提交 a4b7ef10 编写于 作者: Z zchen0211

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

...@@ -37,8 +37,8 @@ before_install: ...@@ -37,8 +37,8 @@ before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi - if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version. # protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker - pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- pip install rarfile nltk==3.2.2 scipy==0.19.0 recordio matplotlib Pillow - pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash - curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter - go get -u github.com/alecthomas/gometalinter
......
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
...@@ -20,7 +20,6 @@ limitations under the License. */ ...@@ -20,7 +20,6 @@ limitations under the License. */
#include "paddle/framework/dim.h" #include "paddle/framework/dim.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/variant.h" #include "paddle/platform/variant.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -19,45 +19,44 @@ permissions and limitations under the License. */ ...@@ -19,45 +19,44 @@ permissions and limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry; typedef std::vector<int> Ints;
using VarIndexMap = std::unordered_map<std::string, int>;
enum class OpArgType { IN, OUT }; enum class OpArgType { IN, OUT };
static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) { const Ints* AttrFormat(const AttributeMap& attrs, const std::string& key) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format"; return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
} }
static const std::vector<int>* GetOpFormat(const OperatorBase* op, Ints* AttrFormat(AttributeMap& attrs, const std::string& key) {
const OpArgType& type) { return (attrs.count(key) > 0) ? &boost::get<Ints>(attrs.at(key)) : nullptr;
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
} }
static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, static void TransOpArg(const OperatorBase* src_op,
const OpArgType& src_type, const OpArgType& dst_type, std::vector<std::string>& grad_inputs,
std::vector<std::string>& grad_outputs,
AttributeMap& grad_attrs,
std::unordered_map<std::string, int>& grad_idxs,
const std::string& src_type, const std::string& dst_type,
int& idx, bool is_grad) { int& idx, bool is_grad) {
const std::vector<std::string>& src_inout = const std::vector<std::string>& src_inout =
src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; (src_type == "input_format") ? src_op->inputs_ : src_op->outputs_;
const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
const std::vector<int>* src_format = AttrFormat(src_op->Attrs(), src_type);
std::vector<std::string>& dst_inout = std::vector<std::string>& dst_inout =
dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_; (dst_type == "input_format") ? grad_inputs : grad_outputs;
std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
std::vector<int>* dst_format = AttrFormat(grad_attrs, dst_type);
const OpProto& proto = OpRegistry::protos().at(src_op->type_); const OpProto& proto = OpRegistry::protos().at(src_op->type_);
const auto& src_arg_list = const auto& src_arg_list =
src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); (src_type == "input_format") ? proto.inputs() : proto.outputs();
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
std::string src_name = arg.name(); std::string src_name = arg.name();
std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name; std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++; grad_idxs[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name); int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin = int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
...@@ -76,26 +75,42 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, ...@@ -76,26 +75,42 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
} }
OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* BuildGradOp(const OperatorBase* op) {
std::string grad_op_type = OpRegistry::grad_ops().at(op->type_); const std::string& grad_op_type = OpRegistry::grad_ops().at(op->Type());
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type; AttributeMap grad_attrs(op->Attrs());
grad_op->attrs_ = op->attrs_; grad_attrs.erase("input_format");
grad_op->attrs_.erase("input_format"); grad_attrs.erase("output_format");
grad_op->attrs_.erase("output_format"); if (op->Attrs().count("input_format") > 0) {
if (GetOpFormat(op, OpArgType::IN) != nullptr) { grad_attrs["output_format"] = std::vector<int>({0});
grad_op->attrs_["output_format"] = std::vector<int>({0});
} }
if (GetOpFormat(op, OpArgType::IN) != nullptr || if (op->Attrs().count("input_format") > 0 ||
GetOpFormat(op, OpArgType::OUT) != nullptr) { op->Attrs().count("output_format") > 0) {
grad_op->attrs_["input_format"] = std::vector<int>({0}); grad_attrs["input_format"] = std::vector<int>({0});
} }
grad_op->in_out_idxs_.reset(new VarIndexMap());
std::vector<std::string> grad_inputs, grad_outputs;
using VarIndexMap = std::unordered_map<std::string, int>;
VarIndexMap* grad_idxs = new VarIndexMap;
int in_idx = 0; int in_idx = 0;
int out_idx = 0; int out_idx = 0;
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G "input_format", "input_format", in_idx, false); // I
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG "output_format", "input_format", in_idx, false); // G
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"output_format", "input_format", in_idx, true); // OG
TransOpArg(op, grad_inputs, grad_outputs, grad_attrs, *grad_idxs,
"input_format", "output_format", out_idx, true); // IG
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->inputs_ = grad_inputs;
grad_op->outputs_ = grad_outputs;
grad_op->attrs_ = grad_attrs;
grad_op->in_out_idxs_.reset(grad_idxs);
return grad_op; return grad_op;
} }
......
...@@ -68,7 +68,7 @@ void NewRemoteParameterUpdater::init( ...@@ -68,7 +68,7 @@ void NewRemoteParameterUpdater::init(
LOG(INFO) << "paddle_begin_init_params start"; LOG(INFO) << "paddle_begin_init_params start";
// NOTE: convert V1 OptimizatioinConfig proto to V2 OptimizerConfig. // NOTE: convert V1 OptimizatioinConfig proto to V2 OptimizerConfig.
// This makes golang pserver compatible with handy V1 demos. // This makes golang pserver compatible with handy V1 demos.
// TODO: Refine or remove these ugly converting lines // TODO(wuyi): Refine or remove these ugly converting lines
OptimizerConfig optimizerConfigV2; OptimizerConfig optimizerConfigV2;
if (trainerConfig_.learning_method() == "momentum") { if (trainerConfig_.learning_method() == "momentum") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD); optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
......
...@@ -73,21 +73,35 @@ def get_numeric_gradient(op, ...@@ -73,21 +73,35 @@ def get_numeric_gradient(op,
def product(dim): def product(dim):
return reduce(lambda a, b: a * b, dim, 1) return reduce(lambda a, b: a * b, dim, 1)
# get the input tensor that we want to get it's numeric gradient.
tensor_to_check = local_scope.find_var(input_to_check).get_tensor() tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims()) tensor_size = product(tensor_to_check.get_dims())
# prepare a numpy array to store the gradient.
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size): for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i) origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos) tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output() y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg) tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output() y_neg = get_output()
tensor_to_check.set_float_element(i, origin) # restore old value # restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2 gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims()) return gradient_flat.reshape(tensor_to_check.get_dims())
......
requests==2.9.2
numpy>=1.12
protobuf==3.1
recordio
matplotlib
rarfile
scipy>=0.19.0
Pillow
nltk>=3.2.2
from setuptools import setup, Distribution from setuptools import setup, Distribution
class BinaryDistribution(Distribution): class BinaryDistribution(Distribution):
def has_ext_modules(foo): def has_ext_modules(foo):
return True return True
...@@ -18,15 +17,8 @@ packages=['paddle', ...@@ -18,15 +17,8 @@ packages=['paddle',
'paddle.v2.framework.proto', 'paddle.v2.framework.proto',
'py_paddle'] 'py_paddle']
setup_requires=["requests", with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
"numpy>=1.12", setup_requires = f.read().splitlines()
"protobuf==3.1",
"recordio",
"matplotlib",
"rarfile",
"scipy>=0.19.0",
"Pillow",
"nltk>=3.2.2"]
if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
setup_requires+=["opencv-python"] setup_requires+=["opencv-python"]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册