Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a5aa4dc7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a5aa4dc7
编写于
11月 25, 2020
作者:
T
taixiurong
提交者:
GitHub
11月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add xpu elementwise ops (#29031)
上级
e9acd9c9
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
1716 addition
and
966 deletion
+1716
-966
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
+2
-156
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
+10
-6
paddle/fluid/operators/elementwise/elementwise_floordiv_op_xpu.cc
...luid/operators/elementwise/elementwise_floordiv_op_xpu.cc
+37
-0
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
+10
-6
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
+49
-0
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
+10
-2
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
+40
-0
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
+10
-7
paddle/fluid/operators/elementwise/elementwise_xpu.h
paddle/fluid/operators/elementwise/elementwise_xpu.h
+262
-209
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
+31
-35
python/paddle/fluid/tests/unittests/xpu/elementwise.py
python/paddle/fluid/tests/unittests/xpu/elementwise.py
+0
-100
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
+67
-72
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
+170
-58
python/paddle/fluid/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
...d/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
+87
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
+115
-65
python/paddle/fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
+180
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
+182
-64
python/paddle/fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
+182
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
+136
-55
python/paddle/fluid/tests/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py
...s/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py
+136
-131
未找到文件。
paddle/fluid/operators/elementwise/elementwise_add_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -27,7 +27,7 @@ template <typename DeviceContext, typename T>
class
ElementwiseAddXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
,
XPUAddFunctor
<
T
>>
(
ctx
);
XPUElementwise
<
T
>
(
ctx
,
xpu
::
add
<
T
>
);
}
};
...
...
@@ -36,161 +36,7 @@ class ElementwiseAddGradXPUKernel : public ElemwiseGradKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
using
Tensor
=
framework
::
Tensor
;
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dx_dims
=
dout
->
dims
();
auto
dy_dims_untrimed
=
dout
->
dims
();
T
*
dx_data
=
NULL
;
T
*
dy_data
=
NULL
;
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
PADDLE_ENFORCE_GE
(
dx_dims
.
size
(),
dy_dims_untrimed
.
size
(),
platform
::
errors
::
InvalidArgument
(
"Rank of first input must >= rank of second input."
));
if
(
dx
!=
nullptr
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dx_dims
=
dx
->
dims
();
dx_data
=
dx
->
data
<
T
>
();
}
if
(
dy
!=
nullptr
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dy_dims_untrimed
=
dy
->
dims
();
dy_data
=
dy
->
data
<
T
>
();
}
int
pre
,
n
,
post
,
is_common_broadcast
;
if
(
dx_dims
==
dy_dims_untrimed
)
{
pre
=
post
=
1
;
n
=
dout
->
numel
();
}
else
{
axis
=
(
axis
==
-
1
?
dx_dims
.
size
()
-
dy_dims_untrimed
.
size
()
:
axis
);
PADDLE_ENFORCE_EQ
(
axis
>=
0
&&
axis
<
dx_dims
.
size
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Axis should be in range [0, dx_dims)"
));
auto
dy_dims
=
trim_trailing_singular_dims
(
dy_dims_untrimed
);
axis
=
(
dy_dims
.
size
()
==
0
)
?
dx_dims
.
size
()
:
axis
;
get_mid_dims
(
dx_dims
,
dy_dims
,
axis
,
&
pre
,
&
n
,
&
post
,
&
is_common_broadcast
);
}
int
len
=
pre
*
n
*
post
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
if
(
post
==
1
)
{
int
r
=
xpu
::
matrix_vector_add_grad
(
dev_ctx
.
x_context
(),
dout
->
data
<
T
>
(),
dout
->
data
<
T
>
(),
dout
->
data
<
T
>
(),
dout
->
data
<
T
>
(),
dx_data
,
dy_data
,
pre
,
n
);
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of ElementWiseAddOp, error "
"message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of ElementWiseAddOp, error "
"message: RUNTIME_ERROR, "
"please check whether Baidu Kunlun card is "
"properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of ElementWiseAddOp, error message: "
"NO_ENOUGH_WORKSPACE, XPU has no enough memory."
));
}
return
;
}
if
(
dx
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dx_data
),
len
*
sizeof
(
float
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
if
(
dy
==
nullptr
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dy_data
),
len
*
sizeof
(
float
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
else
{
if
(
len
!=
n
)
{
PADDLE_ENFORCE_EQ
(
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
dy_data
),
len
*
sizeof
(
float
)),
XPU_SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
}
}
int
r
=
xpu
::
elementwise_add_grad
(
dev_ctx
.
x_context
(),
dout
->
data
<
T
>
()
/*x*/
,
dout
->
data
<
T
>
()
/*y*/
,
dout
->
data
<
T
>
()
/*out*/
,
dout
->
data
<
T
>
(),
dx_data
,
dy_data
,
len
);
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of ElementWiseAddOp, error "
"message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of ElementWiseAddOp, error message: "
"RUNTIME_ERROR, "
"please check whether Baidu Kunlun card is properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of ElementWiseAddOp, error message: "
"NO_ENOUGH_WORKSPACE, XPU has no enough memory."
));
}
if
((
dy
!=
nullptr
)
&&
(
len
!=
n
))
{
r
=
xpu
::
reduce_ew
(
dev_ctx
.
x_context
(),
dy_data
,
dy
->
data
<
T
>
(),
pre
,
n
,
post
,
xpu
::
ElementwiseOp
::
ASSIGN
);
if
(
r
==
xpu
::
Error_t
::
INVALID_PARAM
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
InvalidArgument
(
"XPU kernel error of ElementWiseAddOp, error "
"message: INVALID_PARAM, "
"please check your input & output."
));
}
else
if
(
r
==
xpu
::
Error_t
::
RUNTIME_ERROR
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
Unavailable
(
"XPU kernel error of ElementWiseAddOp, error "
"message: RUNTIME_ERROR, "
"please check whether Baidu Kunlun card is "
"properly installed."
));
}
else
if
(
r
==
xpu
::
Error_t
::
NO_ENOUGH_WORKSPACE
)
{
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
ResourceExhausted
(
"XPU kernel error of ElementWiseAddOp, error message: "
"NO_ENOUGH_WORKSPACE, XPU has no enough memory."
));
}
dev_ctx
.
Wait
();
xpu_free
(
dy_data
);
}
if
((
dx
==
nullptr
||
dy
==
nullptr
)
&&
!
(
dy
!=
nullptr
&&
len
!=
n
))
{
dev_ctx
.
Wait
();
}
if
(
dx
==
nullptr
)
{
xpu_free
(
dx_data
);
}
if
(
dy
==
nullptr
)
{
xpu_free
(
dy_data
);
}
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
add_grad
<
T
>
,
false
);
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_div_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -19,18 +19,19 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
XPUDivFunctor
{
int
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
len
)
{
return
xpu
::
elementwise_div
(
ctx
,
x
,
y
,
z
,
len
);
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseDivXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
div
<
T
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseDivXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseDiv
Grad
XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
,
XPUDivFunctor
<
T
>>
(
ctx
);
XPUElementwise
Grad
<
T
>
(
ctx
,
xpu
::
div_grad
<
T
>
,
true
);
}
};
...
...
@@ -40,4 +41,7 @@ namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL
(
elementwise_div
,
ops
::
ElementwiseDivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_div_grad
,
ops
::
ElementwiseDivGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_floordiv_op_xpu.cc
0 → 100644
浏览文件 @
a5aa4dc7
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseFloordivXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
floordiv
<
T
>
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_floordiv
,
ops
::
ElementwiseFloordivXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_max_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -20,18 +20,19 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
XPUMaxFunctor
{
int
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
len
)
{
return
xpu
::
elementwise_max
(
ctx
,
x
,
y
,
z
,
len
);
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMaxXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
max
<
T
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMaxXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ElementwiseMax
Grad
XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
,
XPUMaxFunctor
<
T
>>
(
ctx
);
XPUElementwise
Grad
<
T
>
(
ctx
,
xpu
::
max_grad
<
T
>
,
true
);
}
};
...
...
@@ -42,4 +43,7 @@ namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL
(
elementwise_max
,
ops
::
ElementwiseMaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_max_grad
,
ops
::
ElementwiseMaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_min_op_xpu.cc
0 → 100644
浏览文件 @
a5aa4dc7
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_max_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
min
<
T
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMinGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
min_grad
<
T
>
,
true
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_min
,
ops
::
ElementwiseMinXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
elementwise_min_grad
,
ops
::
ElementwiseMinGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_mul_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -22,10 +22,18 @@ template <typename DeviceContext, typename T>
class
ElementwiseMulXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
,
XPUMulFunctor
<
T
>>
(
ctx
);
XPUElementwise
<
T
>
(
ctx
,
xpu
::
mul
<
T
>
);
}
};
DEFINE_XPU_GRAD_KERNEL
(
Mul
,
mul
,
true
);
// DEFINE_XPU_GRAD_KERNEL(Mul, mul, true);
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseMulGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
mul_grad
<
T
>
,
true
);
}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/elementwise/elementwise_pow_op_xpu.cc
0 → 100644
浏览文件 @
a5aa4dc7
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "xpu/refactor/math.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwisePowXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
pow
<
float
>
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
elementwise_pow
,
ops
::
ElementwisePowXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/operators/elementwise/elementwise_sub_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -16,25 +16,28 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_xpu.h"
#include "xpu/refactor/math.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
XPUSubFunctor
{
int
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
len
)
{
return
xpu
::
elementwise_sub
(
ctx
,
x
,
y
,
z
,
len
);
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseSubXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
>
(
ctx
,
xpu
::
sub
<
float
>
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseSub
XPUKernel
:
public
framework
::
Op
Kernel
<
T
>
{
class
ElementwiseSub
GradXPUKernel
:
public
ElemwiseGrad
Kernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
XPUElementwise
<
T
,
XPUSubFunctor
<
T
>>
(
ctx
);
ElemwiseGradKernel
<
T
>::
Compute
(
ctx
);
XPUElementwiseGrad
<
T
>
(
ctx
,
xpu
::
sub_grad
<
float
>
,
false
);
}
};
DEFINE_XPU_GRAD_KERNEL
(
Sub
,
sub
,
false
);
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/elementwise/elementwise_xpu.h
浏览文件 @
a5aa4dc7
...
...
@@ -13,175 +13,76 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_XPU
#include <algorithm>
#include <string>
#include <unordered_map>
#include <tuple>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/place.h"
inline
std
::
string
get_xpu_error_message
(
int
error_type
)
{
static
std
::
unordered_map
<
int
,
std
::
string
>
xpu_error_map
=
{
{
baidu
::
xpu
::
api
::
INVALID_PARAM
,
"Parameter is invalid."
},
{
baidu
::
xpu
::
api
::
RUNTIME_ERROR
,
"Please check whether Baidu Kunlun Card "
"is properly installed."
},
{
baidu
::
xpu
::
api
::
NO_ENOUGH_WORKSPACE
,
"There is not enough memory in Baidu"
" Kunlun Card."
}};
if
(
xpu_error_map
.
find
(
error_type
)
==
xpu_error_map
.
end
())
{
return
"Unknown error type!"
;
}
return
xpu_error_map
[
error_type
];
}
#define XPU_MALLOC(addr, num_bytes) \
PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(addr), num_bytes), \
XPU_SUCCESS, \
platform::errors::ResourceExhausted( \
"\n\nOut of memory error on XPU, Cannot" \
"allocate %s memory on XPU. \n\nPlease " \
"check whether there is any other process " \
"using XPU.\n", \
string::HumanReadableSize(num_bytes)))
#define DEFINE_XPU_GRAD_KERNEL(kernel_type, kernel_name, use_x_y_data) \
template <typename DeviceContext, typename T> \
class Elementwise##kernel_type##GradXPUKernel \
: public ElemwiseGradKernel<T> { \
public: \
void Compute(const framework::ExecutionContext& ctx) const override { \
ElemwiseGradKernel<T>::Compute(ctx); \
using Tensor = framework::Tensor; \
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out")); \
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); \
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y")); \
auto dx_dims = dout->dims(); \
auto dy_dims_untrimed = dout->dims(); \
T* dx_data = NULL; \
T* dy_data = NULL; \
const T* y_data = nullptr; \
const T* x_data = nullptr; \
T* y_broadcast = nullptr; \
if (use_x_y_data) { \
auto* x = ctx.Input<Tensor>("X"); \
auto* y = ctx.Input<Tensor>("Y"); \
y_data = y->data<T>(); \
x_data = x->data<T>(); \
} else { \
x_data = dout->data<T>(); \
y_data = dout->data<T>(); \
} \
int axis = ctx.Attr<int>("axis"); \
PADDLE_ENFORCE_GE( \
dx_dims.size(), dy_dims_untrimed.size(), \
platform::errors::InvalidArgument( \
"Rank of first input must >= rank of second input.")); \
if (dx != nullptr) { \
dx->mutable_data<T>(ctx.GetPlace()); \
dx_dims = dx->dims(); \
dx_data = dx->data<T>(); \
} \
if (dy != nullptr) { \
dy->mutable_data<T>(ctx.GetPlace()); \
dy_dims_untrimed = dy->dims(); \
dy_data = dy->data<T>(); \
} \
int pre, n, post, is_run_common_broadcast; \
if (dx_dims == dy_dims_untrimed) { \
pre = post = 1; \
n = dout->numel(); \
} else { \
axis = (axis == -1 ? dx_dims.size() - dy_dims_untrimed.size() : axis); \
PADDLE_ENFORCE_EQ(axis >= 0 && axis < dx_dims.size(), true, \
platform::errors::InvalidArgument( \
"Axis should be in range [0, dx_dims)")); \
auto dy_dims = trim_trailing_singular_dims(dy_dims_untrimed); \
axis = (dy_dims.size() == 0) ? dx_dims.size() : axis; \
get_mid_dims(dx_dims, dy_dims, axis, &pre, &n, &post, \
&is_run_common_broadcast); \
} \
int len = pre * n * post; \
auto& dev_ctx = \
ctx.template device_context<paddle::platform::XPUDeviceContext>(); \
if (dx == nullptr) { \
XPU_MALLOC(&dx_data, len * sizeof(float)); \
} \
if (dy == nullptr) { \
XPU_MALLOC(&dy_data, len * sizeof(float)); \
} else { \
if (len != n) { \
XPU_MALLOC(&dy_data, len * sizeof(float)); \
} \
} \
if (use_x_y_data) { \
if (len != n) { \
XPU_MALLOC(&y_broadcast, len * sizeof(float)); \
int res = \
xpu::broadcast_ew(dev_ctx.x_context(), y_data, y_broadcast, pre, \
n, post, xpu::ElementwiseOp::ASSIGN); \
PADDLE_ENFORCE_EQ( \
res, xpu::Error_t::SUCCESS, \
platform::errors::External("XPU kernel error occur! %s", \
get_xpu_error_message(res))); \
y_data = y_broadcast; \
} \
} \
int res = xpu::elementwise_##kernel_name##_grad( \
dev_ctx.x_context(), x_data, y_data, dout->data<T>()
/*out*/
, \
dout->data<T>(), dx_data, dy_data, len); \
PADDLE_ENFORCE_EQ( \
res, xpu::Error_t::SUCCESS, \
platform::errors::External("XPU kernel error occur! %s", \
get_xpu_error_message(res))); \
if ((dy != nullptr) && (len != n)) { \
int res = xpu::reduce_ew(dev_ctx.x_context(), dy_data, dy->data<T>(), \
pre, n, post, xpu::ElementwiseOp::ASSIGN); \
PADDLE_ENFORCE_EQ( \
res, xpu::Error_t::SUCCESS, \
platform::errors::External("XPU kernel error occur! %s", \
get_xpu_error_message(res))); \
dev_ctx.Wait(); \
xpu_free(dy_data); \
} \
if ((len != n || dx == nullptr || dy == nullptr) && \
!(dy != nullptr && len != n)) { \
dev_ctx.Wait(); \
} \
if (dx == nullptr) { \
xpu_free(dx_data); \
} \
if (dy == nullptr) { \
xpu_free(dy_data); \
} \
if (use_x_y_data) { \
if (len != n) { \
xpu_free(y_broadcast); \
} \
} \
} \
}
#include "xpu/refactor/math.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
XPUAddFunctor
{
int
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
len
)
{
return
xpu
::
elementwise_add
(
ctx
,
x
,
y
,
z
,
len
);
static
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
XPUDimsToBroadcastVector
(
const
framework
::
DDim
&
x
,
const
framework
::
DDim
&
y
)
{
std
::
vector
<
int
>
x_v
;
std
::
vector
<
int
>
y_v
;
int
y_size
=
y
.
size
();
for
(
int
i
=
0
;
i
<
y_size
;
++
i
)
{
if
(
x
[
i
]
==
y
[
i
])
{
x_v
.
push_back
(
y
[
i
]);
y_v
.
push_back
(
y
[
i
]);
continue
;
}
x_v
.
push_back
(
1
);
x_v
.
push_back
(
x
[
i
]);
y_v
.
push_back
(
y
[
i
]
/
x
[
i
]);
y_v
.
push_back
(
x
[
i
]);
}
};
return
std
::
make_pair
(
x_v
,
y_v
);
}
template
<
typename
T
>
struct
XPUMulFunctor
{
int
operator
()(
xpu
::
Context
*
ctx
,
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
len
)
{
return
xpu
::
elementwise_mul
(
ctx
,
x
,
y
,
z
,
len
);
static
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
XPUReducesAxisVector
(
const
framework
::
DDim
&
x
,
const
framework
::
DDim
&
y
)
{
std
::
vector
<
int
>
x_vector
;
std
::
vector
<
int
>
axis_v
;
PADDLE_ENFORCE_GT
(
x
.
size
(),
0
,
platform
::
errors
::
OutOfRange
(
"x size is less 1, x shape is "
,
x
.
to_str
()));
PADDLE_ENFORCE_GT
(
y
.
size
(),
0
,
platform
::
errors
::
OutOfRange
(
"y size is less 1, y shape is "
,
y
.
to_str
()));
int
y_nums
=
framework
::
product
(
y
);
x_vector
=
framework
::
vectorize
<
int
>
(
x
);
if
(
y_nums
==
1
)
{
for
(
int
i
=
0
;
i
<
x
.
size
();
++
i
)
{
axis_v
.
push_back
(
i
);
}
return
std
::
make_pair
(
x_vector
,
axis_v
);
}
int
yidx
=
0
;
for
(
size_t
i
=
0
;
i
<
x_vector
.
size
();
++
i
)
{
if
(
y
[
yidx
]
==
1
)
{
axis_v
.
push_back
(
i
);
yidx
++
;
continue
;
}
if
(
x_vector
[
i
]
!=
y
[
yidx
])
{
axis_v
.
push_back
(
i
);
continue
;
}
yidx
++
;
}
};
return
std
::
make_pair
(
x_vector
,
axis_v
);
}
template
<
typename
T
,
typename
Functor
>
void
XPUElementwise
(
const
framework
::
ExecutionContext
&
ctx
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"This kernel only runs on XPU device."
));
template
<
typename
T
>
void
XPUElementwise
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
const
T
*
,
T
*
,
int
)
>
func
)
{
auto
x_var
=
ctx
.
InputVar
(
"X"
);
PADDLE_ENFORCE_NE
(
x_var
,
nullptr
,
platform
::
errors
::
InvalidArgument
(
"Cannot get input Variable X"
));
...
...
@@ -194,74 +95,226 @@ void XPUElementwise(const framework::ExecutionContext& ctx) {
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
x_dims
=
x
.
dims
();
auto
y_dims_untrimed
=
y
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims_untrimed
.
size
(),
platform
::
errors
::
InvalidArgument
(
"Rank of first input must >= rank of second input."
));
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims_untrimed
.
size
()
:
axis
);
PADDLE_ENFORCE_EQ
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Axis should be in range [0, x_dims)"
));
auto
y_dims
=
trim_trailing_singular_dims
(
y_dims_untrimed
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
,
is_common_broadcast
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
,
&
is_common_broadcast
);
auto
y_dims
=
y
->
dims
();
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
PADDLE_ENFORCE_NE
(
is_common_broadcast
,
1
,
platform
::
errors
::
Unimplemented
(
"X's shape should be equal to Y's shape."
));
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
int
len
=
pre
*
n
*
post
;
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
framework
::
DDim
out_dim
=
framework
::
make_ddim
(
out_dims_array
);
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
->
data
<
T
>
();
T
*
z_data
=
z
->
data
<
T
>
();
T
*
y_broadcast
=
nullptr
;
bool
need_wait
=
false
;
framework
::
Tensor
x_broadcast_tensor
;
framework
::
Tensor
y_broadcast_tensor
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
xpu
::
SUCCESS
;
// begin broadcast now
if
(
x
.
numel
()
!=
z
->
numel
())
{
// broadcast x
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
x_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
x_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
z
->
numel
()),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast occur error in XPUElementwise error code %d"
,
ret
));
need_wait
=
true
;
x_data
=
x_broadcast_tensor
.
data
<
T
>
();
}
if
(
y
->
numel
()
!=
z
->
numel
())
{
// broadcast y
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
y_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
y_data
,
y_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
z
->
numel
()),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast occur error in XPUElementwise error code %d"
,
ret
));
need_wait
=
true
;
y_data
=
y_broadcast_tensor
.
data
<
T
>
();
}
int
len
=
z
->
numel
();
ret
=
func
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
len
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel Elementwise occur error in XPUElementwise error code "
,
ret
));
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
}
template
<
typename
T
>
void
XPUElementwiseGrad
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
const
T
*
,
const
T
*
,
const
T
*
,
T
*
,
T
*
,
int
len
)
>
func
,
bool
use_x_y_data
)
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dz
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
z
=
dz
;
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
framework
::
DDim
&
x_dims
=
x
->
dims
();
const
framework
::
DDim
&
y_dims
=
y
->
dims
();
int
max_dim
=
std
::
max
(
x_dims
.
size
(),
y_dims
.
size
());
axis
=
(
axis
==
-
1
?
std
::
abs
(
x_dims
.
size
()
-
y_dims
.
size
())
:
axis
);
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
framework
::
DDim
out_dim
=
framework
::
make_ddim
(
out_dims_array
);
int
len
=
framework
::
product
(
out_dim
);
framework
::
Tensor
x_broadcast_tensor
;
framework
::
Tensor
y_broadcast_tensor
;
framework
::
Tensor
dx_local_tensor
;
framework
::
Tensor
dy_local_tensor
;
bool
need_wait
=
false
;
const
T
*
x_data
=
use_x_y_data
?
x
->
data
<
T
>
()
:
z
->
data
<
T
>
();
const
T
*
y_data
=
use_x_y_data
?
y
->
data
<
T
>
()
:
z
->
data
<
T
>
();
const
T
*
z_data
=
z
->
data
<
T
>
();
const
T
*
dz_data
=
(
const
T
*
)
dz
->
data
<
T
>
();
bool
dx_need_reduce
=
(
dx
!=
nullptr
)
&&
(
dx
->
numel
()
!=
len
);
bool
dy_need_reduce
=
(
dy
!=
nullptr
)
&&
(
dy
->
numel
()
!=
len
);
T
*
dx_data
=
((
dx
==
nullptr
)
||
dx_need_reduce
)
?
(
dx_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
))
:
(
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
T
*
dy_data
=
((
dy
==
nullptr
)
||
dy_need_reduce
)
?
(
dy_local_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
))
:
(
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
int
ret
=
xpu
::
SUCCESS
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
if
(
post
==
1
)
{
if
(
std
::
is_same
<
Functor
,
XPUAddFunctor
<
T
>>::
value
)
{
int
res
=
xpu
::
matrix_vector_add
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
pre
,
n
);
PADDLE_ENFORCE_EQ
(
res
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error occur! %s"
,
get_xpu_error_message
(
res
)));
return
;
}
if
(
std
::
is_same
<
Functor
,
XPUMulFunctor
<
T
>>::
value
)
{
int
res
=
xpu
::
matrix_vector_mul
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
pre
,
n
);
PADDLE_ENFORCE_EQ
(
res
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error occur! %s"
,
get_xpu_error_message
(
res
)));
return
;
}
if
(
use_x_y_data
&&
x
->
numel
()
!=
len
)
{
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
x_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
x_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast error occur! %d"
,
ret
));
need_wait
=
true
;
x_data
=
x_broadcast_tensor
.
data
<
T
>
();
}
if
(
use_x_y_data
&&
y
->
numel
()
!=
len
)
{
// broadcast y
std
::
vector
<
int
>
bcast_x_v
;
std
::
vector
<
int
>
bcast_y_v
;
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
bcast_v
=
XPUDimsToBroadcastVector
(
framework
::
make_ddim
(
y_dims_array
),
out_dim
);
ret
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
y_data
,
y_broadcast_tensor
.
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
len
),
bcast_v
.
first
,
bcast_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel broadcast error occur! %d"
,
ret
));
need_wait
=
true
;
y_data
=
y_broadcast_tensor
.
data
<
T
>
();
}
if
(
pre
!=
1
||
post
!=
1
)
{
XPU_MALLOC
(
&
y_broadcast
,
len
*
sizeof
(
T
));
int
res
=
xpu
::
broadcast_ew
(
dev_ctx
.
x_context
(),
y_data
,
y_broadcast
,
pre
,
n
,
post
,
xpu
::
ElementwiseOp
::
ASSIGN
);
PADDLE_ENFORCE_EQ
(
res
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error occur! %s"
,
get_xpu_error_message
(
res
)));
y_data
=
y_broadcast
;
ret
=
func
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
dz_data
,
dx_data
,
dy_data
,
len
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel binary occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
if
(
dx_need_reduce
)
{
const
framework
::
DDim
&
dx_dims
=
dx
->
dims
();
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
reduce_v
=
XPUReducesAxisVector
(
out_dim
,
dx_dims
);
ret
=
xpu
::
reduce_sum
(
dev_ctx
.
x_context
(),
dx_data
,
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
reduce_v
.
first
,
reduce_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
need_wait
=
true
;
}
Functor
functor
;
int
res
=
functor
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
z_data
,
len
);
PADDLE_ENFORCE_EQ
(
res
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error occur! %s"
,
get_xpu_error_message
(
res
)));
if
(
dy_need_reduce
)
{
const
framework
::
DDim
&
dy_dims
=
dy
->
dims
();
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
reduce_v
=
XPUReducesAxisVector
(
out_dim
,
dy_dims
);
ret
=
xpu
::
reduce_sum
(
dev_ctx
.
x_context
(),
dy_data
,
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
reduce_v
.
first
,
reduce_v
.
second
);
PADDLE_ENFORCE_EQ
(
ret
,
xpu
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel reduce_sum occur error in "
"XPUElementwiseGrad, error code %d"
,
ret
));
need_wait
=
true
;
}
if
(
pre
!=
1
||
post
!=
1
)
{
if
(
need_wait
&&
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
xpu_free
(
y_broadcast
);
}
}
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op_xpu.cc
浏览文件 @
a5aa4dc7
...
...
@@ -19,6 +19,9 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "xpu/refactor/math.h"
#include "xpu/refactor/nn.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -41,11 +44,13 @@ class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
n
=
SizeToAxis
(
axis
,
logits
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
logits
->
dims
());
std
::
vector
<
int
>
logits_dims
=
framework
::
vectorize
<
int
>
(
logits
->
dims
());
// softmax
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
xpu
::
softmax2d_forward
(
dev_ctx
.
x_context
(),
logits
->
data
<
float
>
(),
softmax
->
data
<
float
>
(),
n
,
d
);
int
r
=
xpu
::
softmax
(
dev_ctx
.
x_context
(),
logits
->
data
<
float
>
(),
softmax
->
data
<
float
>
(),
logits_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error. Softmax2d_forward "
...
...
@@ -55,44 +60,35 @@ class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
auto
ignore_index
=
context
.
Attr
<
int
>
(
"ignore_index"
);
const
bool
soft_label
=
context
.
Attr
<
bool
>
(
"soft_label"
);
if
(
soft_label
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"XPU only support soft_label == false for now!"
));
r
=
xpu
::
soft_cross_entropy
<
float
>
(
dev_ctx
.
x_context
(),
softmax
->
data
<
float
>
(),
labels
->
data
<
float
>
(),
loss
->
data
<
float
>
(),
n
,
d
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error. soft_cross_entropy "
"execution not succeed, error code=%d"
,
r
));
}
else
{
auto
*
p_labels
=
labels
->
data
<
int64_t
>
();
int64_t
*
labels_int64_host
=
reinterpret_cast
<
int64_t
*>
(
std
::
malloc
(
n
*
sizeof
(
int64_t
)));
int
*
labels_int32_host
=
reinterpret_cast
<
int
*>
(
std
::
malloc
(
n
*
sizeof
(
int
)));
int
*
labels_int32_device
=
NULL
;
int
ret
=
xpu_malloc
(
reinterpret_cast
<
void
**>
(
&
labels_int32_device
),
n
*
sizeof
(
int
));
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d], please check "
"where Baidu Kunlun Card is properly installed."
,
ret
));
dev_ctx
.
Wait
();
memory
::
Copy
(
platform
::
CPUPlace
(),
labels_int64_host
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()),
p_labels
,
n
*
sizeof
(
int64_t
));
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
labels_int32_host
[
i
]
=
labels_int64_host
[
i
];
}
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
context
.
GetPlace
()),
labels_int32_device
,
platform
::
CPUPlace
(),
labels_int32_host
,
n
*
sizeof
(
int
));
int
r
=
xpu
::
cross_entropy_forward
(
dev_ctx
.
x_context
(),
n
,
d
,
softmax
->
data
<
float
>
(),
labels_int32_device
,
loss
->
data
<
float
>
(),
nullptr
,
ignore_index
);
Tensor
labels_int32
;
labels_int32
.
mutable_data
<
int32_t
>
(
context
.
GetPlace
(),
labels
->
numel
());
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
labels
->
data
<
int64_t
>
(),
labels_int32
.
data
<
int32_t
>
(),
labels
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error. cast_v2 "
"execution not succeed, error code=%d"
,
r
));
r
=
xpu
::
hard_cross_entropy
<
float
,
int32_t
>
(
dev_ctx
.
x_context
(),
softmax
->
data
<
float
>
(),
labels_int32
.
data
<
int32_t
>
(),
loss
->
data
<
float
>
(),
nullptr
,
n
,
d
,
ignore_index
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"XPU kernel error.
Cross_entropy_forward
"
platform
::
errors
::
External
(
"XPU kernel error.
hard_cross_entropy
"
"execution not succeed, error code=%d"
,
r
));
dev_ctx
.
Wait
();
std
::
free
(
labels_int32_host
);
std
::
free
(
labels_int64_host
);
xpu_free
(
labels_int32_device
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/xpu/elementwise.py
已删除
100644 → 0
浏览文件 @
e9acd9c9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
class
TestXPUElementwiseOpBase
(
object
):
def
setUp
(
self
,
op_type
):
self
.
op_type
=
op_type
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
is_common_broadcast
=
False
self
.
is_x_size_less_than_y
=
False
self
.
grad_implemented
=
False
self
.
y_grad_implemented
=
True
self
.
dtype
=
np
.
float32
self
.
__class__
.
op_type
=
self
.
op_type
self
.
__class__
.
use_xpu
=
True
self
.
__class__
.
dtype
=
self
.
dtype
def
net
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
self
.
inputs
[
'X'
].
shape
,
dtype
=
self
.
dtype
)
y
=
fluid
.
layers
.
data
(
name
=
'Y'
,
shape
=
self
.
inputs
[
'Y'
].
shape
,
dtype
=
self
.
dtype
)
op
=
getattr
(
fluid
.
layers
,
self
.
op_type
)
z
=
op
(
x
,
y
)
exe
=
fluid
.
Executor
(
place
)
z_value
=
exe
.
run
(
feed
=
self
.
inputs
,
fetch_list
=
[
z
.
name
])
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
if
not
self
.
is_common_broadcast
and
not
self
.
is_x_size_less_than_y
:
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
else
:
with
self
.
assertRaises
(
BaseException
):
self
.
net
(
place
)
def
_check_grad_xpu_helper
(
self
,
inputs_to_check
,
output_names
,
no_grad_set
=
None
,
max_relative_error
=
0.01
):
if
self
.
grad_implemented
and
not
self
.
is_common_broadcast
\
and
not
self
.
is_x_size_less_than_y
:
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
inputs_to_check
,
output_names
,
no_grad_set
=
no_grad_set
,
max_relative_error
=
max_relative_error
)
def
test_check_grad_normal
(
self
):
self
.
_check_grad_xpu_helper
([
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
self
.
_check_grad_xpu_helper
([
'Y'
],
'Out'
,
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
self
.
y_grad_implemented
:
self
.
_check_grad_xpu_helper
([
'X'
],
'Out'
,
set
(
"Y"
))
def
init_axis
(
self
):
self
.
axis
=
-
1
def
make_input
(
self
,
x_shape
=
[
13
,
17
],
y_shape
=
[
13
,
17
]):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
x_shape
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
y_shape
).
astype
(
self
.
dtype
)
}
def
reshape_input
(
self
,
x_shape
=
None
,
y_shape
=
None
):
if
x_shape
is
None
:
x
=
self
.
inputs
[
'X'
]
else
:
x
=
self
.
inputs
[
'X'
].
reshape
(
x_shape
)
if
y_shape
is
None
:
y
=
self
.
inputs
[
'Y'
]
else
:
y
=
self
.
inputs
[
'Y'
].
reshape
(
y_shape
)
return
x
,
y
def
make_output
(
self
,
x_shape
=
None
,
y_shape
=
None
):
pass
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -13,18 +13,21 @@
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
paddle
.
enable_static
()
class
TestElementwiseAddOp
(
OpTest
):
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
...
...
@@ -34,6 +37,7 @@ class TestElementwiseAddOp(OpTest):
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
use_xpu
=
True
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
...
...
@@ -43,80 +47,33 @@ class TestElementwiseAddOp(OpTest):
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self
.
check_output
(
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_normal
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
(
[
'X'
,
'Y'
],
'Out'
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_x
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
(
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_y
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
(
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_axis
(
self
):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUElementwiseAddOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'Y'
:
self
.
y
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
False
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
if
self
.
dtype
==
np
.
float32
and
paddle
.
is_compiled_with_xpu
():
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float32
and
paddle
.
is_compiled_with_xpu
():
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.006
)
def
test_check_grad_ingore_x
(
self
):
if
self
.
dtype
==
np
.
float32
and
paddle
.
is_compiled_with_xpu
():
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
max_relative_error
=
0.006
)
def
test_check_grad_ingore_y
(
self
):
if
self
.
dtype
==
np
.
float32
and
paddle
.
is_compiled_with_xpu
():
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
"Y"
),
max_relative_error
=
0.006
)
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
...
...
@@ -130,6 +87,8 @@ class TestXPUElementwiseAddOp(OpTest):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseAddOp_scalar
(
TestElementwiseAddOp
):
...
...
@@ -139,6 +98,8 @@ class TestElementwiseAddOp_scalar(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1,1) to test broadcast."
)
class
TestElementwiseAddOp_scalar2
(
TestElementwiseAddOp
):
...
...
@@ -148,6 +109,8 @@ class TestElementwiseAddOp_scalar2(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_Vector
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
...
...
@@ -155,6 +118,8 @@ class TestElementwiseAddOp_Vector(TestElementwiseAddOp):
self
.
out
=
np
.
add
(
self
.
x
,
self
.
y
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_0
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
...
...
@@ -165,6 +130,8 @@ class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp):
self
.
axis
=
0
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
self
.
dtype
)
...
...
@@ -175,6 +142,8 @@ class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp):
self
.
axis
=
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
...
...
@@ -182,6 +151,8 @@ class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
.
reshape
(
1
,
1
,
100
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_3
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
)
...
...
@@ -192,6 +163,8 @@ class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp):
self
.
axis
=
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_4
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
,
4
).
astype
(
self
.
dtype
)
...
...
@@ -202,6 +175,8 @@ class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp):
self
.
axis
=
0
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_5
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
3
,
12
).
astype
(
self
.
dtype
)
...
...
@@ -209,6 +184,8 @@ class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_6
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
12
,
3
,
5
).
astype
(
self
.
dtype
)
...
...
@@ -216,6 +193,8 @@ class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_broadcast_7
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
1
,
1
,
20
,
5
).
astype
(
self
.
dtype
)
...
...
@@ -223,6 +202,8 @@ class TestElementwiseAddOp_broadcast_7(TestElementwiseAddOp):
self
.
out
=
self
.
x
+
self
.
y
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_rowwise_add_0
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
).
astype
(
self
.
dtype
)
...
...
@@ -233,6 +214,8 @@ class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp):
self
.
axis
=
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseAddOp_rowwise_add_1
(
TestElementwiseAddOp
):
...
...
@@ -245,6 +228,8 @@ class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp):
self
.
axis
=
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_channelwise_add
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
...
...
@@ -255,6 +240,8 @@ class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_commonuse_add1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
)
...
...
@@ -265,6 +252,8 @@ class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_commonuse_add2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
self
.
dtype
)
...
...
@@ -275,6 +264,8 @@ class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOp_xsize_lessthan_ysize_add
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
...
...
@@ -285,14 +276,16 @@ class TestElementwiseAddOp_xsize_lessthan_ysize_add(TestElementwiseAddOp):
self
.
axis
=
2
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseAddOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of elementwise_add must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
(
))
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
y1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
(
))
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_add
,
x1
,
y1
)
# the input dtype of elementwise_add must be float16 or float32 or float64 or int32 or int64
...
...
@@ -302,6 +295,8 @@ class TestElementwiseAddOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_add
,
x2
,
y2
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestAddOp
(
unittest
.
TestCase
):
def
test_name
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
...
...
@@ -324,7 +319,7 @@ class TestAddOp(unittest.TestCase):
y
=
fluid
.
data
(
name
=
"y"
,
shape
=
[
3
],
dtype
=
'float32'
)
z
=
paddle
.
add
(
x
,
y
)
place
=
fluid
.
CPUPlace
(
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
z_value
=
exe
.
run
(
feed
=
gen_data
(),
fetch_list
=
[
z
.
name
])
z_expected
=
np
.
array
([
3.
,
8.
,
6.
])
...
...
@@ -332,8 +327,8 @@ class TestAddOp(unittest.TestCase):
def
test_dygraph
(
self
):
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
array
([
2
,
3
,
4
]).
astype
(
'float
64
'
)
np_y
=
np
.
array
([
1
,
5
,
2
]).
astype
(
'float
64
'
)
np_x
=
np
.
array
([
2
,
3
,
4
]).
astype
(
'float
32
'
)
np_y
=
np
.
array
([
1
,
5
,
2
]).
astype
(
'float
32
'
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
y
=
fluid
.
dygraph
.
to_variable
(
np_y
)
z
=
paddle
.
add
(
x
,
y
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -17,121 +17,233 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
elementwise
import
TestXPUElementwiseOpBase
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUElementwiseDivOp
(
OpTest
,
TestXPUElementwiseOpBase
):
class
ElementwiseDivOp
(
XPUOpTest
):
def
setUp
(
self
):
TestXPUElementwiseOpBase
.
setUp
(
self
,
"elementwise_div"
)
self
.
make_input
()
self
.
make_output
()
def
make_output
(
self
,
x_shape
=
None
,
y_shape
=
None
):
x
,
y
=
self
.
reshape_input
(
x_shape
,
y_shape
)
self
.
outputs
=
{
'Out'
:
np
.
divide
(
x
,
y
)}
self
.
op_type
=
"elementwise_div"
self
.
dtype
=
np
.
float32
self
.
init_dtype
()
self
.
use_xpu
=
True
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
def
init_dtype
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_scalar
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_
scalar
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_
Vector
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_scalar
,
self
).
setUp
()
self
.
grad_implemented
=
False
self
.
make_input
([
20
,
3
,
4
],
[
1
])
self
.
make_output
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_
Vector
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_
broadcast_0
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_Vector
,
self
).
setUp
()
self
.
make_input
([
100
,
],
[
100
,
])
self
.
make_output
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_
0
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_
1
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_0
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
0
self
.
make_input
([
100
,
3
,
4
],
[
100
,
])
self
.
make_output
(
y_shape
=
[
100
,
1
,
1
])
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_
1
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_
2
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_1
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
([
2
,
100
,
4
],
[
100
,
])
self
.
make_output
(
y_shape
=
[
1
,
100
,
1
])
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_
2
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_
3
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_2
,
self
).
setUp
()
self
.
make_input
([
2
,
3
,
100
],
[
100
,
])
self
.
make_output
(
y_shape
=
[
1
,
1
,
100
])
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_
3
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_
4
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_3
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
([
2
,
10
,
12
,
5
],
[
10
,
12
])
self
.
make_output
(
y_shape
=
[
1
,
10
,
12
,
1
])
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_
4
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_broadcast_
5
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_4
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
([
2
,
3
,
50
],
[
2
,
1
,
50
])
self
.
make_output
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_
broadcast_5
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_
commonuse_1
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_broadcast_5
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
([
2
,
3
,
4
,
20
],
[
2
,
3
,
1
,
20
])
self
.
make_output
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_commonuse_
1
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_commonuse_
2
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_commonuse_1
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
([
2
,
3
,
100
],
[
1
,
1
,
100
])
self
.
make_output
()
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
TestXPU
ElementwiseDivOp
):
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
ElementwiseDivOp
):
def
setUp
(
self
):
super
(
TestElementwiseDivOp_xsize_lessthan_ysize
,
self
).
setUp
()
self
.
is_x_size_less_than_y
=
True
self
.
attrs
[
'axis'
]
=
2
self
.
make_input
([
10
,
12
],
[
2
,
3
,
10
,
12
])
self
.
make_output
(
x_shape
=
[
1
,
1
,
10
,
12
])
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivBroadcast
(
unittest
.
TestCase
):
def
test_shape_with_batch_sizes
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x_var
=
fluid
.
data
(
name
=
'x'
,
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
])
one
=
2.
out
=
one
/
x_var
exe
=
fluid
.
Executor
(
fluid
.
XPUPlace
(
0
))
x
=
np
.
random
.
uniform
(
0.1
,
0.6
,
(
1
,
3
,
32
,
32
)).
astype
(
"float32"
)
out_result
,
=
exe
.
run
(
feed
=
{
'x'
:
x
},
fetch_list
=
[
out
])
self
.
assertEqual
((
out_result
==
(
2
/
x
)).
all
(),
True
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
0 → 100644
浏览文件 @
a5aa4dc7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
import
random
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
def
setUp
(
self
):
self
.
op_type
=
"elementwise_floordiv"
self
.
dtype
=
np
.
float32
self
.
axis
=
-
1
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
pass
def
init_axis
(
self
):
pass
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOp_scalar
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
scale_x
=
random
.
randint
(
0
,
100000000
)
scale_y
=
random
.
randint
(
1
,
100000000
)
self
.
x
=
(
np
.
random
.
rand
(
2
,
3
,
4
)
*
scale_x
).
astype
(
self
.
dtype
)
self
.
y
=
(
np
.
random
.
rand
(
1
)
*
scale_y
+
1
).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOpInverse
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -16,113 +16,163 @@ sys.path.append("..")
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
import
paddle
from
elementwise
import
TestXPUElementwiseOpBase
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseOp
(
OpTest
,
TestXPUElementwiseOpBase
):
class
Test
ElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
TestXPUElementwiseOpBase
.
setUp
(
self
,
"elementwise_max"
)
self
.
make_input
()
self
.
make_output
()
def
make_input
(
self
,
x_shape
=
[
13
,
17
],
y_shape
=
[
13
,
17
],
idx_list
=
None
):
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
y_shape
).
astype
(
self
.
dtype
)
if
idx_list
is
None
:
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
y_shape
).
astype
(
self
.
dtype
)
else
:
x_temp
=
x
for
idx
in
idx_list
:
x_temp
=
np
.
take
(
x_temp
,
[
0
],
axis
=
idx
)
sgn
=
sgn
.
reshape
(
x_temp
.
shape
)
y
=
x_temp
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
x_temp
.
shape
)
y
=
y
.
reshape
(
y_shape
).
astype
(
self
.
dtype
)
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_max"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
def
make_output
(
self
,
x_shape
=
None
,
y_shape
=
None
):
x
,
y
=
self
.
reshape_input
(
x_shape
,
y_shape
)
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
x
,
y
)}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_scalar
(
Test
XPU
ElementwiseOp
):
class
TestElementwiseMaxOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_scalar
,
self
).
setUp
()
self
.
make_input
([
2
,
3
,
20
],
[
1
])
self
.
make_output
()
self
.
grad_implemented
=
False
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
2
,
3
,
20
]).
astype
(
"float32"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_Vector
(
Test
XPU
ElementwiseOp
):
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_Vector
,
self
).
setUp
()
self
.
make_input
([
100
,
],
[
100
,
])
self
.
make_output
()
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_0
(
Test
XPU
ElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_0
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
0
self
.
make_input
([
100
,
5
,
2
],
[
100
,
],
[
1
,
2
])
self
.
make_output
(
y_shape
=
[
100
,
1
,
1
])
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
5
,
2
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_1
(
TestXPUElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_1
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
([
2
,
100
,
3
],
[
100
,
],
[
0
,
2
])
self
.
make_output
(
y_shape
=
[
1
,
100
,
1
])
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_
2
(
TestXPU
ElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_
1
(
Test
ElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_2
,
self
).
setUp
()
self
.
make_input
([
1
,
3
,
100
],
[
100
,
],
[
0
,
1
])
self
.
make_output
(
y_shape
=
[
1
,
1
,
100
])
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_
3
(
TestXPU
ElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_
2
(
Test
ElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_3
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
([
2
,
50
,
2
,
1
],
[
50
,
2
],
[
0
,
3
])
self
.
make_output
(
y_shape
=
[
1
,
50
,
2
,
1
])
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
1
,
3
,
100
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_
4
(
TestXPU
ElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_
3
(
Test
ElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_4
,
self
).
setUp
()
self
.
make_input
([
2
,
3
,
4
,
5
],
[
2
,
3
,
1
,
5
])
self
.
make_output
()
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
50
,
2
,
1
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
50
,
2
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
50
,
2
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
50
,
2
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_
5
(
TestXPU
ElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_
4
(
Test
ElementwiseOp
):
def
setUp
(
self
):
super
(
TestElementwiseMaxOp_broadcast_5
,
self
).
setUp
()
self
.
make_input
([
2
,
3
,
100
],
[
1
,
1
,
100
])
self
.
make_output
()
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
0 → 100644
浏览文件 @
a5aa4dc7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
"float32"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
3
,
2
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
25
,
4
,
1
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
25
,
4
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
25
,
4
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
25
,
4
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
10
,
2
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -19,58 +19,111 @@ from op_test import OpTest, skip_check_grad_ci
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
from
elementwise
import
TestXPUElementwiseOpBase
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUElementwiseMulOp
(
OpTest
,
TestXPUElementwiseOpBase
):
class
ElementwiseMulOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
def
setUp
(
self
):
TestXPUElementwiseOpBase
.
setUp
(
self
,
"elementwise_mul"
)
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_mul"
self
.
dtype
=
np
.
float32
self
.
axis
=
-
1
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
attrs
[
'axis'
]
=
self
.
axis
self
.
attrs
[
'use_mkldnn'
]
=
self
.
use_mkldnn
self
.
grad_implemented
=
True
self
.
make_input
()
self
.
make_output
()
def
make_output
(
self
,
x_shape
=
None
,
y_shape
=
None
):
x
,
y
=
self
.
reshape_input
(
x_shape
,
y_shape
)
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
x
,
y
)}
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
multiply
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
pass
def
init_axis
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseMulOp_scalar
(
TestXPU
ElementwiseMulOp
):
class
Test
ElementwiseMulOp_scalar
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestXPUElementwiseMulOp_scalar
,
self
).
setUp
()
self
.
make_input
((
10
,
3
,
4
),
(
1
,
))
self
.
make_output
()
self
.
grad_implemented
=
False
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseMulOp_Vector
(
TestXPU
ElementwiseMulOp
):
class
Test
ElementwiseMulOp_Vector
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestXPUElementwiseMulOp_Vector
,
self
).
setUp
()
self
.
make_input
((
100
,
),
(
100
,
))
self
.
make_output
()
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUElementwiseMulOp_broadcast_0
(
TestXPUElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestXPUElementwiseMulOp_broadcast_0
,
self
).
setUp
()
self
.
make_input
((
100
,
2
,
3
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
100
,
1
,
1
))
self
.
y_grad_implemented
=
False
class
TestElementwiseMulOp_broadcast_0
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
*
self
.
y
.
reshape
(
100
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
...
...
@@ -78,75 +131,140 @@ class TestXPUElementwiseMulOp_broadcast_0(TestXPUElementwiseMulOp):
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_1
(
TestXPUElementwiseMulOp
):
class
TestElementwiseMulOp_broadcast_1
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_2
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestElementwiseMulOp_broadcast_1
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
y_grad_implemented
=
False
self
.
make_input
((
2
,
100
,
3
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
1
,
100
,
1
))
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_
2
(
TestXPU
ElementwiseMulOp
):
class
TestElementwiseMulOp_broadcast_
3
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestElementwiseMulOp_broadcast_2
,
self
).
setUp
()
self
.
y_grad_implemented
=
False
self
.
make_input
((
2
,
3
,
100
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
1
,
1
,
100
))
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_
3
(
TestXPU
ElementwiseMulOp
):
class
TestElementwiseMulOp_broadcast_
4
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestElementwiseMulOp_broadcast_3
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
y_grad_implemented
=
False
self
.
make_input
((
2
,
10
,
12
,
3
),
(
10
,
12
))
self
.
make_output
(
y_shape
=
(
1
,
10
,
12
,
1
))
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
2
,
11
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
11
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_
4
(
TestXPU
ElementwiseMulOp
):
class
TestElementwiseMulOp_broadcast_
5
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestElementwiseMulOp_broadcast_4
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
((
10
,
2
,
11
),
(
10
,
1
,
11
))
self
.
make_output
()
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
4
,
2
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
4
,
1
,
3
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_
broadcast_5
(
TestXPU
ElementwiseMulOp
):
class
TestElementwiseMulOp_
commonuse_1
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestElementwiseMulOp_broadcast_5
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
((
10
,
4
,
2
,
3
),
(
10
,
4
,
1
,
3
))
self
.
make_output
()
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseMulOp_commonuse_1
(
TestXPU
ElementwiseMulOp
):
class
Test
ElementwiseMulOp_commonuse_2
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestXPUElementwiseMulOp_commonuse_1
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
((
2
,
3
,
100
),
(
1
,
1
,
100
))
self
.
make_output
()
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
30
,
3
,
1
,
5
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
30
,
1
,
4
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseMulOp_xsize_lessthan_ysize
(
TestXPU
ElementwiseMulOp
):
class
Test
ElementwiseMulOp_xsize_lessthan_ysize
(
ElementwiseMulOp
):
def
setUp
(
self
):
super
(
TestXPUElementwiseMulOp_xsize_lessthan_ysize
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
2
self
.
is_x_size_less_than_y
=
True
self
.
make_input
((
10
,
10
),
(
2
,
2
,
10
,
10
))
self
.
make_output
(
x_shape
=
(
1
,
1
,
10
,
10
))
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
2
,
10
,
10
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
10
)
*
self
.
inputs
[
'Y'
]
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of elementwise_mul must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
y1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x1
,
y1
)
# the input dtype of elementwise_mul must be float32
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
y2
=
fluid
.
layers
.
data
(
name
=
'y2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x2
,
y2
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
0 → 100644
浏览文件 @
a5aa4dc7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_big_shape_1
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_big_shape_2
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.2
,
2
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwisePowOp_scalar
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
3
,
4
]).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_tensor
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
1
,
3
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_0
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_1
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_2
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_3
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
20
,
5
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
5
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
20
,
5
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_4
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
3
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
1
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOpInt
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
asarray
([
1
,
3
,
6
]),
'Y'
:
np
.
asarray
([
1
,
1
,
1
])}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -11,117 +11,198 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
from
elementwise
import
TestXPUElementwiseOpBase
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
import
unittest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
Test
XPUElementwiseSubOp
(
OpTest
,
TestXPUElementwiseOpBase
):
class
Test
ElementwiseOp
(
OpTest
):
def
setUp
(
self
):
TestXPUElementwiseOpBase
.
setUp
(
self
,
"elementwise_sub"
)
self
.
make_input
()
self
.
make_output
()
self
.
grad_implemented
=
True
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
def
make_output
(
self
,
x_shape
=
None
,
y_shape
=
None
):
x
,
y
=
self
.
reshape_input
(
x_shape
,
y_shape
)
self
.
outputs
=
{
'Out'
:
x
-
y
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseSubOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_
scalar
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_
Vector
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_scalar
,
self
).
setUp
()
self
.
grad_implemented
=
False
self
.
make_input
((
10
,
3
,
4
),
(
1
,
))
self
.
make_output
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_
Vector
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_
broadcast_0
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_Vector
,
self
).
setUp
()
self
.
make_input
((
100
,
),
(
100
,
))
self
.
make_output
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
100
,
3
,
2
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_
0
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_broadcast_
1
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_broadcast_0
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
0
self
.
make_input
((
100
,
3
,
2
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
100
,
1
,
1
))
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_
1
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_broadcast_
2
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_broadcast_1
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
((
2
,
100
,
3
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
1
,
100
,
1
))
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_
2
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_broadcast_
3
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_broadcast_2
,
self
).
setUp
()
self
.
make_input
((
2
,
3
,
100
),
(
100
,
))
self
.
make_output
(
y_shape
=
(
1
,
1
,
100
))
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_
3
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_broadcast_
4
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_broadcast_3
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
1
self
.
make_input
((
2
,
10
,
12
,
3
),
(
10
,
12
))
self
.
make_output
(
y_shape
=
(
1
,
10
,
12
,
1
))
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
5
,
3
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
5
,
1
,
12
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_
broadcast_4
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_
commonuse_1
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_broadcast_4
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
((
2
,
5
,
3
,
12
),
(
2
,
5
,
1
,
12
))
self
.
make_output
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_commonuse_
1
(
TestXPUElementwiseSub
Op
):
class
TestElementwiseSubOp_commonuse_
2
(
TestElementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_commonuse_1
,
self
).
setUp
()
self
.
is_common_broadcast
=
True
self
.
make_input
((
2
,
3
,
100
),
(
1
,
1
,
100
))
self
.
make_output
()
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
12
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_xsize_lessthan_ysize
(
Test
XPUElementwiseSub
Op
):
class
TestElementwiseSubOp_xsize_lessthan_ysize
(
Test
Elementwise
Op
):
def
setUp
(
self
):
super
(
TestElementwiseSubOp_xsize_lessthan_ysize
,
self
).
setUp
()
self
.
attrs
[
'axis'
]
=
2
self
.
is_x_size_less_than_y
=
True
self
.
make_input
((
10
,
12
),
(
2
,
3
,
10
,
12
))
self
.
make_output
(
x_shape
=
(
1
,
1
,
10
,
12
))
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
12
)
-
self
.
inputs
[
'Y'
]
}
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_softmax_with_cross_entropy_op_xpu.py
浏览文件 @
a5aa4dc7
...
...
@@ -13,16 +13,15 @@
# limitations under the License.
from
__future__
import
print_function
from
test_softmax_op
import
stable_softmax
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
test_softmax_op
import
stable_softmax
def
cross_entropy
(
softmax
,
label
,
soft_label
,
axis
,
ignore_index
=-
1
):
...
...
@@ -54,10 +53,11 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
False
self
.
soft_label
=
False
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
41
,
37
]
self
.
use_xpu
=
True
def
setUp
(
self
):
self
.
initParams
()
...
...
@@ -103,7 +103,7 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
1
)
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
2
)
class
TestXPUSoftmaxWithCrossEntropyOp
(
TestSoftmaxWithCrossEntropyOp
):
...
...
@@ -115,6 +115,7 @@ class TestXPUSoftmaxWithCrossEntropyOp(TestSoftmaxWithCrossEntropyOp):
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float32
self
.
use_xpu
=
True
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
...
...
@@ -127,7 +128,7 @@ class TestXPUSoftmaxWithCrossEntropyOp(TestSoftmaxWithCrossEntropyOp):
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
1
)
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
2
)
class
TestXPUSoftmaxWithCrossEntropyOp2
(
TestXPUSoftmaxWithCrossEntropyOp
):
...
...
@@ -139,10 +140,11 @@ class TestXPUSoftmaxWithCrossEntropyOp2(TestXPUSoftmaxWithCrossEntropyOp):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
True
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
41
,
37
]
self
.
use_xpu
=
True
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
...
...
@@ -155,7 +157,7 @@ class TestXPUSoftmaxWithCrossEntropyOp2(TestXPUSoftmaxWithCrossEntropyOp):
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
1
)
place
,
[
"Logits"
],
"Loss"
,
max_relative_error
=
0.
2
)
class
TestXPUSoftmaxWithCrossEntropyOp3
(
TestXPUSoftmaxWithCrossEntropyOp
):
...
...
@@ -170,55 +172,56 @@ class TestXPUSoftmaxWithCrossEntropyOp3(TestXPUSoftmaxWithCrossEntropyOp):
self
.
shape
=
[
41
,
37
]
self
.
ignore_index
=
5
self
.
axis
=
-
1
self
.
dtype
=
np
.
float64
class
TestXPUSoftmaxWithCrossEntropyOpAxis1
(
TestXPUSoftmaxWithCrossEntropyOp
):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
dtype
=
np
.
float64
self
.
axis
=
0
self
.
ignore_index
=
-
1
self
.
shape
=
[
3
,
5
,
7
,
11
]
class
TestXPUSoftmaxWithCrossEntropyOpAxis2
(
TestXPUSoftmaxWithCrossEntropyOp
):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
dtype
=
np
.
float64
self
.
axis
=
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
dtype
=
np
.
float32
class
TestXPUSoftmaxWithCrossEntropyOpAxis3
(
TestXPUSoftmaxWithCrossEntropyOp
):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
Given axis != -1
"""
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
dtype
=
np
.
float64
self
.
axis
=
2
self
.
ignore_index
=
-
1
self
.
shape
=
[
3
,
5
,
7
,
11
]
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpAxis1(TestXPUSoftmaxWithCrossEntropyOp):
# """
# Test softmax with cross entropy operator with discreate one-hot labels.
# Given axis != -1
# """
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.dtype = np.float32
# self.axis = 0
# self.ignore_index = -1
# self.shape = [3, 5, 7, 11]
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpAxis2(TestXPUSoftmaxWithCrossEntropyOp):
# """
# Test softmax with cross entropy operator with discreate one-hot labels.
# Given axis != -1
# """
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.dtype = np.float32
# self.axis = 1
# self.ignore_index = -1
# self.shape = [3, 5, 7, 11]
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpAxis3(TestXPUSoftmaxWithCrossEntropyOp):
# """
# Test softmax with cross entropy operator with discreate one-hot labels.
# Given axis != -1
# """
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.dtype = np.float32
# self.axis = 2
# self.ignore_index = -1
# self.shape = [3, 5, 7, 11]
class
TestXPUSoftmaxWithCrossEntropyOpAxis4
(
TestXPUSoftmaxWithCrossEntropyOp
):
...
...
@@ -231,7 +234,7 @@ class TestXPUSoftmaxWithCrossEntropyOpAxis4(TestXPUSoftmaxWithCrossEntropyOp):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
axis
=
3
self
.
ignore_index
=
-
1
self
.
shape
=
[
3
,
5
,
7
,
11
]
...
...
@@ -248,46 +251,47 @@ class TestXPUSoftmaxWithCrossEntropyOpAxisDimEqualOne(
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
shape
=
[
3
,
5
,
7
,
1
]
class
TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis1
(
TestXPUSoftmaxWithCrossEntropyOp
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
True
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
0
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float64
class
TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis2
(
TestXPUSoftmaxWithCrossEntropyOp2
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
True
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
1
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float64
class
TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis3
(
TestXPUSoftmaxWithCrossEntropyOp2
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
True
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
2
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float64
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis1(
# TestXPUSoftmaxWithCrossEntropyOp):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = True
# self.shape = [3, 5, 7, 11]
# self.axis = 0
# self.ignore_index = -1
# self.dtype = np.float32
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis2(
# TestXPUSoftmaxWithCrossEntropyOp2):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = True
# self.shape = [3, 5, 7, 11]
# self.axis = 1
# self.ignore_index = -1
# self.dtype = np.float32
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis3(
# TestXPUSoftmaxWithCrossEntropyOp2):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = True
# self.shape = [3, 5, 7, 11]
# self.axis = 2
# self.ignore_index = -1
# self.dtype = np.float32
class
TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis4
(
...
...
@@ -299,43 +303,44 @@ class TestXPUSoftmaxWithCrossEntropyOpSoftLabelAxis4(
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
3
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float64
class
TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis1
(
TestXPUSoftmaxWithCrossEntropyOp3
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
ignore_index
=
1
self
.
axis
=
0
self
.
dtype
=
np
.
float64
class
TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis2
(
TestXPUSoftmaxWithCrossEntropyOp3
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
ignore_index
=
0
self
.
axis
=
1
self
.
dtype
=
np
.
float64
self
.
dtype
=
np
.
float32
class
TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis3
(
TestXPUSoftmaxWithCrossEntropyOp3
):
def
initParams
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
self
.
numeric_stable_mode
=
True
self
.
soft_label
=
False
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
ignore_index
=
3
self
.
axis
=
2
self
.
dtype
=
np
.
float64
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis1(
# TestXPUSoftmaxWithCrossEntropyOp3):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.shape = [3, 5, 7, 11]
# self.ignore_index = 1
# self.axis = 0
# self.dtype = np.float32
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis2(
# TestXPUSoftmaxWithCrossEntropyOp3):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.shape = [3, 5, 7, 11]
# self.ignore_index = 0
# self.axis = 1
# self.dtype = np.float32
# xpu only support axis = rank -1
# class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis3(
# TestXPUSoftmaxWithCrossEntropyOp3):
# def initParams(self):
# self.op_type = "softmax_with_cross_entropy"
# self.numeric_stable_mode = True
# self.soft_label = False
# self.shape = [3, 5, 7, 11]
# self.ignore_index = 3
# self.axis = 2
# self.dtype = np.float32
class
TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis4
(
...
...
@@ -347,7 +352,7 @@ class TestXPUSoftmaxWithCrossEntropyOpIgnoreIndexNoCudnnAxis4(
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
ignore_index
=
3
self
.
axis
=
3
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
class
TestXPUSoftmaxWithCrossEntropyOpBoundary0
(
...
...
@@ -364,7 +369,7 @@ class TestXPUSoftmaxWithCrossEntropyOpBoundary0(
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
logits
=
np
.
full
(
self
.
shape
,
-
500.0
).
astype
(
self
.
dtype
)
...
...
@@ -382,7 +387,7 @@ class TestXPUSoftmaxWithCrossEntropyOpBoundary1(
self
.
shape
=
[
3
,
5
,
7
,
11
]
self
.
axis
=
-
1
self
.
ignore_index
=
-
1
self
.
dtype
=
np
.
float
64
self
.
dtype
=
np
.
float
32
self
.
logits
=
np
.
full
(
self
.
shape
,
1000.0
).
astype
(
self
.
dtype
)
self
.
logits
[:,
:,
0
,
:]
=
-
1000.0
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录