提交 a60957f3 编写于 作者: S Sylwester Fraczek

addd test_analyzer_mobilenet

上级 3d5a9900
...@@ -66,7 +66,10 @@ class Analyzer : public OrderedRegistry<PassManager> { ...@@ -66,7 +66,10 @@ class Analyzer : public OrderedRegistry<PassManager> {
// merged in a larger fuse op. The small fusion will not break the pattern of // merged in a larger fuse op. The small fusion will not break the pattern of
// larger fusion. // larger fusion.
const std::vector<std::string> all_ir_passes_{{ const std::vector<std::string> all_ir_passes_{{
// Manual update the passes here. // Manual update the passes here.
#ifdef PADDLE_WITH_MKLDNN
"depthwise_conv_mkldnn_pass", //
#endif
"attention_lstm_fuse_pass", // "attention_lstm_fuse_pass", //
"seqconv_eltadd_relu_fuse_pass", // "seqconv_eltadd_relu_fuse_pass", //
"embedding_fc_lstm_fuse_pass", // "embedding_fc_lstm_fuse_pass", //
...@@ -79,7 +82,6 @@ class Analyzer : public OrderedRegistry<PassManager> { ...@@ -79,7 +82,6 @@ class Analyzer : public OrderedRegistry<PassManager> {
"conv_bn_fuse_pass", // "conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", // "conv_eltwiseadd_bn_fuse_pass", //
#ifdef PADDLE_WITH_MKLDNN #ifdef PADDLE_WITH_MKLDNN
"depthwise_conv_mkldnn_pass", //
"conv_bias_mkldnn_fuse_pass", // "conv_bias_mkldnn_fuse_pass", //
"conv_relu_mkldnn_fuse_pass", // "conv_relu_mkldnn_fuse_pass", //
"conv_elementwise_add_mkldnn_fuse_pass", // "conv_elementwise_add_mkldnn_fuse_pass", //
......
...@@ -82,6 +82,14 @@ inference_analysis_api_test(test_analyzer_ocr ${OCR_INSTALL_DIR} analyzer_vis_te ...@@ -82,6 +82,14 @@ inference_analysis_api_test(test_analyzer_ocr ${OCR_INSTALL_DIR} analyzer_vis_te
inference_analysis_api_test_with_fake_data(test_analyzer_resnet50 inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
"${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz") "${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz")
# mobilenet
set(MOBILENET_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet")
if (NOT EXISTS ${MOBILENET_INSTALL_DIR})
inference_download_and_uncompress(${MOBILENET_INSTALL_DIR} "http://paddle-inference-dist.bj.bcebos.com/tensorrt_test" "mobilenet.tar.gz")
endif()
inference_analysis_test(test_analyzer_mobilenet SRCS analyzer_mobilenet_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} ARGS --infer_model=${MOBILENET_INSTALL_DIR}/mobilenet)
# anakin # anakin
if (WITH_ANAKIN AND WITH_MKL) # only needed in CI if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
# anakin rnn1 # anakin rnn1
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
PaddleTensor input;
// channel=3, height/width=318
std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
input.shape = shape;
input.dtype = PaddleDType::FLOAT32;
// fill input data, for profile easily, do not use random data here.
size_t size = FLAGS_batch_size * 3 * 318 * 318;
input.data.Resize(size * sizeof(float));
float *input_data = static_cast<float *>(input.data.data());
for (size_t i = 0; i < size; i++) {
*(input_data + i) = static_cast<float>(i) / size;
}
std::vector<PaddleTensor> input_slots;
input_slots.assign({input});
(*inputs).emplace_back(input_slots);
}
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg._use_mkldnn = use_mkldnn;
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
size_t size = GetSize(outputs[0]);
// output is a 1000-dimension feature
EXPECT_EQ(size, 1000 * FLAGS_batch_size);
}
}
TEST(Analyzer_mobilenet, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_mobilenet, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif
// Check the depthwise_conv status
TEST(Analyzer_mobilenet, depthwise_conv_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg._use_mkldnn = true;
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
ASSERT_TRUE(fuse_statis.count("depthwise_conv_mkldnn_pass"));
EXPECT_EQ(fuse_statis.at("depthwise_conv_mkldnn_pass"), 13);
}
// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg._use_mkldnn = use_mkldnn;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(cfg, input_slots_all);
}
TEST(Analyzer_mobilenet, compare) { compare(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_mobilenet, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
} // namespace analysis
} // namespace inference
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册