
)
{
cpu_x_ptr
[
i
]
=
cpu_x_ptr
[
i
]
>
static_cast
<
T
>
(
0
)
?
cpu_x_ptr
[
i
]
:
static_cast
<
T
>
(
0
);
}
}
void
ComputeBatchNormForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
void
ComputeBatchNormForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_x
,
const
Tensor
&
cpu_scale
,
const
Tensor
&
cpu_x
,
const
Tensor
&
cpu_scale
,
const
Tensor
&
cpu_bias
,
Tensor
*
cpu_mean
,
const
Tensor
&
cpu_bias
,
Tensor
*
cpu_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
cpu
_reserve_space
)
{
Tensor
*
saved
_reserve_space
)
{
framework
::
Scope
scope
;
framework
::
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"X"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
x
=
scope
.
Var
(
"X"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
scale
=
scope
.
Var
(
"Scale"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
scale
=
scope
.
Var
(
"Scale"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
...
@@ -178,68 +200,258 @@ void ComputeBatchNormForward(const platform::CUDADeviceContext &ctx,
...
@@ -178,68 +200,258 @@ void ComputeBatchNormForward(const platform::CUDADeviceContext &ctx,
TensorCopySync
(
*
var
,
platform
::
CPUPlace
(),
cpu_var
);
TensorCopySync
(
*
var
,
platform
::
CPUPlace
(),
cpu_var
);
TensorCopySync
(
*
saved_mean
,
platform
::
CPUPlace
(),
cpu_saved_mean
);
TensorCopySync
(
*
saved_mean
,
platform
::
CPUPlace
(),
cpu_saved_mean
);
TensorCopySync
(
*
saved_var
,
platform
::
CPUPlace
(),
cpu_saved_var
);
TensorCopySync
(
*
saved_var
,
platform
::
CPUPlace
(),
cpu_saved_var
);
TensorCopySync
(
*
reserve_space
,
platform
::
CPUPlace
(),
cpu_reserve_space
);
// reserved_space will stay on GPU and used in grad op.
saved_reserve_space
->
ShareDataWith
(
*
reserve_space
);
}
void
ComputeFusedBNAddReluForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_x
,
const
Tensor
&
cpu_z
,
const
Tensor
&
cpu_scale
,
const
Tensor
&
cpu_bias
,
Tensor
*
cpu_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
saved_reserve_space
)
{
framework
::
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"X"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
z
=
scope
.
Var
(
"Z"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
scale
=
scope
.
Var
(
"Scale"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
bias
=
scope
.
Var
(
"Bias"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
mean
=
scope
.
Var
(
"Mean"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
var
=
scope
.
Var
(
"Variance"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
y
=
scope
.
Var
(
"Y"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
saved_mean
=
scope
.
Var
(
"SavedMean"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
saved_var
=
scope
.
Var
(
"SavedVariance"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
reserve_space
=
scope
.
Var
(
"ReserveSpace"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
cpu_x
,
place
,
x
);
TensorCopySync
(
cpu_z
,
place
,
z
);
TensorCopySync
(
cpu_scale
,
place
,
scale
);
TensorCopySync
(
cpu_bias
,
place
,
bias
);
TensorCopySync
(
*
cpu_mean
,
place
,
mean
);
TensorCopySync
(
*
cpu_var
,
place
,
var
);
int64_t
channels
=
x
->
dims
()[
3
];
scale
->
Resize
({
channels
});
bias
->
Resize
({
channels
});
mean
->
Resize
({
channels
});
var
->
Resize
({
channels
});
framework
::
AttributeMap
attrs
;
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
"fused_bn_add_activation"
,
{{
"X"
,
{
"X"
}},
{
"Z"
,
{
"Z"
}},
{
"Scale"
,
{
"Scale"
}},
{
"Bias"
,
{
"Bias"
}}},
{{
"Y"
,
{
"Y"
}},
{
"MeanOut"
,
{
"Mean"
}},
{
"VarianceOut"
,
{
"Variance"
}},
{
"SavedMean"
,
{
"SavedMean"
}},
{
"SavedVariance"
,
{
"SavedVariance"
}},
{
"ReserveSpace"
,
{
"ReserveSpace"
}}},
attrs
);
op
->
Run
(
scope
,
ctx
.
GetPlace
());
TensorCopySync
(
*
y
,
platform
::
CPUPlace
(),
cpu_y
);
TensorCopySync
(
*
mean
,
platform
::
CPUPlace
(),
cpu_mean
);
TensorCopySync
(
*
var
,
platform
::
CPUPlace
(),
cpu_var
);
TensorCopySync
(
*
saved_mean
,
platform
::
CPUPlace
(),
cpu_saved_mean
);
TensorCopySync
(
*
saved_var
,
platform
::
CPUPlace
(),
cpu_saved_var
);
// reserved_space will stay on GPU and used in grad op.
saved_reserve_space
->
ShareDataWith
(
*
reserve_space
);
}
void
ComputeFusedBNAddReluBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_dy
,
const
Tensor
&
cpu_x
,
const
Tensor
&
cpu_scale
,
const
Tensor
&
cpu_bias
,
const
Tensor
&
cpu_saved_mean
,
const
Tensor
&
cpu_saved_var
,
const
Tensor
&
cpu_y
,
const
Tensor
&
saved_reserve_space
,
Tensor
*
cpu_dx
,
Tensor
*
cpu_dz
,
Tensor
*
cpu_dscale
,
Tensor
*
cpu_dbias
)
{
framework
::
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"X"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
y
=
scope
.
Var
(
"Y"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
dy
=
scope
.
Var
(
"Y@GRAD"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
scale
=
scope
.
Var
(
"Scale"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
bias
=
scope
.
Var
(
"Bias"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
saved_mean
=
scope
.
Var
(
"SavedMean"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
saved_var
=
scope
.
Var
(
"SavedVariance"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
reserve_space
=
scope
.
Var
(
"ReserveSpace"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
dx
=
scope
.
Var
(
"X@GRAD"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
dz
=
scope
.
Var
(
"Z@GRAD"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
dscale
=
scope
.
Var
(
"Scale@GRAD"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
dbias
=
scope
.
Var
(
"Bias@GRAD"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
cpu_x
,
place
,
x
);
TensorCopySync
(
cpu_y
,
place
,
y
);
TensorCopySync
(
cpu_dy
,
place
,
dy
);
TensorCopySync
(
cpu_scale
,
place
,
scale
);
TensorCopySync
(
cpu_bias
,
place
,
bias
);
TensorCopySync
(
cpu_saved_mean
,
place
,
saved_mean
);
TensorCopySync
(
cpu_saved_var
,
place
,
saved_var
);
reserve_space
->
ShareDataWith
(
saved_reserve_space
);
int64_t
channels
=
x
->
dims
()[
3
];
scale
->
Resize
({
channels
});
bias
->
Resize
({
channels
});
saved_mean
->
Resize
({
channels
});
saved_var
->
Resize
({
channels
});
framework
::
AttributeMap
attrs
;
float
momentum
=
0.9
;
float
epsilon
=
1e-5
;
std
::
string
act_type
=
"relu"
;
attrs
.
insert
({
"momentum"
,
momentum
});
attrs
.
insert
({
"epsilon"
,
epsilon
});
attrs
.
insert
({
"act_type"
,
act_type
});
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
"fused_bn_add_activation_grad"
,
{{
"X"
,
{
"X"
}},
{
"Y"
,
{
"Y"
}},
{
"Y@GRAD"
,
{
"Y@GRAD"
}},
{
"Scale"
,
{
"Scale"
}},
{
"Bias"
,
{
"Bias"
}},
{
"SavedMean"
,
{
"SavedMean"
}},
{
"SavedVariance"
,
{
"SavedVariance"
}},
{
"ReserveSpace"
,
{
"ReserveSpace"
}}},
{{
"X@GRAD"
,
{
"X@GRAD"
}},
{
"Z@GRAD"
,
{
"Z@GRAD"
}},
{
"Scale@GRAD"
,
{
"Scale@GRAD"
}},
{
"Bias@GRAD"
,
{
"Bias@GRAD"
}}},
attrs
);
op
->
Run
(
scope
,
ctx
.
GetPlace
());
TensorCopySync
(
*
dx
,
platform
::
CPUPlace
(),
cpu_dx
);
TensorCopySync
(
*
dz
,
platform
::
CPUPlace
(),
cpu_dz
);
TensorCopySync
(
*
dscale
,
platform
::
CPUPlace
(),
cpu_dscale
);
TensorCopySync
(
*
dbias
,
platform
::
CPUPlace
(),
cpu_dbias
);
}
}
template
<
typename
T
>
template
<
typename
T
>
class
CudnnBNAddReluTester
{
class
CudnnBNAddReluTester
{
public:
public:
CudnnBNAddReluTester
(
int
batch_size
,
int
height
,
int
width
,
int
channels
)
{
CudnnBNAddReluTester
(
int
batch_size
,
int
height
,
int
width
,
int
channels
,
std
::
string
act_type
,
bool
fuse_add
,
bool
has_shortcut
)
{
batch_size_
=
batch_size
;
batch_size_
=
batch_size
;
height_
=
height
;
height_
=
height
;
width_
=
width
;
width_
=
width
;
channels_
=
channels
;
channels_
=
channels
;
ele_count_
=
batch_size_
*
height_
*
width_
;
ele_count_
=
batch_size_
*
height_
*
width_
;
act_type_
=
act_type
;
fuse_add_
=
fuse_add
;
has_shortcut_
=
has_shortcut
;
SetUp
();
SetUp
();
}
}
~
CudnnBNAddReluTester
()
{}
~
CudnnBNAddReluTester
()
{}
void
CheckForward
(
float
diff
,
bool
is_relative_atol
=
false
)
{
void
CheckForward
(
float
diff
,
bool
is_relative_atol
=
false
)
{
LOG
(
INFO
)
<<
"[CheckForward, diff="
<<
diff
<<
", is_relative_atol="
<<
is_relative_atol
<<
"] act_type="
<<
act_type_
<<
", fuse_add="
<<
fuse_add_
<<
", has_shortcut="
<<
has_shortcut_
;
platform
::
CUDADeviceContext
*
ctx
=
platform
::
CUDADeviceContext
*
ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
platform
::
CUDAPlace
(
0
)));
framework
::
Tensor
cpu_mean_base
;
auto
select
=
[
&
](
Tensor
*
in
)
{
return
has_shortcut_
?
in
:
nullptr
;
};
framework
::
Tensor
cpu_var_base
;
framework
::
Tensor
cpu_saved_mean_base
;
framework
::
Tensor
cpu_mean_base_x
;
framework
::
Tensor
cpu_saved_var_base
;
framework
::
Tensor
cpu_var_base_x
;
framework
::
Tensor
cpu_y_base
;
framework
::
Tensor
cpu_mean_base_z
;
framework
::
Tensor
cpu_reserve_space_base
;
framework
::
Tensor
cpu_var_base_z
;
BaselineForward
(
*
ctx
,
&
cpu_mean_base
,
&
cpu_var_base
,
&
cpu_saved_mean_base
,
if
(
!
has_shortcut_
&&
fuse_add_
&&
(
act_type_
==
"relu"
))
{
&
cpu_saved_var_base
,
&
cpu_y_base
,
&
cpu_reserve_space_base
);
BaselineForwardFusedBNAddRelu
(
*
ctx
,
&
cpu_mean_base_x
,
&
cpu_var_base_x
,
&
cpu_saved_mean_base_x_
,
framework
::
Tensor
cpu_mean
;
&
cpu_saved_var_base_x_
,
&
cpu_y_base_
,
&
saved_reserve_space_x_
);
framework
::
Tensor
cpu_var
;
}
else
{
framework
::
Tensor
cpu_saved_mean
;
BaselineForward
(
framework
::
Tensor
cpu_saved_var
;
*
ctx
,
&
cpu_mean_base_x
,
&
cpu_var_base_x
,
&
cpu_saved_mean_base_x_
,
framework
::
Tensor
cpu_y
;
&
cpu_saved_var_base_x_
,
&
cpu_y_base_
,
&
saved_reserve_space_x_
,
framework
::
Tensor
cpu_bitmask
;
select
(
&
cpu_mean_base_z
),
select
(
&
cpu_var_base_z
),
FusedForward
(
*
ctx
,
&
cpu_mean
,
&
cpu_var
,
&
cpu_saved_mean
,
&
cpu_saved_var
,
select
(
&
cpu_saved_mean_base_z_
),
select
(
&
cpu_saved_var_base_z_
),
&
cpu_y
,
&
cpu_bitmask
);
select
(
&
saved_reserve_space_z_
));
}
CheckOutput
<
float
>
(
"Mean"
,
cpu_mean
,
cpu_mean_base
,
diff
,
is_relative_atol
);
framework
::
Tensor
cpu_mean_x
;
CheckOutput
<
float
>
(
"Variance"
,
cpu_var
,
cpu_var_base
,
diff
,
framework
::
Tensor
cpu_var_x
;
framework
::
Tensor
cpu_y
;
framework
::
Tensor
cpu_mean_z
;
framework
::
Tensor
cpu_var_z
;
FusedForward
(
*
ctx
,
&
cpu_mean_x
,
&
cpu_var_x
,
&
cpu_saved_mean_x_
,
&
cpu_saved_var_x_
,
&
cpu_y
,
&
cpu_bitmask_
,
select
(
&
cpu_mean_z
),
select
(
&
cpu_var_z
),
select
(
&
cpu_saved_mean_z_
),
select
(
&
cpu_saved_var_z_
));
CheckOutput
<
float
>
(
"Mean"
,
cpu_mean_x
,
cpu_mean_base_x
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"Variance"
,
cpu_var_x
,
cpu_var_base_x
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"SavedMean"
,
cpu_saved_mean_x_
,
cpu_saved_mean_base_x_
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"SavedVariance"
,
cpu_saved_var_x_
,
cpu_saved_var_base_x_
,
diff
,
is_relative_atol
);
if
(
has_shortcut_
)
{
CheckOutput
<
float
>
(
"MeanZ"
,
cpu_mean_z
,
cpu_mean_base_z
,
diff
,
is_relative_atol
);
is_relative_atol
);
CheckOutput
<
float
>
(
"SavedMean"
,
cpu_saved_mean
,
cpu_saved_mean_base
,
diff
,
CheckOutput
<
float
>
(
"VarianceZ"
,
cpu_var_z
,
cpu_var_base_z
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"SavedMeanZ"
,
cpu_saved_mean_z_
,
cpu_saved_mean_base_z_
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"SavedVarianceZ"
,
cpu_saved_var_z_
,
cpu_saved_var_base_z_
,
diff
,
is_relative_atol
);
}
CheckOutput
<
T
>
(
"Y"
,
cpu_y
,
cpu_y_base_
,
diff
,
is_relative_atol
);
}
void
CheckBackward
(
float
diff
,
bool
is_relative_atol
=
false
)
{
platform
::
CUDADeviceContext
*
ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
framework
::
Tensor
cpu_dx_base
;
framework
::
Tensor
cpu_dz_base
;
framework
::
Tensor
cpu_dscale_base
;
framework
::
Tensor
cpu_dbias_base
;
BaselineBackwardFusedBNAddRelu
(
*
ctx
,
&
cpu_dx_base
,
&
cpu_dz_base
,
&
cpu_dscale_base
,
&
cpu_dbias_base
);
framework
::
Tensor
cpu_dx
;
framework
::
Tensor
cpu_dz
;
framework
::
Tensor
cpu_dscale
;
framework
::
Tensor
cpu_dbias
;
FusedBackward
(
*
ctx
,
&
cpu_dx
,
&
cpu_dz
,
&
cpu_dscale
,
&
cpu_dbias
);
CheckOutput
<
T
>
(
"DX"
,
cpu_dx
,
cpu_dx_base
,
diff
,
is_relative_atol
);
CheckOutput
<
T
>
(
"DZ"
,
cpu_dz
,
cpu_dz_base
,
diff
,
is_relative_atol
);
CheckOutput
<
float
>
(
"DScale"
,
cpu_dscale
,
cpu_dscale_base
,
diff
,
is_relative_atol
);
is_relative_atol
);
CheckOutput
<
float
>
(
"
SavedVariance"
,
cpu_saved_var
,
cpu_saved_var
_base
,
diff
,
CheckOutput
<
float
>
(
"
DBias"
,
cpu_dbias
,
cpu_dbias
_base
,
diff
,
is_relative_atol
);
is_relative_atol
);
CheckOutput
<
T
>
(
"Y"
,
cpu_y
,
cpu_y_base
,
diff
,
is_relative_atol
);
}
}
private:
private:
void
SetUp
()
{
void
SetUp
()
{
// Initialize input data
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
&
cpu_x_
);
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
&
cpu_x_
);
ComputeSumAndSquareSum
<
T
>
(
cpu_x_
,
&
cpu_sum_
,
&
cpu_sum_of_square_
);
InitRandomTensor
<
float
>
({
channels_
},
&
cpu_bn_scale_x_
);
InitRandomTensor
<
float
>
({
channels_
},
&
cpu_bn_bias_x_
);
// scale and bias should be initialized randomly.
if
(
has_shortcut_
)
{
InitConstantTensor
<
float
>
({
channels_
},
static_cast
<
float
>
(
1.0
f
),
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
&
cpu_z_
);
&
cpu_bn_scale_
);
InitRandomTensor
<
float
>
({
channels_
},
&
cpu_bn_scale_z_
);
InitConstantTensor
<
float
>
({
channels_
},
static_cast
<
float
>
(
0.0
f
),
InitRandomTensor
<
float
>
({
channels_
},
&
cpu_bn_bias_z_
);
&
cpu_bn_bias_
);
}
else
{
if
(
fuse_add_
)
{
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
&
cpu_z_
);
}
}
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
&
cpu_dy_
);
}
}
void
InitMeanVar
(
Tensor
*
cpu_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
void
InitMeanVar
(
Tensor
*
cpu_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
...
@@ -252,71 +464,178 @@ class CudnnBNAddReluTester {
...
@@ -252,71 +464,178 @@ class CudnnBNAddReluTester {
cpu_saved_var
);
cpu_saved_var
);
}
}
void
BaselineForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_mean
,
void
BaselineForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_mean_x
,
Tensor
*
cpu_var_x
,
Tensor
*
cpu_saved_mean_x
,
Tensor
*
cpu_saved_var_x
,
Tensor
*
cpu_y
,
Tensor
*
saved_reserve_space_x
,
Tensor
*
cpu_mean_z
=
nullptr
,
Tensor
*
cpu_var_z
=
nullptr
,
Tensor
*
cpu_saved_mean_z
=
nullptr
,
Tensor
*
cpu_saved_var_z
=
nullptr
,
Tensor
*
saved_reserve_space_z
=
nullptr
)
{
InitMeanVar
(
cpu_mean_x
,
cpu_var_x
,
cpu_saved_mean_x
,
cpu_saved_var_x
);
ComputeBatchNormForward
(
ctx
,
cpu_x_
,
cpu_bn_scale_x_
,
cpu_bn_bias_x_
,
cpu_mean_x
,
cpu_var_x
,
cpu_saved_mean_x
,
cpu_saved_var_x
,
cpu_y
,
saved_reserve_space_x
);
if
(
has_shortcut_
)
{
framework
::
Tensor
cpu_z_out
;
InitMeanVar
(
cpu_mean_z
,
cpu_var_z
,
cpu_saved_mean_z
,
cpu_saved_var_z
);
ComputeBatchNormForward
(
ctx
,
cpu_z_
,
cpu_bn_scale_z_
,
cpu_bn_bias_z_
,
cpu_mean_z
,
cpu_var_z
,
cpu_saved_mean_z
,
cpu_saved_var_z
,
&
cpu_z_out
,
saved_reserve_space_z
);
ComputeInplaceAdd
<
T
>
(
cpu_z_out
,
cpu_y
);
}
else
{
if
(
fuse_add_
)
{
ComputeInplaceAdd
<
T
>
(
cpu_z_
,
cpu_y
);
}
}
if
(
act_type_
==
"relu"
)
{
ComputeInplaceRelu
<
T
>
(
cpu_y
);
}
}
void
BaselineForwardFusedBNAddRelu
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_mean
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
cpu
_reserve_space
)
{
Tensor
*
saved
_reserve_space
)
{
InitMeanVar
(
cpu_mean
,
cpu_var
,
cpu_saved_mean
,
cpu_saved_var
);
InitMeanVar
(
cpu_mean
,
cpu_var
,
cpu_saved_mean
,
cpu_saved_var
);
ComputeBatchNormForward
(
ctx
,
cpu_x_
,
cpu_bn_scale_
,
cpu_bn_bias_
,
cpu_mean
,
ComputeFusedBNAddReluForward
(
cpu_var
,
cpu_saved_mean
,
cpu_saved_var
,
cpu_y
,
ctx
,
cpu_x_
,
cpu_z_
,
cpu_bn_scale_x_
,
cpu_bn_bias_x_
,
cpu_mean
,
cpu_var
,
cpu_reserve_space
);
cpu_saved_mean
,
cpu_saved_var
,
cpu_y
,
saved_reserve_space
);
}
void
BaselineBackwardFusedBNAddRelu
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_dx
,
Tensor
*
cpu_dz
,
Tensor
*
cpu_dscale
,
Tensor
*
cpu_dbias
)
{
ComputeFusedBNAddReluBackward
(
ctx
,
cpu_dy_
,
cpu_x_
,
cpu_bn_scale_x_
,
cpu_bn_bias_x_
,
cpu_saved_mean_base_x_
,
cpu_saved_var_base_x_
,
cpu_y_base_
,
saved_reserve_space_x_
,
cpu_dx
,
cpu_dz
,
cpu_dscale
,
cpu_dbias
);
}
void
ComputeFusedBNStatsFinalize
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_x
,
const
Tensor
&
cpu_bn_scale
,
const
Tensor
&
cpu_bn_bias
,
Tensor
*
sum
,
Tensor
*
sum_of_square
,
Tensor
*
bn_scale
,
Tensor
*
bn_bias
,
Tensor
*
mean
,
Tensor
*
var
,
Tensor
*
saved_mean
,
Tensor
*
saved_var
,
Tensor
*
equiv_scale
,
Tensor
*
equiv_bias
)
{
framework
::
Tensor
cpu_sum
;
framework
::
Tensor
cpu_sum_of_square
;
ComputeSumAndSquareSum
<
T
>
(
cpu_x
,
&
cpu_sum
,
&
cpu_sum_of_square
);
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
cpu_sum
,
place
,
sum
);
TensorCopySync
(
cpu_sum_of_square
,
place
,
sum_of_square
);
TensorCopySync
(
cpu_bn_scale
,
place
,
bn_scale
);
TensorCopySync
(
cpu_bn_bias
,
place
,
bn_bias
);
bn_scale
->
Resize
({
1
,
1
,
1
,
channels_
});
bn_bias
->
Resize
({
1
,
1
,
1
,
channels_
});
// input
float
*
sum_ptr
=
sum
->
data
<
float
>
();
float
*
sum_of_square_ptr
=
sum_of_square
->
data
<
float
>
();
float
*
bn_scale_ptr
=
bn_scale
->
data
<
float
>
();
float
*
bn_bias_ptr
=
bn_bias
->
data
<
float
>
();
mean
->
Resize
({
1
,
1
,
1
,
channels_
});
var
->
Resize
({
1
,
1
,
1
,
channels_
});
// output
float
*
mean_ptr
=
mean
->
data
<
float
>
();
float
*
var_ptr
=
var
->
data
<
float
>
();
float
*
saved_mean_ptr
=
saved_mean
->
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
float
*
saved_var_ptr
=
saved_var
->
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
equiv_scale_ptr
=
equiv_scale
->
mutable_data
<
T
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
equiv_bias_ptr
=
equiv_bias
->
mutable_data
<
T
>
({
1
,
1
,
1
,
channels_
},
place
);
auto
param_shape
=
framework
::
vectorize
<
int
>
(
bn_scale
->
dims
());
op
::
CudnnBNStatsFinalize
<
T
>
bn_op
(
ctx
,
param_shape
);
bn_op
.
Forward
(
ctx
,
sum_ptr
,
sum_of_square_ptr
,
bn_scale_ptr
,
bn_bias_ptr
,
saved_mean_ptr
,
saved_var_ptr
,
mean_ptr
,
var_ptr
,
equiv_scale_ptr
,
equiv_bias_ptr
,
eps_
,
momentum_
,
ele_count_
,
true
);
}
}
// Get forward results of CudnnBNStatsFinalize + CudnnScaleBiasAddRelu
// Get forward results of CudnnBNStatsFinalize + CudnnScaleBiasAddRelu
void
FusedForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_mean
,
void
FusedForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_mean_x
,
Tensor
*
cpu_var
,
Tensor
*
cpu_saved_mean
,
Tensor
*
cpu_var_x
,
Tensor
*
cpu_saved_mean_x
,
Tensor
*
cpu_saved_var
,
Tensor
*
cpu_y
,
Tensor
*
cpu_bitmask
)
{
Tensor
*
cpu_saved_var_x
,
Tensor
*
cpu_y
,
Tensor
*
cpu_bitmask
,
Tensor
*
cpu_mean_z
=
nullptr
,
Tensor
*
cpu_var_z
=
nullptr
,
Tensor
*
cpu_saved_mean_z
=
nullptr
,
Tensor
*
cpu_saved_var_z
=
nullptr
)
{
framework
::
Tensor
x
;
framework
::
Tensor
x
;
framework
::
Tensor
sum
;
framework
::
Tensor
sum_x
;
framework
::
Tensor
sum_of_square
;
framework
::
Tensor
sum_of_square_x
;
framework
::
Tensor
bn_scale
;
framework
::
Tensor
bn_scale_x
;
framework
::
Tensor
bn_bias
;
framework
::
Tensor
bn_bias_x
;
framework
::
Tensor
z
;
framework
::
Tensor
sum_z
;
framework
::
Tensor
sum_of_square_z
;
framework
::
Tensor
bn_scale_z
;
framework
::
Tensor
bn_bias_z
;
auto
place
=
ctx
.
GetPlace
();
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
cpu_x_
,
place
,
&
x
);
TensorCopySync
(
cpu_x_
,
place
,
&
x
);
TensorCopySync
(
cpu_sum_
,
place
,
&
sum
);
if
(
fuse_add_
||
has_shortcut_
)
{
TensorCopySync
(
cpu_sum_of_square_
,
place
,
&
sum_of_square
);
TensorCopySync
(
cpu_z_
,
place
,
&
z
);
TensorCopySync
(
cpu_bn_scale_
,
place
,
&
bn_scale
);
}
TensorCopySync
(
cpu_bn_bias_
,
place
,
&
bn_bias
);
bn_scale
.
Resize
({
1
,
1
,
1
,
channels_
});
framework
::
Tensor
mean_x
;
bn_bias
.
Resize
({
1
,
1
,
1
,
channels_
});
framework
::
Tensor
var_x
;
framework
::
Tensor
saved_mean_x
;
framework
::
Tensor
saved_var_x
;
framework
::
Tensor
equiv_scale_x
;
framework
::
Tensor
equiv_bias_x
;
T
*
x_ptr
=
x
.
data
<
T
>
();
framework
::
Tensor
mean_z
;
float
*
sum_ptr
=
sum
.
data
<
float
>
();
framework
::
Tensor
var_z
;
float
*
sum_of_square_ptr
=
sum_of_square
.
data
<
float
>
();
framework
::
Tensor
saved_mean_z
;
float
*
bn_scale_ptr
=
bn_scale
.
data
<
float
>
();
framework
::
Tensor
saved_var_z
;
float
*
bn_bias_ptr
=
bn_bias
.
data
<
float
>
();
framework
::
Tensor
equiv_scale_z
;
framework
::
Tensor
equiv_bias_z
;
framework
::
Tensor
mean
;
framework
::
Tensor
var
;
framework
::
Tensor
saved_mean
;
framework
::
Tensor
saved_var
;
framework
::
Tensor
equiv_scale
;
framework
::
Tensor
equiv_bias
;
framework
::
Tensor
y
;
framework
::
Tensor
y
;
framework
::
Tensor
bitmask
;
framework
::
Tensor
bitmask
;
InitMeanVar
(
cpu_mean
,
cpu_var
,
cpu_saved_mean
,
cpu_saved_var
);
InitMeanVar
(
cpu_mean_x
,
cpu_var_x
,
cpu_saved_mean_x
,
cpu_saved_var_x
);
TensorCopySync
(
*
cpu_mean
,
place
,
&
mean
);
TensorCopySync
(
*
cpu_mean_x
,
place
,
&
mean_x
);
TensorCopySync
(
*
cpu_var
,
place
,
&
var
);
TensorCopySync
(
*
cpu_var_x
,
place
,
&
var_x
);
if
(
has_shortcut_
)
{
InitMeanVar
(
cpu_mean_z
,
cpu_var_z
,
cpu_saved_mean_z
,
cpu_saved_var_z
);
TensorCopySync
(
*
cpu_mean_z
,
place
,
&
mean_z
);
TensorCopySync
(
*
cpu_var_z
,
place
,
&
var_z
);
}
mean
.
Resize
({
1
,
1
,
1
,
channels_
});
// 1. BN Stats Finalize
var
.
Resize
({
1
,
1
,
1
,
channels_
});
ComputeFusedBNStatsFinalize
(
ctx
,
cpu_x_
,
cpu_bn_scale_x_
,
cpu_bn_bias_x_
,
&
sum_x
,
&
sum_of_square_x
,
&
bn_scale_x
,
&
bn_bias_x
,
&
mean_x
,
&
var_x
,
&
saved_mean_x
,
&
saved_var_x
,
&
equiv_scale_x
,
&
equiv_bias_x
);
if
(
has_shortcut_
)
{
ComputeFusedBNStatsFinalize
(
ctx
,
cpu_z_
,
cpu_bn_scale_z_
,
cpu_bn_bias_z_
,
&
sum_z
,
&
sum_of_square_z
,
&
bn_scale_z
,
&
bn_bias_z
,
&
mean_z
,
&
var_z
,
&
saved_mean_z
,
&
saved_var_z
,
&
equiv_scale_z
,
&
equiv_bias_z
);
}
float
*
mean_ptr
=
mean
.
data
<
float
>
();
T
*
x_ptr
=
x
.
data
<
T
>
();
float
*
var_ptr
=
var
.
data
<
float
>
();
T
*
z_ptr
=
(
fuse_add_
||
has_shortcut_
)
?
z
.
data
<
T
>
()
:
nullptr
;
float
*
saved_mean_ptr
=
T
*
equiv_scale_x_ptr
=
equiv_scale_x
.
data
<
T
>
();
saved_mean
.
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
equiv_bias_x_ptr
=
equiv_bias_x
.
data
<
T
>
();
float
*
saved_var_ptr
=
T
*
equiv_scale_z_ptr
=
has_shortcut_
?
equiv_scale_z
.
data
<
T
>
()
:
nullptr
;
saved_var
.
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
equiv_bias_z_ptr
=
has_shortcut_
?
equiv_bias_z
.
data
<
T
>
()
:
nullptr
;
T
*
equiv_scale_ptr
=
equiv_scale
.
mutable_data
<
T
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
equiv_bias_ptr
=
equiv_bias
.
mutable_data
<
T
>
({
1
,
1
,
1
,
channels_
},
place
);
T
*
y_ptr
=
T
*
y_ptr
=
y
.
mutable_data
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
place
);
y
.
mutable_data
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
place
);
// bitmask
int
c
=
channels_
;
int
c
=
channels_
;
int64_t
nhw
=
ele_count_
;
int64_t
nhw
=
ele_count_
;
int32_t
c_int32_elems
=
((
c
+
63
)
&
~
63
)
/
32
;
int32_t
c_int32_elems
=
((
c
+
63
)
&
~
63
)
/
32
;
...
@@ -325,31 +644,90 @@ class CudnnBNAddReluTester {
...
@@ -325,31 +644,90 @@ class CudnnBNAddReluTester {
{
nhw_int32_elems
,
c_int32_elems
,
1
},
place
);
{
nhw_int32_elems
,
c_int32_elems
,
1
},
place
);
auto
data_shape
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
auto
data_shape
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
auto
param_shape
=
framework
::
vectorize
<
int
>
(
bn_scale
.
dims
());
auto
param_shape
=
framework
::
vectorize
<
int
>
(
bn_scale
_x
.
dims
());
auto
bitmask_shape
=
framework
::
vectorize
<
int
>
(
bitmask
.
dims
());
auto
bitmask_shape
=
framework
::
vectorize
<
int
>
(
bitmask
.
dims
());
// 1. BN Stats Finalize
// 2. Scale Bias + Relu
op
::
CudnnBNStatsFinalize
<
T
>
bn_op
(
ctx
,
param_shape
);
op
::
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
ctx
,
act_type_
,
fuse_add_
,
bn_op
.
Forward
(
ctx
,
sum_ptr
,
sum_of_square_ptr
,
bn_scale_ptr
,
bn_bias_ptr
,
has_shortcut_
,
data_shape
,
param_shape
,
saved_mean_ptr
,
saved_var_ptr
,
mean_ptr
,
var_ptr
,
bitmask_shape
);
equiv_scale_ptr
,
equiv_bias_ptr
,
eps_
,
momentum_
,
ele_count_
,
sbar_op
.
Forward
(
ctx
,
x_ptr
,
equiv_scale_x_ptr
,
equiv_bias_x_ptr
,
y_ptr
,
true
);
bitmask_ptr
,
z_ptr
,
equiv_scale_z_ptr
,
equiv_bias_z_ptr
);
// 2. Scale Bias + Relu (not fused add)
TensorCopySync
(
mean_x
,
platform
::
CPUPlace
(),
cpu_mean_x
);
std
::
string
act_type
=
""
;
TensorCopySync
(
var_x
,
platform
::
CPUPlace
(),
cpu_var_x
);
op
::
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
TensorCopySync
(
saved_mean_x
,
platform
::
CPUPlace
(),
cpu_saved_mean_x
);
ctx
,
act_type
,
false
,
false
,
data_shape
,
param_shape
,
bitmask_shape
);
TensorCopySync
(
saved_var_x
,
platform
::
CPUPlace
(),
cpu_saved_var_x
);
sbar_op
.
Forward
(
ctx
,
x_ptr
,
equiv_scale_ptr
,
equiv_bias_ptr
,
y_ptr
,
if
(
has_shortcut_
)
{
bitmask_ptr
);
TensorCopySync
(
mean_z
,
platform
::
CPUPlace
(),
cpu_mean_z
);
TensorCopySync
(
var_z
,
platform
::
CPUPlace
(),
cpu_var_z
);
TensorCopySync
(
mean
,
platform
::
CPUPlace
(),
cpu_mean
);
TensorCopySync
(
saved_mean_z
,
platform
::
CPUPlace
(),
cpu_saved_mean_z
);
TensorCopySync
(
var
,
platform
::
CPUPlace
(),
cpu_var
);
TensorCopySync
(
saved_var_z
,
platform
::
CPUPlace
(),
cpu_saved_var_z
);
TensorCopySync
(
saved_mean
,
platform
::
CPUPlace
(),
cpu_saved_mean
);
}
TensorCopySync
(
saved_var
,
platform
::
CPUPlace
(),
cpu_saved_var
);
TensorCopySync
(
y
,
platform
::
CPUPlace
(),
cpu_y
);
TensorCopySync
(
y
,
platform
::
CPUPlace
(),
cpu_y
);
TensorCopySync
(
bitmask
,
platform
::
CPUPlace
(),
cpu_bitmask
);
TensorCopySync
(
bitmask
,
platform
::
CPUPlace
(),
cpu_bitmask
);
}
}
// Get backward results of CudnnBNStatsFinalize + CudnnScaleBiasAddRelu
void
FusedBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
Tensor
*
cpu_dx
,
Tensor
*
cpu_dz
,
Tensor
*
cpu_dscale
,
Tensor
*
cpu_dbias
)
{
framework
::
Tensor
dy
;
framework
::
Tensor
x
;
framework
::
Tensor
bn_scale
;
framework
::
Tensor
bn_bias
;
framework
::
Tensor
saved_mean
;
framework
::
Tensor
saved_var
;
framework
::
Tensor
bitmask
;
framework
::
Tensor
dx
;
framework
::
Tensor
dz
;
framework
::
Tensor
dscale
;
framework
::
Tensor
dbias
;
auto
place
=
ctx
.
GetPlace
();
TensorCopySync
(
cpu_dy_
,
place
,
&
dy
);
TensorCopySync
(
cpu_x_
,
place
,
&
x
);
TensorCopySync
(
cpu_bn_scale_x_
,
place
,
&
bn_scale
);
TensorCopySync
(
cpu_bn_bias_x_
,
place
,
&
bn_bias
);
TensorCopySync
(
cpu_saved_mean_x_
,
place
,
&
saved_mean
);
TensorCopySync
(
cpu_saved_var_x_
,
place
,
&
saved_var
);
TensorCopySync
(
cpu_bitmask_
,
place
,
&
bitmask
);
bn_scale
.
Resize
({
1
,
1
,
1
,
channels_
});
bn_bias
.
Resize
({
1
,
1
,
1
,
channels_
});
saved_mean
.
Resize
({
1
,
1
,
1
,
channels_
});
saved_var
.
Resize
({
1
,
1
,
1
,
channels_
});
T
*
dy_ptr
=
dy
.
data
<
T
>
();
T
*
x_ptr
=
x
.
data
<
T
>
();
float
*
bn_scale_ptr
=
bn_scale
.
data
<
float
>
();
float
*
bn_bias_ptr
=
bn_bias
.
data
<
float
>
();
float
*
saved_mean_ptr
=
saved_mean
.
data
<
float
>
();
float
*
saved_var_ptr
=
saved_var
.
data
<
float
>
();
int32_t
*
bitmask_ptr
=
bitmask
.
data
<
int32_t
>
();
T
*
dx_ptr
=
dx
.
mutable_data
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
place
);
T
*
dz_ptr
=
dz
.
mutable_data
<
T
>
({
batch_size_
,
height_
,
width_
,
channels_
},
place
);
float
*
dscale_ptr
=
dscale
.
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
float
*
dbias_ptr
=
dbias
.
mutable_data
<
float
>
({
1
,
1
,
1
,
channels_
},
place
);
auto
data_shape
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
auto
param_shape
=
framework
::
vectorize
<
int
>
(
bn_scale
.
dims
());
auto
bitmask_shape
=
framework
::
vectorize
<
int
>
(
bitmask
.
dims
());
std
::
string
act_type
=
"relu"
;
op
::
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
ctx
,
act_type
,
true
,
false
,
data_shape
,
param_shape
,
bitmask_shape
);
sbar_op
.
Backward
(
ctx
,
dy_ptr
,
x_ptr
,
bn_scale_ptr
,
bn_bias_ptr
,
saved_mean_ptr
,
saved_var_ptr
,
bitmask_ptr
,
dx_ptr
,
dz_ptr
,
dscale_ptr
,
dbias_ptr
,
eps_
);
TensorCopySync
(
dx
,
platform
::
CPUPlace
(),
cpu_dx
);
TensorCopySync
(
dz
,
platform
::
CPUPlace
(),
cpu_dz
);
TensorCopySync
(
dscale
,
platform
::
CPUPlace
(),
cpu_dscale
);
TensorCopySync
(
dbias
,
platform
::
CPUPlace
(),
cpu_dbias
);
}
private:
private:
int
batch_size_
;
int
batch_size_
;
int
height_
;
int
height_
;
...
@@ -357,24 +735,80 @@ class CudnnBNAddReluTester {
...
@@ -357,24 +735,80 @@ class CudnnBNAddReluTester {
int
channels_
;
int
channels_
;
int
ele_count_
;
int
ele_count_
;
std
::
string
act_type_
;
bool
fuse_add_
;
bool
has_shortcut_
;
// Forward input
// Forward input
framework
::
Tensor
cpu_x_
;
framework
::
Tensor
cpu_x_
;
framework
::
Tensor
cpu_sum_
;
framework
::
Tensor
cpu_bn_scale_x_
;
framework
::
Tensor
cpu_sum_of_square_
;
framework
::
Tensor
cpu_bn_bias_x_
;
framework
::
Tensor
cpu_bn_scale_
;
framework
::
Tensor
cpu_z_
;
framework
::
Tensor
cpu_bn_bias_
;
framework
::
Tensor
cpu_bn_scale_z_
;
framework
::
Tensor
cpu_bn_bias_z_
;
// Backward input
framework
::
Tensor
cpu_dy_
;
framework
::
Tensor
cpu_bitmask_
;
framework
::
Tensor
cpu_saved_mean_x_
;
framework
::
Tensor
cpu_saved_var_x_
;
framework
::
Tensor
cpu_saved_mean_z_
;
framework
::
Tensor
cpu_saved_var_z_
;
framework
::
Tensor
cpu_saved_mean_base_x_
;
framework
::
Tensor
cpu_saved_var_base_x_
;
framework
::
Tensor
saved_reserve_space_x_
;
framework
::
Tensor
cpu_saved_mean_base_z_
;
framework
::
Tensor
cpu_saved_var_base_z_
;
framework
::
Tensor
saved_reserve_space_z_
;
framework
::
Tensor
cpu_y_base_
;
double
eps_
=
1e-5
;
double
eps_
=
1e-5
;
float
momentum_
=
0.9
;
float
momentum_
=
0.9
;
};
};
TEST
(
CudnnBNAddReluForward
,
GPUCudnnBNAddReluForwardFp16
)
{
TEST
(
CudnnBNAddReluFp16
,
BNAdd
)
{
int
batch_size
=
4
;
int
height
=
8
;
int
width
=
8
;
int
channels
=
64
;
std
::
string
act_type
=
""
;
bool
has_shortcut
=
false
;
FLAGS_cudnn_batchnorm_spatial_persistent
=
true
;
for
(
auto
fuse_add
:
{
false
,
true
})
{
CudnnBNAddReluTester
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
channels
,
act_type
,
fuse_add
,
has_shortcut
);
test
.
CheckForward
(
2e-3
);
}
}
TEST
(
CudnnBNAddReluFp16
,
BNAddRelu
)
{
int
batch_size
=
4
;
int
batch_size
=
4
;
int
height
=
8
;
int
height
=
8
;
int
width
=
8
;
int
width
=
8
;
int
channels
=
64
;
int
channels
=
64
;
std
::
string
act_type
=
"relu"
;
bool
has_shortcut
=
false
;
FLAGS_cudnn_batchnorm_spatial_persistent
=
true
;
FLAGS_cudnn_batchnorm_spatial_persistent
=
true
;
CudnnBNAddReluTester
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
for
(
auto
fuse_add
:
{
false
,
true
})
{
width
,
channels
);
CudnnBNAddReluTester
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
channels
,
act_type
,
fuse_add
,
has_shortcut
);
test
.
CheckForward
(
2e-3
);
test
.
CheckForward
(
2e-3
);
if
(
fuse_add
)
{
test
.
CheckBackward
(
2e-4
);
}
}
}
TEST
(
CudnnBNAddReluFp16
,
HasShortcut
)
{
int
batch_size
=
4
;
int
height
=
8
;
int
width
=
8
;
int
channels
=
64
;
std
::
string
act_type
=
""
;
bool
fuse_add
=
false
;
bool
has_shortcut
=
true
;
FLAGS_cudnn_batchnorm_spatial_persistent
=
true
;
CudnnBNAddReluTester
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
channels
,
act_type
,
fuse_add
,
has_shortcut
);
test
.
CheckForward
(
5e-3
);
}
}
paddle/fluid/operators/fused/cudnn_norm_conv_test.cc
浏览文件 @
a679fcbb
...
@@ -92,10 +92,9 @@ void CheckOutput(const framework::Tensor &cpu_res,
...
@@ -92,10 +92,9 @@ void CheckOutput(const framework::Tensor &cpu_res,
}
}
// Use Paddle conv2d op results as baseline
// Use Paddle conv2d op results as baseline
template
<
typename
T
>
void
ComputeConv2DForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
void
ComputeConv2DForward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_input
,
const
Tensor
&
cpu_filter
,
const
Tensor
&
cpu_input
,
const
Tensor
&
cpu_filter
,
Tensor
*
cpu_output
)
{
Tensor
*
cpu_output
,
int
stride
,
int
padding
)
{
framework
::
Scope
scope
;
framework
::
Scope
scope
;
auto
*
input
=
scope
.
Var
(
"Input"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
input
=
scope
.
Var
(
"Input"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
filter
=
scope
.
Var
(
"Filter"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
filter
=
scope
.
Var
(
"Filter"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
...
@@ -108,10 +107,12 @@ void ComputeConv2DForward(const platform::CUDADeviceContext &ctx,
...
@@ -108,10 +107,12 @@ void ComputeConv2DForward(const platform::CUDADeviceContext &ctx,
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
bool
use_cudnn
=
true
;
bool
use_cudnn
=
true
;
std
::
string
data_format
=
"NHWC"
;
std
::
string
data_format
=
"NHWC"
;
std
::
string
padding_algorithm
=
"SAME"
;
std
::
vector
<
int
>
strides
=
{
stride
,
stride
};
std
::
vector
<
int
>
paddings
=
{
padding
,
padding
};
attrs
.
insert
({
"strides"
,
strides
});
attrs
.
insert
({
"paddings"
,
paddings
});
attrs
.
insert
({
"use_cudnn"
,
use_cudnn
});
attrs
.
insert
({
"use_cudnn"
,
use_cudnn
});
attrs
.
insert
({
"data_format"
,
data_format
});
attrs
.
insert
({
"data_format"
,
data_format
});
attrs
.
insert
({
"padding_algorithm"
,
padding_algorithm
});
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
auto
op
=
framework
::
OpRegistry
::
CreateOp
(
"conv2d"
,
{{
"Input"
,
{
"Input"
}},
{
"Filter"
,
{
"Filter"
}}},
"conv2d"
,
{{
"Input"
,
{
"Input"
}},
{
"Filter"
,
{
"Filter"
}}},
...
@@ -122,7 +123,6 @@ void ComputeConv2DForward(const platform::CUDADeviceContext &ctx,
...
@@ -122,7 +123,6 @@ void ComputeConv2DForward(const platform::CUDADeviceContext &ctx,
}
}
// Use Paddle conv2d_grad op results as baseline
// Use Paddle conv2d_grad op results as baseline
template
<
typename
T
>
void
ComputeConv2DBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
void
ComputeConv2DBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
cpu_input
,
const
Tensor
&
cpu_filter
,
const
Tensor
&
cpu_input
,
const
Tensor
&
cpu_filter
,
const
Tensor
&
cpu_output_grad
,
const
Tensor
&
cpu_output_grad
,
...
@@ -147,7 +147,7 @@ void ComputeConv2DBackward(const platform::CUDADeviceContext &ctx,
...
@@ -147,7 +147,7 @@ void ComputeConv2DBackward(const platform::CUDADeviceContext &ctx,
framework
::
AttributeMap
attrs
;
framework
::
AttributeMap
attrs
;
bool
use_cudnn
=
true
;
bool
use_cudnn
=
true
;
std
::
string
data_format
=
"NHWC"
;
std
::
string
data_format
=
"NHWC"
;
std
::
string
padding_algorithm
=
"
SAME
"
;
std
::
string
padding_algorithm
=
"
EXPLICIT
"
;
std
::
vector
<
int
>
strides
=
{
stride
,
stride
};
std
::
vector
<
int
>
strides
=
{
stride
,
stride
};
std
::
vector
<
int
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
int
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
int
>
dilations
=
{
dilation
,
dilation
};
std
::
vector
<
int
>
dilations
=
{
dilation
,
dilation
};
...
@@ -216,6 +216,8 @@ class CudnnNormConvolutionTester {
...
@@ -216,6 +216,8 @@ class CudnnNormConvolutionTester {
kernel_size_
=
kernel_size
;
kernel_size_
=
kernel_size
;
stride_
=
stride
;
stride_
=
stride
;
padding_
=
(
kernel_size_
-
1
)
/
2
;
padding_
=
(
kernel_size_
-
1
)
/
2
;
out_height_
=
(
height_
+
2
*
padding_
-
kernel_size_
)
/
stride_
+
1
;
out_width_
=
(
width_
+
2
*
padding_
-
kernel_size_
)
/
stride_
+
1
;
SetUp
();
SetUp
();
}
}
...
@@ -227,6 +229,15 @@ class CudnnNormConvolutionTester {
...
@@ -227,6 +229,15 @@ class CudnnNormConvolutionTester {
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CUDAPlace
(
0
)));
platform
::
CUDAPlace
(
0
)));
if
(
!
Support
(
*
ctx
))
{
LOG
(
INFO
)
<<
"Current test is only supported in the platforms with "
<<
"compatiblity greater than or equal to 70 and the kernel size "
<<
"must be equal to 1 or 3. Besides, when the kernel size is 1, "
<<
"the stride must be 1 if the compatiblity is equal to 70."
;
return
;
}
framework
::
Tensor
cpu_output_base
;
framework
::
Tensor
cpu_output_base
;
framework
::
Tensor
cpu_sum_base
;
framework
::
Tensor
cpu_sum_base
;
framework
::
Tensor
cpu_sum_of_square_base
;
framework
::
Tensor
cpu_sum_of_square_base
;
...
@@ -277,7 +288,8 @@ class CudnnNormConvolutionTester {
...
@@ -277,7 +288,8 @@ class CudnnNormConvolutionTester {
&
cpu_filter_nchw_
);
&
cpu_filter_nchw_
);
// transpoes for filter, NCHW -> NHWC
// transpoes for filter, NCHW -> NHWC
TransposeNchwToNhwc
<
T
>
(
cpu_filter_nchw_
,
&
cpu_filter_nhwc_
);
TransposeNchwToNhwc
<
T
>
(
cpu_filter_nchw_
,
&
cpu_filter_nhwc_
);
InitRandomTensor
<
T
>
({
batch_size_
,
height_
,
width_
,
output_channels_
},
InitRandomTensor
<
T
>
(
{
batch_size_
,
out_height_
,
out_width_
,
output_channels_
},
&
cpu_output_grad_
);
&
cpu_output_grad_
);
}
}
...
@@ -285,7 +297,8 @@ class CudnnNormConvolutionTester {
...
@@ -285,7 +297,8 @@ class CudnnNormConvolutionTester {
framework
::
Tensor
*
cpu_output_base
,
framework
::
Tensor
*
cpu_output_base
,
framework
::
Tensor
*
cpu_sum_base
,
framework
::
Tensor
*
cpu_sum_base
,
framework
::
Tensor
*
cpu_sum_of_square_base
)
{
framework
::
Tensor
*
cpu_sum_of_square_base
)
{
ComputeConv2DForward
<
T
>
(
ctx
,
cpu_input_
,
cpu_filter_nchw_
,
cpu_output_base
);
ComputeConv2DForward
(
ctx
,
cpu_input_
,
cpu_filter_nchw_
,
cpu_output_base
,
stride_
,
padding_
);
ComputeSumAndSquareSum
<
T
>
(
*
cpu_output_base
,
cpu_sum_base
,
ComputeSumAndSquareSum
<
T
>
(
*
cpu_output_base
,
cpu_sum_base
,
cpu_sum_of_square_base
);
cpu_sum_of_square_base
);
}
}
...
@@ -293,10 +306,9 @@ class CudnnNormConvolutionTester {
...
@@ -293,10 +306,9 @@ class CudnnNormConvolutionTester {
void
BaselineBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
void
BaselineBackward
(
const
platform
::
CUDADeviceContext
&
ctx
,
framework
::
Tensor
*
cpu_input_grad_base
,
framework
::
Tensor
*
cpu_input_grad_base
,
framework
::
Tensor
*
cpu_filter_grad_base
)
{
framework
::
Tensor
*
cpu_filter_grad_base
)
{
ComputeConv2DBackward
<
T
>
(
ctx
,
cpu_input_
,
cpu_filter_nchw_
,
ComputeConv2DBackward
(
ctx
,
cpu_input_
,
cpu_filter_nchw_
,
cpu_output_grad_
,
cpu_output_grad_
,
cpu_input_grad_base
,
cpu_input_grad_base
,
cpu_filter_grad_base
,
stride_
,
cpu_filter_grad_base
,
stride_
,
padding_
,
padding_
,
dilation_
);
dilation_
);
}
}
// get forward results of cudnn_norm_conv
// get forward results of cudnn_norm_conv
...
@@ -316,7 +328,7 @@ class CudnnNormConvolutionTester {
...
@@ -316,7 +328,7 @@ class CudnnNormConvolutionTester {
T
*
input_ptr
=
input
.
data
<
T
>
();
T
*
input_ptr
=
input
.
data
<
T
>
();
T
*
filter_ptr
=
filter_nhwc
.
data
<
T
>
();
T
*
filter_ptr
=
filter_nhwc
.
data
<
T
>
();
T
*
output_ptr
=
output
.
mutable_data
<
T
>
(
T
*
output_ptr
=
output
.
mutable_data
<
T
>
(
{
batch_size_
,
height_
,
width_
,
output_channels_
},
place
);
{
batch_size_
,
out_height_
,
out_
width_
,
output_channels_
},
place
);
float
*
sum_ptr
=
float
*
sum_ptr
=
sum
.
mutable_data
<
float
>
({
1
,
1
,
1
,
output_channels_
},
place
);
sum
.
mutable_data
<
float
>
({
1
,
1
,
1
,
output_channels_
},
place
);
float
*
sum_of_square_ptr
=
float
*
sum_of_square_ptr
=
...
@@ -369,10 +381,25 @@ class CudnnNormConvolutionTester {
...
@@ -369,10 +381,25 @@ class CudnnNormConvolutionTester {
TensorCopySync
(
filter_grad
,
platform
::
CPUPlace
(),
cpu_filter_grad
);
TensorCopySync
(
filter_grad
,
platform
::
CPUPlace
(),
cpu_filter_grad
);
}
}
bool
Support
(
const
platform
::
CUDADeviceContext
&
ctx
)
{
if
(
ctx
.
GetComputeCapability
()
==
70
)
{
if
((
kernel_size_
==
3
)
||
((
kernel_size_
==
1
)
&&
(
stride_
==
1
)))
{
return
true
;
}
}
else
if
(
ctx
.
GetComputeCapability
()
>
70
)
{
if
((
kernel_size_
==
3
)
||
(
kernel_size_
==
1
))
{
return
true
;
}
}
return
false
;
}
private:
private:
int
batch_size_
;
int
batch_size_
;
int
height_
;
int
height_
;
int
width_
;
int
width_
;
int
out_height_
;
int
out_width_
;
int
input_channels_
;
int
input_channels_
;
int
output_channels_
;
int
output_channels_
;
int
kernel_size_
;
int
kernel_size_
;
...
@@ -437,3 +464,19 @@ TEST(CudnnNormConvFp16, K1S1O4) {
...
@@ -437,3 +464,19 @@ TEST(CudnnNormConvFp16, K1S1O4) {
test
.
CheckForward
(
1e-3
,
true
);
test
.
CheckForward
(
1e-3
,
true
);
test
.
CheckBackward
(
1e-3
,
true
);
test
.
CheckBackward
(
1e-3
,
true
);
}
}
// test for fp16, kernel = 1, stride = 2, output_channels = input_channels * 4
TEST
(
CudnnNormConvFp16
,
K1S2O4
)
{
int
batch_size
=
4
;
int
height
=
8
;
int
width
=
8
;
int
input_channels
=
32
;
int
output_channels
=
128
;
int
kernel_size
=
1
;
int
stride
=
2
;
CudnnNormConvolutionTester
<
paddle
::
platform
::
float16
>
test
(
batch_size
,
height
,
width
,
input_channels
,
output_channels
,
kernel_size
,
stride
);
test
.
CheckForward
(
1e-3
,
true
);
test
.
CheckBackward
(
1e-3
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录