From a66afe067588f434d7eb3b11faddfe248c794f65 Mon Sep 17 00:00:00 2001 From: baiyf Date: Sun, 20 May 2018 18:34:03 +0800 Subject: [PATCH] Expose prior_box op into detection.py (#10773) * package prior_box op * add doc * add unittest * add unittest * fix CI fails --- python/paddle/fluid/layers/detection.py | 141 +++++++++++++------- python/paddle/fluid/tests/test_detection.py | 18 +++ 2 files changed, 114 insertions(+), 45 deletions(-) diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index a5938fe4942..b33adf55cf1 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -23,6 +23,7 @@ import nn import math __all__ = [ + 'prior_box', 'multi_box_head', 'bipartite_match', 'target_assign', @@ -564,6 +565,98 @@ def ssd_loss(location, return loss +def prior_box(input, + image, + min_sizes, + max_sizes=None, + aspect_ratios=None, + variance=[0.1, 0.1, 0.2, 0.2], + flip=False, + clip=False, + steps=[0.0, 0.0], + offset=0.5, + name=None): + """ + **Prior box operator** + + Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. + Each position of the input produce N prior boxes, N is determined by + the count of min_sizes, max_sizes and aspect_ratios, The size of the + box is in range(min_size, max_size) interval, which is generated in + sequence according to the aspect_ratios. + + Args: + input(Variable): The Input Variables, the format is NCHW. + image(Variable): The input image data of PriorBoxOp, + the layout is NCHW. + min_sizes(list|tuple): min sizes of generated prior boxes. + max_sizes(list|tuple|None): max sizes of generated prior boxes. + Default: None. + aspect_ratios(list|tuple): the aspect ratios of generated prior + boxes. Default: None. + variance(list|tuple): the variances to be encoded in prior boxes. + Default:[0.1, 0.1, 0.2, 0.2]. + flip(bool): Whether to flip aspect ratios. Default:False. + clip(bool): Whether to clip out-of-boundary boxes. Default: False. + step(list|turple): Prior boxes step across weight and height, If + step[0] == 0.0/step[1] == 0.0, the prior boxes step across + height/weight of the input will be automatically calculated. + Default: [0.0] + offset(float): Prior boxes center offset. Default: 0.5 + name(str): Name of the prior box op. Default: None. + + Returns: + boxes(Variable): the output prior boxes of PriorBox. + The layout is [H, W, num_priors, 4]. + H is the height of input, W is the width of input, + num_priors is the total + box count of each position of input. + Variances(Variable): the expanded variances of PriorBox. + The layout is [H, W, num_priors, 4]. + H is the height of input, W is the width of input + num_priors is the total + box count of each position of input + + + Examples: + .. code-block:: python + box, var = prior_box( + input=conv1, + image=images, + min_sizes=[100.], + flip=True, + clip=True) + """ + helper = LayerHelper("prior_box", **locals()) + dtype = helper.input_dtype() + + attrs = { + 'min_sizes': min_sizes, + 'aspect_ratios': aspect_ratios, + 'variances': variance, + 'flip': flip, + 'clip': clip, + 'step_w': steps[0], + 'step_h': steps[1], + 'offset': offset + } + if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0: + attrs['max_sizes'] = max_sizes + + box = helper.create_tmp_variable(dtype) + var = helper.create_tmp_variable(dtype) + helper.append_op( + type="prior_box", + inputs={"Input": input, + "Image": image}, + outputs={"Boxes": box, + "Variances": var}, + attrs=attrs, ) + box.stop_gradient = True + var.stop_gradient = True + return box, var + + def multi_box_head(inputs, image, base_size, @@ -660,47 +753,6 @@ def multi_box_head(inputs, clip=True) """ - def _prior_box_(input, - image, - min_sizes, - max_sizes, - aspect_ratios, - variance, - flip=False, - clip=False, - step_w=0.0, - step_h=0.0, - offset=0.5, - name=None): - helper = LayerHelper("prior_box", **locals()) - dtype = helper.input_dtype() - - attrs = { - 'min_sizes': min_sizes, - 'aspect_ratios': aspect_ratios, - 'variances': variance, - 'flip': flip, - 'clip': clip, - 'step_w': step_w, - 'step_h': step_h, - 'offset': offset - } - if len(max_sizes) > 0 and max_sizes[0] > 0: - attrs['max_sizes'] = max_sizes - - box = helper.create_tmp_variable(dtype) - var = helper.create_tmp_variable(dtype) - helper.append_op( - type="prior_box", - inputs={"Input": input, - "Image": image}, - outputs={"Boxes": box, - "Variances": var}, - attrs=attrs, ) - box.stop_gradient = True - var.stop_gradient = True - return box, var - def _reshape_with_axis_(input, axis=1): if not (axis > 0 and axis < len(input.shape)): raise ValueError("The axis should be smaller than " @@ -777,11 +829,10 @@ def multi_box_head(inputs, aspect_ratio = aspect_ratios[i] if not _is_list_or_tuple_(aspect_ratio): aspect_ratio = [aspect_ratio] + step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0] - box, var = _prior_box_(input, image, min_size, max_size, aspect_ratio, - variance, flip, clip, step_w[i] - if step_w else 0.0, step_h[i] - if step_w else 0.0, offset) + box, var = prior_box(input, image, min_size, max_size, aspect_ratio, + variance, flip, clip, step, offset) box_results.append(box) var_results.append(var) diff --git a/python/paddle/fluid/tests/test_detection.py b/python/paddle/fluid/tests/test_detection.py index 921260ef3f4..8569d838bdd 100644 --- a/python/paddle/fluid/tests/test_detection.py +++ b/python/paddle/fluid/tests/test_detection.py @@ -109,6 +109,24 @@ class TestDetection(unittest.TestCase): print(str(program)) +class TestPriorBox(unittest.TestCase): + def test_prior_box(self): + data_shape = [3, 224, 224] + images = fluid.layers.data( + name='pixel', shape=data_shape, dtype='float32') + conv1 = fluid.layers.conv2d(images, 3, 3, 2) + box, var = layers.prior_box( + input=conv1, + image=images, + min_sizes=[100.0], + aspect_ratios=[1.], + flip=True, + clip=True) + assert len(box.shape) == 4 + assert box.shape == var.shape + assert box.shape[3] == 4 + + class TestMultiBoxHead(unittest.TestCase): def test_multi_box_head(self): data_shape = [3, 224, 224] -- GitLab