Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a3f7ebd6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a3f7ebd6
编写于
2月 25, 2019
作者:
L
lujun
提交者:
GitHub
2月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#10
from PaddlePaddle/develop
merge to local
上级
98069d99
c6bd434f
变更
55
显示空白变更内容
内联
并排
Showing
55 changed file
with
1843 addition
and
436 deletion
+1843
-436
README.md
README.md
+11
-11
README_cn.md
README_cn.md
+11
-11
cmake/external/mklml.cmake
cmake/external/mklml.cmake
+2
-4
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+3
-0
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+15
-3
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+0
-22
paddle/fluid/operators/beam_search_decode_op.h
paddle/fluid/operators/beam_search_decode_op.h
+1
-1
paddle/fluid/operators/detection/yolov3_loss_op.cc
paddle/fluid/operators/detection/yolov3_loss_op.cc
+23
-17
paddle/fluid/operators/lstm_op.h
paddle/fluid/operators/lstm_op.h
+5
-3
paddle/fluid/operators/lstmp_op.cc
paddle/fluid/operators/lstmp_op.cc
+10
-11
paddle/fluid/operators/lstmp_op.h
paddle/fluid/operators/lstmp_op.h
+67
-35
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-0
paddle/fluid/operators/math/blas.h
paddle/fluid/operators/math/blas.h
+0
-8
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+0
-23
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
+20
-18
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
+16
-14
paddle/fluid/operators/math/detail/lstm_kernel.h
paddle/fluid/operators/math/detail/lstm_kernel.h
+49
-13
paddle/fluid/operators/math/lstm_compute.cc
paddle/fluid/operators/math/lstm_compute.cc
+5
-4
paddle/fluid/operators/math/lstm_compute.cu
paddle/fluid/operators/math/lstm_compute.cu
+6
-6
paddle/fluid/operators/math/lstm_compute.h
paddle/fluid/operators/math/lstm_compute.h
+2
-2
paddle/fluid/operators/math/sample_prob.cc
paddle/fluid/operators/math/sample_prob.cc
+26
-0
paddle/fluid/operators/math/sample_prob.cu
paddle/fluid/operators/math/sample_prob.cu
+161
-0
paddle/fluid/operators/math/sample_prob.h
paddle/fluid/operators/math/sample_prob.h
+118
-0
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
+1
-1
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
+3
-4
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+3
-4
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
+1
-1
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+76
-47
paddle/fluid/operators/sample_logits_op.cc
paddle/fluid/operators/sample_logits_op.cc
+225
-0
paddle/fluid/operators/sample_logits_op.cu
paddle/fluid/operators/sample_logits_op.cu
+257
-0
paddle/fluid/operators/sample_logits_op.h
paddle/fluid/operators/sample_logits_op.h
+245
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+2
-2
paddle/fluid/platform/device_tracer.cc
paddle/fluid/platform/device_tracer.cc
+12
-2
paddle/fluid/platform/dynload/mklml.h
paddle/fluid/platform/dynload/mklml.h
+0
-2
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+5
-6
paddle/fluid/train/demo/demo_trainer.cc
paddle/fluid/train/demo/demo_trainer.cc
+2
-2
paddle/fluid/train/test_train_recognize_digits.cc
paddle/fluid/train/test_train_recognize_digits.cc
+1
-1
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+3
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+9
-0
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+23
-4
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+18
-19
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+3
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+10
-9
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+221
-19
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+1
-10
python/paddle/fluid/tests/unittests/test_base_layer.py
python/paddle/fluid/tests/unittests/test_base_layer.py
+22
-15
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+25
-22
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+15
-15
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+12
-8
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+8
-2
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+35
-13
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+11
-0
python/paddle/fluid/tests/unittests/test_lstmp_op.py
python/paddle/fluid/tests/unittests/test_lstmp_op.py
+39
-20
未找到文件。
README.md
浏览文件 @
a3f7ebd6
...
@@ -3,8 +3,8 @@
...
@@ -3,8 +3,8 @@
English |
[
简体中文
](
./README_cn.md
)
English |
[
简体中文
](
./README_cn.md
)
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](http://paddlepaddle.org/documentation/docs/en/1.
2/getstarted
/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/en/1.
3/beginners_guide
/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
2
/beginners_guide/index.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
3
/beginners_guide/index.html)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](LICENSE)
[

](LICENSE)
...
@@ -18,7 +18,7 @@ learning to many products at Baidu.
...
@@ -18,7 +18,7 @@ learning to many products at Baidu.
Our vision is to enable deep learning for everyone via PaddlePaddle.
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our
[
release announcement
](
https://github.com/PaddlePaddle/Paddle/releases
)
to track the latest feature of PaddlePaddle.
Please refer to our
[
release announcement
](
https://github.com/PaddlePaddle/Paddle/releases
)
to track the latest feature of PaddlePaddle.
### Latest PaddlePaddle Release: [Fluid 1.
2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2
)
### Latest PaddlePaddle Release: [Fluid 1.
3.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.3
)
### Install Latest Stable Release:
### Install Latest Stable Release:
```
```
# Linux CPU
# Linux CPU
...
@@ -26,9 +26,9 @@ pip install paddlepaddle
...
@@ -26,9 +26,9 @@ pip install paddlepaddle
# Linux GPU cuda9cudnn7
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.
2
.0.post87
pip install paddlepaddle-gpu==1.
3
.0.post87
# Linux GPU cuda8cudnn5
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.
2
.0.post85
pip install paddlepaddle-gpu==1.
3
.0.post85
# For installation on other platform, refer to http://paddlepaddle.org/
# For installation on other platform, refer to http://paddlepaddle.org/
```
```
...
@@ -75,26 +75,26 @@ pip install paddlepaddle-gpu==1.2.0.post85
...
@@ -75,26 +75,26 @@ pip install paddlepaddle-gpu==1.2.0.post85
## Installation
## Installation
It is recommended to read
[
this doc
](
http://paddlepaddle.org/documentation/docs/
zh/1.2/beginners_guide/install/index_c
n.html
)
on our website.
It is recommended to read
[
this doc
](
http://paddlepaddle.org/documentation/docs/
en/1.3/beginners_guide/index_e
n.html
)
on our website.
## Documentation
## Documentation
We provide
[
English
](
http://paddlepaddle.org/documentation/docs/en/1.
2/getstarted
/index_en.html
)
and
We provide
[
English
](
http://paddlepaddle.org/documentation/docs/en/1.
3/beginners_guide
/index_en.html
)
and
[
Chinese
](
http://paddlepaddle.org/documentation/docs/zh/1.
2
/beginners_guide/index.html
)
documentation.
[
Chinese
](
http://paddlepaddle.org/documentation/docs/zh/1.
3
/beginners_guide/index.html
)
documentation.
-
[
Deep Learning 101
](
https://github.com/PaddlePaddle/book
)
-
[
Deep Learning 101
](
https://github.com/PaddlePaddle/book
)
You might want to start from this online interactive book that can run in a Jupyter Notebook.
You might want to start from this online interactive book that can run in a Jupyter Notebook.
-
[
Distributed Training
](
http://paddlepaddle.org/documentation/docs/
zh/1.2/user_guides/howto/training/cluster_howto
.html
)
-
[
Distributed Training
](
http://paddlepaddle.org/documentation/docs/
en/1.3/user_guides/howto/training/multi_node_en
.html
)
You can run distributed training jobs on MPI clusters.
You can run distributed training jobs on MPI clusters.
-
[
Python API
](
http://paddlepaddle.org/documentation/docs/
zh/1.2/api_cn/index_c
n.html
)
-
[
Python API
](
http://paddlepaddle.org/documentation/docs/
en/1.3/api/index_e
n.html
)
Our new API enables much shorter programs.
Our new API enables much shorter programs.
-
[
How to Contribute
](
http://paddlepaddle.org/documentation/docs/
zh/1.2/advanced_usage/development/contribute_to_paddle/index_c
n.html
)
-
[
How to Contribute
](
http://paddlepaddle.org/documentation/docs/
en/1.3/advanced_usage/development/contribute_to_paddle/index_e
n.html
)
We appreciate your contributions!
We appreciate your contributions!
...
...
README_cn.md
浏览文件 @
a3f7ebd6
...
@@ -3,8 +3,8 @@
...
@@ -3,8 +3,8 @@
[
English
](
./README.md
)
| 简体中文
[
English
](
./README.md
)
| 简体中文
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](https://travis-ci.org/PaddlePaddle/Paddle)
[

](http://paddlepaddle.org/documentation/docs/en/1.
2/getstarted
/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/en/1.
3/beginners_guide
/index_en.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
2
/beginners_guide/index.html)
[

](http://paddlepaddle.org/documentation/docs/zh/1.
3
/beginners_guide/index.html)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](https://github.com/PaddlePaddle/Paddle/releases)
[

](LICENSE)
[

](LICENSE)
...
@@ -16,7 +16,7 @@ PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效
...
@@ -16,7 +16,7 @@ PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效
跟进PaddlePaddle最新特性请参考我们的
[
版本说明
](
https://github.com/PaddlePaddle/Paddle/releases
)
跟进PaddlePaddle最新特性请参考我们的
[
版本说明
](
https://github.com/PaddlePaddle/Paddle/releases
)
### PaddlePaddle最新版本: [Fluid 1.
2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2
)
### PaddlePaddle最新版本: [Fluid 1.
3.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.3
)
### 安装最新稳定版本:
### 安装最新稳定版本:
```
```
# Linux CPU
# Linux CPU
...
@@ -24,9 +24,9 @@ pip install paddlepaddle
...
@@ -24,9 +24,9 @@ pip install paddlepaddle
# Linux GPU cuda9cudnn7
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.
2
.0.post87
pip install paddlepaddle-gpu==1.
3
.0.post87
# Linux GPU cuda8cudnn5
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.
2
.0.post85
pip install paddlepaddle-gpu==1.
3
.0.post85
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
```
```
...
@@ -57,26 +57,26 @@ pip install paddlepaddle-gpu==1.2.0.post85
...
@@ -57,26 +57,26 @@ pip install paddlepaddle-gpu==1.2.0.post85
## 安装
## 安装
推荐阅读官网上的
[
安装说明
](
http://paddlepaddle.org/documentation/docs/zh/1.
2
/beginners_guide/install/index_cn.html
)
推荐阅读官网上的
[
安装说明
](
http://paddlepaddle.org/documentation/docs/zh/1.
3
/beginners_guide/install/index_cn.html
)
## 文档
## 文档
我们提供
[
英文
](
http://paddlepaddle.org/documentation/docs/en/1.
2/getstarted
/index_en.html
)
和
我们提供
[
英文
](
http://paddlepaddle.org/documentation/docs/en/1.
3/beginners_guide
/index_en.html
)
和
[
中文
](
http://paddlepaddle.org/documentation/docs/zh/1.
2
/beginners_guide/index.html
)
文档
[
中文
](
http://paddlepaddle.org/documentation/docs/zh/1.
3
/beginners_guide/index.html
)
文档
-
[
深度学习101
](
https://github.com/PaddlePaddle/book
)
-
[
深度学习101
](
https://github.com/PaddlePaddle/book
)
或许您想从这个在线交互式书籍开始,可以在Jupyter Notebook中运行
或许您想从这个在线交互式书籍开始,可以在Jupyter Notebook中运行
-
[
分布式训练
](
http://paddlepaddle.org/documentation/docs/zh/1.
2/user_guides/howto/training/cluster_howto
.html
)
-
[
分布式训练
](
http://paddlepaddle.org/documentation/docs/zh/1.
3/user_guides/howto/training/multi_node
.html
)
可以在MPI集群上运行分布式训练任务
可以在MPI集群上运行分布式训练任务
-
[
Python API
](
http://paddlepaddle.org/documentation/docs/zh/1.
2
/api_cn/index_cn.html
)
-
[
Python API
](
http://paddlepaddle.org/documentation/docs/zh/1.
3
/api_cn/index_cn.html
)
新的API支持代码更少更简洁的程序
新的API支持代码更少更简洁的程序
-
[
贡献方式
](
http://paddlepaddle.org/documentation/docs/zh/1.
2
/advanced_usage/development/contribute_to_paddle/index_cn.html
)
-
[
贡献方式
](
http://paddlepaddle.org/documentation/docs/zh/1.
3
/advanced_usage/development/contribute_to_paddle/index_cn.html
)
欢迎您的贡献!
欢迎您的贡献!
...
...
cmake/external/mklml.cmake
浏览文件 @
a3f7ebd6
...
@@ -40,9 +40,7 @@ IF(WIN32)
...
@@ -40,9 +40,7 @@ IF(WIN32)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/mklml.dll
)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/mklml.dll
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.dll
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.dll
)
ELSE
()
ELSE
()
#TODO(intel-huying):
SET
(
MKLML_VER
"mklml_lnx_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
# Now enable Erf function in mklml library temporarily, it will be updated as offical version later.
SET
(
MKLML_VER
"VsErf_mklml_lnx_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
...
...
paddle/fluid/API.spec
浏览文件 @
a3f7ebd6
...
@@ -71,7 +71,7 @@ paddle.fluid.initializer.NumpyArrayInitializer.__init__ ArgSpec(args=['self', 'v
...
@@ -71,7 +71,7 @@ paddle.fluid.initializer.NumpyArrayInitializer.__init__ ArgSpec(args=['self', 'v
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None))
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'
], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32'
, None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'
, 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None
, None))
paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False))
paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, False))
paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False))
paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False))
paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,))
...
@@ -121,6 +121,7 @@ paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=
...
@@ -121,6 +121,7 @@ paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.sampled_softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'num_samples', 'num_true', 'remove_accidental_hits', 'use_customized_samples', 'customized_samples', 'customized_probabilities', 'seed'], varargs=None, keywords=None, defaults=(1, True, False, None, None, 0))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
a3f7ebd6
...
@@ -135,12 +135,15 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
...
@@ -135,12 +135,15 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
void
AppendMultiDevPass
(
const
BuildStrategy
&
strategy
)
{
void
AppendMultiDevPass
(
const
BuildStrategy
&
strategy
)
{
ir
::
Pass
*
multi_devices_pass
;
ir
::
Pass
*
multi_devices_pass
;
if
(
strategy_
.
is_distribution_
)
{
if
(
strategy_
.
is_distribution_
)
{
VLOG
(
3
)
<<
"multi device parameter server mode"
;
multi_devices_pass
=
AppendPass
(
"dist_multi_devices_pass"
).
get
();
multi_devices_pass
=
AppendPass
(
"dist_multi_devices_pass"
).
get
();
}
else
{
}
else
{
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
{
VLOG
(
3
)
<<
"multi devices collective mode with allreduce"
;
multi_devices_pass
=
multi_devices_pass
=
AppendPass
(
"allreduce_mode_multi_devices_pass"
).
get
();
AppendPass
(
"allreduce_mode_multi_devices_pass"
).
get
();
}
else
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
}
else
if
(
strategy
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
VLOG
(
3
)
<<
"multi deivces collective mode with reduce"
;
multi_devices_pass
=
AppendPass
(
"reduce_mode_multi_devices_pass"
).
get
();
multi_devices_pass
=
AppendPass
(
"reduce_mode_multi_devices_pass"
).
get
();
}
else
{
}
else
{
PADDLE_THROW
(
"Unknown reduce strategy."
);
PADDLE_THROW
(
"Unknown reduce strategy."
);
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
a3f7ebd6
...
@@ -937,9 +937,21 @@ void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
...
@@ -937,9 +937,21 @@ void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
}
}
void
DistSSAGraphBuilder
::
InsertPostprocessOps
(
ir
::
Graph
*
result
)
const
{
void
DistSSAGraphBuilder
::
InsertPostprocessOps
(
ir
::
Graph
*
result
)
const
{
if
(
need_broadcast_var_
||
// broad cast received parameters when training in parameter server mode.
(
UseGPU
()
&&
if
(
need_broadcast_var_
)
{
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
))
{
// There are 4 conditions:
// 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
// Need to broadcast received parameters to other GPU.
// 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
// broadcast received parameters to other GPU.
// 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
// broadcast received parameters to other scope.
// 4. CPU && Reduce: because all parameters share the same memory, did not
// broadcast received parameters.
if
(
!
UseGPU
()
&&
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
return
;
}
if
(
strategy_
.
fuse_broadcast_op_
)
{
if
(
strategy_
.
fuse_broadcast_op_
)
{
CreateFusedBroadcastOp
(
result
,
bcast_var_name_set_
);
CreateFusedBroadcastOp
(
result
,
bcast_var_name_set_
);
}
else
{
}
else
{
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
a3f7ebd6
...
@@ -66,7 +66,7 @@ set(COMMON_OP_DEPS ${OP_HEADER_DEPS})
...
@@ -66,7 +66,7 @@ set(COMMON_OP_DEPS ${OP_HEADER_DEPS})
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dynload_warpctc
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dynload_warpctc
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler tree2col
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler
sample_prob
tree2col
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions beam_search
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions beam_search
)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv prelu
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv prelu
)
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
a3f7ebd6
...
@@ -11,7 +11,6 @@ limitations under the License. */
...
@@ -11,7 +11,6 @@ limitations under the License. */
#pragma once
#pragma once
#include <glog/logging.h>
#include <glog/logging.h>
#include <algorithm>
#include <string>
#include <string>
#include <unordered_set>
#include <unordered_set>
#include <utility>
#include <utility>
...
@@ -25,7 +24,6 @@ limitations under the License. */
...
@@ -25,7 +24,6 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/float16.h"
#ifdef PADDLE_WITH_MKLDNN
#ifdef PADDLE_WITH_MKLDNN
...
@@ -303,28 +301,8 @@ template <typename T>
...
@@ -303,28 +301,8 @@ template <typename T>
struct
GeluFunctor
:
public
BaseActivationFunctor
<
T
>
{
struct
GeluFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
// Because the execute or device context can not be deliver here, it keep the
// marco for NVCC.
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
auto
x_data
=
x
.
data
();
auto
out_data
=
out
.
data
();
int
n
=
std
::
min
(
x
.
size
(),
out
.
size
());
std
::
memset
(
out_data
,
0
,
n
*
sizeof
(
T
));
math
::
CBlas
<
T
>::
AXPY
(
n
,
static_cast
<
T
>
(
M_SQRT1_2
),
x_data
,
1
,
out_data
,
1
);
math
::
CBlas
<
T
>::
VMERF
(
n
,
out_data
,
out_data
,
VML_LA
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
out_data
[
i
]
+=
static_cast
<
T
>
(
1
);
}
math
::
CBlas
<
T
>::
VMUL
(
n
,
x_data
,
out_data
,
out_data
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
out_data
[
i
]
*=
static_cast
<
T
>
(
0.5
);
}
#else
auto
temp
=
(
x
*
static_cast
<
T
>
(
M_SQRT1_2
)).
erf
();
auto
temp
=
(
x
*
static_cast
<
T
>
(
M_SQRT1_2
)).
erf
();
out
.
device
(
d
)
=
x
*
static_cast
<
T
>
(
0.5
)
*
(
static_cast
<
T
>
(
1
)
+
temp
);
out
.
device
(
d
)
=
x
*
static_cast
<
T
>
(
0.5
)
*
(
static_cast
<
T
>
(
1
)
+
temp
);
#endif
}
}
};
};
...
...
paddle/fluid/operators/beam_search_decode_op.h
浏览文件 @
a3f7ebd6
...
@@ -122,7 +122,7 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
...
@@ -122,7 +122,7 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
auto
cpu_place
=
std
::
unique_ptr
<
paddle
::
platform
::
CPUPlace
>
(
auto
cpu_place
=
std
::
unique_ptr
<
paddle
::
platform
::
CPUPlace
>
(
new
paddle
::
platform
::
CPUPlace
());
new
paddle
::
platform
::
CPUPlace
());
paddle
::
platform
::
CPUDeviceContext
cpu_ctx
(
*
cpu_place
.
get
()
);
paddle
::
platform
::
CPUDeviceContext
cpu_ctx
(
*
cpu_place
);
framework
::
LoD
lod
;
framework
::
LoD
lod
;
lod
.
push_back
(
source_level_lod
);
lod
.
push_back
(
source_level_lod
);
...
...
paddle/fluid/operators/detection/yolov3_loss_op.cc
浏览文件 @
a3f7ebd6
...
@@ -144,34 +144,40 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -144,34 +144,40 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"The ignore threshold to ignore confidence loss."
)
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
.
SetDefault
(
0.7
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator generate
yolov3 loss by
given predict result and ground
This operator generate
s yolov3 loss based on
given predict result and ground
truth boxes.
truth boxes.
The output of previous network is in shape [N, C, H, W], while H and W
The output of previous network is in shape [N, C, H, W], while H and W
should be the same,
specify the grid size, each grid point predict given
should be the same,
H and W specify the grid size, each grid point predict
number boxes, this given number is specified by anchors, it should be
given number boxes, this given number, which following will be represented as S,
half anchors length, which following will be represented as S. In the
is specified by the number of anchors, In the second dimension(the channel
second dimention(the channel dimention), C should be S * (class_num + 5),
dimension), C should be equal to S * (class_num + 5), class_num is the object
c
lass_num is the box categoriy number of source dataset(such as coco),
c
ategory number of source dataset(such as 80 in coco dataset), so in the
s
o in the second dimention, stores 4 box location coordinates x, y, w, h
s
econd(channel) dimension, apart from 4 box location coordinates x, y, w, h,
a
nd
confidence score of the box and class one-hot key of each anchor box.
a
lso includes
confidence score of the box and class one-hot key of each anchor box.
While the 4 location coordinates if $$tx, ty, tw, th$$
, the box predictions
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`
, the box predictions
correspnd to
:
should be as follows
:
$$
$$
b_x = \sigma(t_x) + c_x
b_x = \\sigma(t_x) + c_x
b_y = \sigma(t_y) + c_y
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
b_h = p_h e^{t_h}
$$
$$
While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
In the equation above, :math:`c_x, c_y` is the left top corner of current grid
is specified by anchors.
and :math:`p_w, p_h`
is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger th
e
n ignore
the max IoU should be 1, and if the anchor box has IoU bigger th
a
n ignore
thresh, the confidence score loss of this anchor box will be ignored.
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss,
Therefore, the yolov3 loss consist of three major parts, box location loss,
...
@@ -186,13 +192,13 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -186,13 +192,13 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
In order to trade off box coordinate losses between big boxes and small
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follow.
calculated as follow
s
.
$$
$$
weight_{box} = 2.0 - t_w * t_h
weight_{box} = 2.0 - t_w * t_h
$$
$$
Final loss will be represented as follow.
Final loss will be represented as follow
s
.
$$
$$
loss = (loss_{xy} + loss_{wh}) * weight_{box}
loss = (loss_{xy} + loss_{wh}) * weight_{box}
...
...
paddle/fluid/operators/lstm_op.h
浏览文件 @
a3f7ebd6
...
@@ -151,9 +151,10 @@ class LSTMKernel : public framework::OpKernel<T> {
...
@@ -151,9 +151,10 @@ class LSTMKernel : public framework::OpKernel<T> {
lstm_value
.
output_value
=
out_t
.
data
<
T
>
();
lstm_value
.
output_value
=
out_t
.
data
<
T
>
();
lstm_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstm_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstm_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
lstm_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
T
cell_clip
=
0.0
;
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
gate_act
,
device_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
cell_clip
,
cell_act
,
cand_act
);
gate_act
,
cell_act
,
cand_act
);
lstm_value
.
prev_state_value
=
lstm_value
.
state_value
;
lstm_value
.
prev_state_value
=
lstm_value
.
state_value
;
}
}
...
@@ -316,9 +317,10 @@ class LSTMGradKernel : public framework::OpKernel<T> {
...
@@ -316,9 +317,10 @@ class LSTMGradKernel : public framework::OpKernel<T> {
lstm_value
.
output_value
=
nullptr
;
lstm_value
.
output_value
=
nullptr
;
lstm_grad
.
state_active_grad
=
nullptr
;
lstm_grad
.
state_active_grad
=
nullptr
;
int
cur_batch_size
=
bend
-
bstart
;
int
cur_batch_size
=
bend
-
bstart
;
T
cell_clip
=
0.0
;
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstm_value
,
lstm_grad
,
frame_size
,
cur_batch_size
,
device_ctx
,
lstm_value
,
lstm_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
>
0
)
{
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
...
...
paddle/fluid/operators/lstmp_op.cc
浏览文件 @
a3f7ebd6
...
@@ -73,12 +73,6 @@ class LSTMPOp : public framework::OperatorWithKernel {
...
@@ -73,12 +73,6 @@ class LSTMPOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of LSTMP operator should not be null after "
"Input(C0) of LSTMP operator should not be null after "
"Input(H0) provided."
);
"Input(H0) provided."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
ctx
->
SetOutputDim
(
"OrderedP0"
,
{
h_dims
[
0
],
proj_dims
[
1
]});
}
}
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
...
@@ -180,11 +174,6 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -180,11 +174,6 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"This LoDTensor is obtained in the forward and used in the "
"This LoDTensor is obtained in the forward and used in the "
"backward."
)
"backward."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"OrderedP0"
,
"(Tensor) the projection of the initial hidden state "
"H0. This is a tensor with shape (N x P), where N is the "
"batch size and P is the hidden size."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_peepholes"
,
AddAttr
<
bool
>
(
"use_peepholes"
,
"(bool, defalut: True) "
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
"whether to enable diagonal/peephole connections."
)
...
@@ -193,6 +182,16 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -193,6 +182,16 @@ class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, defalut: False) "
"(bool, defalut: False) "
"whether to compute reversed LSTMP."
)
"whether to compute reversed LSTMP."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
float
>
(
"cell_clip"
,
"(float, defalut: 0.0) "
"Clip for Tensor for cell state tensor when clip value is "
"greater than 0.0"
)
.
SetDefault
(
0.0
);
AddAttr
<
float
>
(
"proj_clip"
,
"(float, defalut: 0.0) "
"Clip for Tensor for projection tensor when clip value is "
"greater than 0.0"
)
.
SetDefault
(
0.0
);
AddAttr
<
std
::
string
>
(
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"gate_activation"
,
"(string, default: sigmoid)"
"(string, default: sigmoid)"
...
...
paddle/fluid/operators/lstmp_op.h
浏览文件 @
a3f7ebd6
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <string>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
...
@@ -21,17 +22,50 @@ limitations under the License. */
...
@@ -21,17 +22,50 @@ limitations under the License. */
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
using
platform
::
Transform
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
class
_ClipFunctor
{
public:
explicit
_ClipFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
if
(
x
<
min_
)
return
min_
;
else
if
(
x
>
max_
)
return
max_
;
else
return
x
;
}
private:
T
min_
;
T
max_
;
};
template
<
typename
T
>
class
_ClipGradFunctor
{
public:
explicit
_ClipGradFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
,
const
T
&
y
)
const
{
return
(
y
>
min_
&&
y
<
max_
)
?
x
:
0
;
}
private:
T
min_
;
T
max_
;
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
const
framework
::
Tensor
&
src
,
...
@@ -67,9 +101,11 @@ class LSTMPKernel : public framework::OpKernel<T> {
...
@@ -67,9 +101,11 @@ class LSTMPKernel : public framework::OpKernel<T> {
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
ordered_proj0
=
ctx
.
Output
<
Tensor
>
(
"OrderedP0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
proj_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"proj_clip"
));
auto
cell_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"cell_clip"
));
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
proj_out
=
ctx
.
Output
<
LoDTensor
>
(
"Projection"
);
auto
*
proj_out
=
ctx
.
Output
<
LoDTensor
>
(
"Projection"
);
...
@@ -110,6 +146,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
...
@@ -110,6 +146,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
}
}
lstmp_value
.
prev_state_value
=
nullptr
;
lstmp_value
.
prev_state_value
=
nullptr
;
Tensor
ordered_c0
;
Tensor
ordered_c0
;
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
framework
::
Vector
<
size_t
>
order
(
batch_gate
->
lod
()[
2
]);
...
@@ -169,18 +206,9 @@ class LSTMPKernel : public framework::OpKernel<T> {
...
@@ -169,18 +206,9 @@ class LSTMPKernel : public framework::OpKernel<T> {
// Since the batch computing for LSTMP reorders the input sequence
// Since the batch computing for LSTMP reorders the input sequence
// according to their length. The initialized hidden state also needs
// according to their length. The initialized hidden state also needs
// to reorder.
// to reorder.
Tensor
ordered_h0
;
ordered_proj0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
hidden_t0
,
order
,
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
hidden_t0
,
order
,
&
ordered_h0
,
true
);
&
ordered_h0
,
true
);
blas
.
MatMul
(
ordered_h0
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
blas
.
MatMul
(
ordered_h0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
ordered_proj0
,
static_cast
<
T
>
(
0.0
));
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
ActCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
);
}
blas
.
MatMul
(
*
ordered_proj0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
}
...
@@ -189,8 +217,8 @@ class LSTMPKernel : public framework::OpKernel<T> {
...
@@ -189,8 +217,8 @@ class LSTMPKernel : public framework::OpKernel<T> {
lstmp_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstmp_value
.
state_value
=
cell_t
.
data
<
T
>
();
lstmp_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
lstmp_value
.
state_active_value
=
cell_pre_act_t
.
data
<
T
>
();
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
LstmUnitFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
frame_size
,
cur_batch_size
,
gate_act
,
device_ctx
,
lstmp_value
,
frame_size
,
cur_batch_size
,
cell_clip
,
cell_act
,
cand_act
);
gate_act
,
cell_act
,
cand_act
);
lstmp_value
.
prev_state_value
=
lstmp_value
.
state_value
;
lstmp_value
.
prev_state_value
=
lstmp_value
.
state_value
;
blas
.
MatMul
(
hidden_t
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
blas
.
MatMul
(
hidden_t
,
false
,
*
proj_weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
proj_t
,
static_cast
<
T
>
(
0.0
));
&
proj_t
,
static_cast
<
T
>
(
0.0
));
...
@@ -198,6 +226,14 @@ class LSTMPKernel : public framework::OpKernel<T> {
...
@@ -198,6 +226,14 @@ class LSTMPKernel : public framework::OpKernel<T> {
auto
proj_t_dev
=
EigenMatrix
<
T
>::
From
(
proj_t
);
auto
proj_t_dev
=
EigenMatrix
<
T
>::
From
(
proj_t
);
ActCompute
(
cell_act
,
place
,
proj_t_dev
,
proj_t_dev
);
ActCompute
(
cell_act
,
place
,
proj_t_dev
,
proj_t_dev
);
}
}
if
(
proj_clip
&&
proj_clip
>
0.0
)
{
T
*
x_data
=
proj_t
.
data
<
T
>
();
int64_t
numel
=
proj_t
.
numel
();
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
x_data
,
x_data
+
numel
,
x_data
,
_ClipFunctor
<
T
>
(
-
1.0
*
proj_clip
,
proj_clip
));
}
}
}
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
...
@@ -239,6 +275,9 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
...
@@ -239,6 +275,9 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
auto
*
proj_out
=
ctx
.
Input
<
LoDTensor
>
(
"Projection"
);
auto
*
proj_out
=
ctx
.
Input
<
LoDTensor
>
(
"Projection"
);
auto
*
cell_out
=
ctx
.
Input
<
LoDTensor
>
(
"Cell"
);
auto
*
cell_out
=
ctx
.
Input
<
LoDTensor
>
(
"Cell"
);
auto
proj_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"proj_clip"
));
auto
cell_clip
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"cell_clip"
));
auto
*
batch_gate
=
ctx
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_gate
=
ctx
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_cell_pre_act
=
ctx
.
Input
<
LoDTensor
>
(
"BatchCellPreAct"
);
auto
*
batch_cell_pre_act
=
ctx
.
Input
<
LoDTensor
>
(
"BatchCellPreAct"
);
auto
*
batch_hidden
=
ctx
.
Input
<
LoDTensor
>
(
"BatchHidden"
);
auto
*
batch_hidden
=
ctx
.
Input
<
LoDTensor
>
(
"BatchHidden"
);
...
@@ -253,7 +292,6 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
...
@@ -253,7 +292,6 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
ordered_proj0
=
ctx
.
Input
<
Tensor
>
(
"OrderedP0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
h0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"H0"
));
auto
*
h0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"H0"
));
...
@@ -363,6 +401,17 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
...
@@ -363,6 +401,17 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
Tensor
cur_proj
=
batch_proj
.
Slice
(
bstart
,
bend
);
Tensor
cur_proj
=
batch_proj
.
Slice
(
bstart
,
bend
);
Tensor
proj_g
=
batch_proj_g
.
Slice
(
bstart
,
bend
);
Tensor
proj_g
=
batch_proj_g
.
Slice
(
bstart
,
bend
);
if
(
proj_clip
&&
proj_clip
>
0.0
)
{
T
*
dx_data
=
proj_g
.
data
<
T
>
();
T
*
x_data
=
cur_proj
.
data
<
T
>
();
int64_t
numel
=
proj_g
.
numel
();
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
dx_data
,
dx_data
+
numel
,
x_data
,
dx_data
,
_ClipGradFunctor
<
T
>
(
-
1.0
*
proj_clip
,
proj_clip
));
}
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
cur_proj_dev
=
EigenMatrix
<
T
>::
From
(
cur_proj
);
auto
cur_proj_dev
=
EigenMatrix
<
T
>::
From
(
cur_proj
);
auto
proj_g_dev
=
EigenMatrix
<
T
>::
From
(
proj_g
);
auto
proj_g_dev
=
EigenMatrix
<
T
>::
From
(
proj_g
);
...
@@ -412,7 +461,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
...
@@ -412,7 +461,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
LstmUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
device_ctx
,
lstmp_value
,
lstmp_grad
,
frame_size
,
cur_batch_size
,
device_ctx
,
lstmp_value
,
lstmp_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
cell_clip
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
>
0
)
{
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
...
@@ -431,32 +480,15 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
...
@@ -431,32 +480,15 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
h0
,
order
,
ReorderInitState
<
DeviceContext
,
T
>
(
device_ctx
,
*
h0
,
order
,
&
ordered_h0
,
true
);
&
ordered_h0
,
true
);
if
(
weight_g
)
{
if
(
weight_g
)
{
blas
.
MatMul
(
*
ordered_proj0
,
true
,
gate_g
,
false
,
blas
.
MatMul
(
ordered_h0
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
)
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
if
(
h0
&&
(
h0_g
||
proj_weight_g
))
{
if
(
h0
&&
(
h0_g
||
proj_weight_g
))
{
ordered_h0_g
.
mutable_data
<
T
>
(
h0_g
->
dims
(),
ctx
.
GetPlace
());
ordered_h0_g
.
mutable_data
<
T
>
(
h0_g
->
dims
(),
ctx
.
GetPlace
());
Tensor
proj0_g
;
proj0_g
.
Resize
({
in_dims
[
0
],
proj_weight
->
dims
()[
1
]});
proj0_g
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
blas
.
MatMul
(
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
blas
.
MatMul
(
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
proj0_g
,
static_cast
<
T
>
(
0.0
));
if
(
proj_act
!=
math
::
detail
::
ActivationType
::
kIdentity
)
{
auto
proj0_dev
=
EigenMatrix
<
T
>::
From
(
*
ordered_proj0
);
auto
proj0_g_dev
=
EigenMatrix
<
T
>::
From
(
proj0_g
);
ActGradCompute
(
cell_act
,
place
,
proj0_dev
,
proj0_dev
,
proj0_g_dev
,
proj0_g_dev
);
}
if
(
h0_g
)
{
blas
.
MatMul
(
proj0_g
,
false
,
*
proj_weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
}
}
if
(
proj_weight_g
)
{
blas
.
MatMul
(
ordered_h0
,
true
,
proj0_g
,
false
,
static_cast
<
T
>
(
1.0
),
proj_weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
a3f7ebd6
...
@@ -39,6 +39,7 @@ math_library(cross_entropy)
...
@@ -39,6 +39,7 @@ math_library(cross_entropy)
math_library
(
cos_sim_functor
)
math_library
(
cos_sim_functor
)
math_library
(
depthwise_conv DEPS cub
)
math_library
(
depthwise_conv DEPS cub
)
math_library
(
im2col
)
math_library
(
im2col
)
math_library
(
sample_prob
)
math_library
(
sampler
)
math_library
(
sampler
)
math_library
(
gru_compute DEPS activation_functions math_function
)
math_library
(
gru_compute DEPS activation_functions math_function
)
...
...
paddle/fluid/operators/math/blas.h
浏览文件 @
a3f7ebd6
...
@@ -184,9 +184,6 @@ class Blas {
...
@@ -184,9 +184,6 @@ class Blas {
template
<
typename
T
>
template
<
typename
T
>
void
VINV
(
int
n
,
const
T
*
a
,
T
*
y
)
const
;
void
VINV
(
int
n
,
const
T
*
a
,
T
*
y
)
const
;
template
<
typename
T
>
void
VMERF
(
int
n
,
const
T
*
a
,
T
*
y
,
int64_t
mode
)
const
;
private:
private:
const
DeviceContext
&
context_
;
const
DeviceContext
&
context_
;
};
};
...
@@ -293,11 +290,6 @@ class BlasT : private Blas<DeviceContext> {
...
@@ -293,11 +290,6 @@ class BlasT : private Blas<DeviceContext> {
Base
()
->
template
VINV
<
T
>(
args
...);
Base
()
->
template
VINV
<
T
>(
args
...);
}
}
template
<
typename
...
ARGS
>
void
VMERF
(
ARGS
...
args
)
const
{
Base
()
->
template
VMERF
<
T
>(
args
...);
}
private:
private:
const
Blas
<
DeviceContext
>*
Base
()
const
{
const
Blas
<
DeviceContext
>*
Base
()
const
{
return
static_cast
<
const
Blas
<
DeviceContext
>*>
(
this
);
return
static_cast
<
const
Blas
<
DeviceContext
>*>
(
this
);
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
a3f7ebd6
...
@@ -123,11 +123,6 @@ struct CBlas<float> {
...
@@ -123,11 +123,6 @@ struct CBlas<float> {
static
void
VINV
(
ARGS
...
args
)
{
static
void
VINV
(
ARGS
...
args
)
{
platform
::
dynload
::
vsInv
(
args
...);
platform
::
dynload
::
vsInv
(
args
...);
}
}
template
<
typename
...
ARGS
>
static
void
VMERF
(
ARGS
...
args
)
{
platform
::
dynload
::
vmsErf
(
args
...);
}
};
};
template
<
>
template
<
>
...
@@ -228,11 +223,6 @@ struct CBlas<double> {
...
@@ -228,11 +223,6 @@ struct CBlas<double> {
static
void
VINV
(
ARGS
...
args
)
{
static
void
VINV
(
ARGS
...
args
)
{
platform
::
dynload
::
vdInv
(
args
...);
platform
::
dynload
::
vdInv
(
args
...);
}
}
template
<
typename
...
ARGS
>
static
void
VMERF
(
ARGS
...
args
)
{
platform
::
dynload
::
vmdErf
(
args
...);
}
};
};
#else
#else
...
@@ -635,19 +625,6 @@ void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
...
@@ -635,19 +625,6 @@ void Blas<DeviceContext>::VINV(int n, const T *a, T *y) const {
#endif
#endif
}
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CPUDeviceContext
>::
VMERF
(
int
n
,
const
T
*
a
,
T
*
y
,
int64_t
mode
)
const
{
#ifdef PADDLE_WITH_MKLML
CBlas
<
T
>::
VMERF
(
n
,
a
,
y
,
mode
);
#else
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
std
::
erf
(
a
[
i
]);
}
#endif
}
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/math/detail/lstm_cpu_kernel.h
浏览文件 @
a3f7ebd6
...
@@ -32,7 +32,8 @@ namespace detail {
...
@@ -32,7 +32,8 @@ namespace detail {
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
naive_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
void
naive_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
T
r_value_in
;
T
r_value_in
;
...
@@ -67,7 +68,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -67,7 +68,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value_in
[
i
]
=
r_value_in
;
value_in
[
i
]
=
r_value_in
;
value_ig
[
i
]
=
r_value_ig
;
value_ig
[
i
]
=
r_value_ig
;
...
@@ -82,7 +83,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -82,7 +83,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
naive_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
void
naive_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
T
r_value_in
;
T
r_value_in
;
...
@@ -135,7 +136,7 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -135,7 +136,7 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
grad_in
[
i
]
=
r_grad_in
;
grad_in
[
i
]
=
r_grad_in
;
grad_ig
[
i
]
=
r_grad_ig
;
grad_ig
[
i
]
=
r_grad_ig
;
...
@@ -154,7 +155,8 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -154,7 +155,8 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
avx_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
void
avx_lstm_forward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
#ifdef __AVX__
#ifdef __AVX__
...
@@ -194,7 +196,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -194,7 +196,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value_in
[
i
]
=
r_value_in
;
value_in
[
i
]
=
r_value_in
;
value_ig
[
i
]
=
r_value_ig
;
value_ig
[
i
]
=
r_value_ig
;
...
@@ -210,7 +212,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -210,7 +212,7 @@ void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
avx_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
void
avx_lstm_backward_one_sequence
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
#ifdef __AVX__
#ifdef __AVX__
...
@@ -268,7 +270,7 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -268,7 +270,7 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
grad_in
[
i
]
=
r_grad_in
;
grad_in
[
i
]
=
r_grad_in
;
grad_ig
[
i
]
=
r_grad_ig
;
grad_ig
[
i
]
=
r_grad_ig
;
...
@@ -292,27 +294,27 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
...
@@ -292,27 +294,27 @@ void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
cpu_lstm_forward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
void
cpu_lstm_forward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
ActivationType
active_node
,
ActivationType
active_gat
e
,
T
cell_clip
,
ActivationType
active_nod
e
,
ActivationType
active_state
)
{
ActivationType
active_
gate
,
ActivationType
active_
state
)
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
avx_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
active_node
,
avx_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
cell_clip
,
active_gate
,
active_state
);
active_
node
,
active_
gate
,
active_state
);
}
else
{
}
else
{
naive_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
active_node
,
naive_lstm_forward_one_sequence
<
T
>
(
op
,
value
,
frame_size
,
cell_clip
,
active_gate
,
active_state
);
active_
node
,
active_
gate
,
active_state
);
}
}
}
}
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
cpu_lstm_backward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
void
cpu_lstm_backward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
ActivationType
active_node
,
int
frame_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
if
(
Op
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
std
::
is_same
<
T
,
float
>::
value
))
{
avx_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
active_node
,
avx_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
cell_clip
,
active_gate
,
active_state
);
active_
node
,
active_
gate
,
active_state
);
}
else
{
}
else
{
naive_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
naive_lstm_backward_one_sequence
<
T
>
(
op
,
value
,
grad
,
frame_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
active_node
,
active_gate
,
active_state
);
}
}
}
}
...
...
paddle/fluid/operators/math/detail/lstm_gpu_kernel.h
浏览文件 @
a3f7ebd6
...
@@ -31,7 +31,8 @@ namespace detail {
...
@@ -31,7 +31,8 @@ namespace detail {
*/
*/
template
<
class
T
,
class
Op
,
bool
is_batch
>
template
<
class
T
,
class
Op
,
bool
is_batch
>
__global__
void
KeLstmForward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
__global__
void
KeLstmForward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -72,7 +73,7 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
...
@@ -72,7 +73,7 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_prev_state
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_state
,
&
r_state_atv
,
&
r_out
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
active_node
,
active_gate
,
active_state
);
&
cell_clip
,
active_node
,
active_gate
,
active_state
);
value
.
gate_value
[
frame_idx
]
=
r_value_in
;
value
.
gate_value
[
frame_idx
]
=
r_value_in
;
value
.
gate_value
[
frame_idx
+
frame_size
]
=
r_value_ig
;
value
.
gate_value
[
frame_idx
+
frame_size
]
=
r_value_ig
;
...
@@ -91,7 +92,8 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
...
@@ -91,7 +92,8 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frame_size,
template
<
class
T
,
class
Op
,
bool
is_batch
>
template
<
class
T
,
class
Op
,
bool
is_batch
>
__global__
void
KeLstmBackward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
__global__
void
KeLstmBackward
(
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -148,8 +150,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
...
@@ -148,8 +150,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_grad_in
,
&
r_grad_ig
,
op
(
&
r_value_in
,
&
r_value_ig
,
&
r_value_fg
,
&
r_value_og
,
&
r_grad_in
,
&
r_grad_ig
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_grad_fg
,
&
r_grad_og
,
&
r_prev_state
,
&
r_prev_state_grad
,
&
r_state
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_state_grad
,
&
r_state_atv
,
&
r_output_grad
,
&
r_checkI
,
&
r_checkF
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
active_node
,
&
r_checkO
,
&
r_checkIGrad
,
&
r_checkFGrad
,
&
r_checkOGrad
,
&
cell_clip
,
active_gate
,
active_state
);
active_
node
,
active_
gate
,
active_state
);
grad
.
gate_grad
[
frame_idx
]
=
r_grad_in
;
grad
.
gate_grad
[
frame_idx
]
=
r_grad_in
;
grad
.
gate_grad
[
frame_idx
+
frame_size
]
=
r_grad_ig
;
grad
.
gate_grad
[
frame_idx
+
frame_size
]
=
r_grad_ig
;
...
@@ -185,8 +187,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
...
@@ -185,8 +187,8 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
gpu_lstm_forward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
void
gpu_lstm_forward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
,
ActivationType
active_gat
e
,
T
cell_clip
,
ActivationType
active_nod
e
,
ActivationType
active_state
)
{
ActivationType
active_
gate
,
ActivationType
active_
state
)
{
dim3
threads
;
dim3
threads
;
dim3
grid
;
dim3
grid
;
if
(
batch_size
==
1
)
{
if
(
batch_size
==
1
)
{
...
@@ -205,12 +207,12 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
...
@@ -205,12 +207,12 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
if
(
batch_size
==
1
)
{
if
(
batch_size
==
1
)
{
KeLstmForward
<
T
,
Op
,
KeLstmForward
<
T
,
Op
,
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
frame_size
,
batch_size
,
active_node
,
active_gate
,
op
,
value
,
frame_size
,
batch_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
active_state
);
}
else
{
}
else
{
KeLstmForward
<
T
,
Op
,
KeLstmForward
<
T
,
Op
,
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
frame_size
,
batch_size
,
active_node
,
active_gate
,
op
,
value
,
frame_size
,
batch_size
,
cell_clip
,
active_node
,
active_gate
,
active_state
);
active_state
);
}
}
}
}
...
@@ -218,7 +220,7 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
...
@@ -218,7 +220,7 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
template
<
class
T
,
class
Op
>
template
<
class
T
,
class
Op
>
void
gpu_lstm_backward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
void
gpu_lstm_backward
(
const
platform
::
DeviceContext
&
context
,
Op
op
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
dim3
threads
;
dim3
threads
;
...
@@ -239,13 +241,13 @@ void gpu_lstm_backward(const platform::DeviceContext& context, Op op,
...
@@ -239,13 +241,13 @@ void gpu_lstm_backward(const platform::DeviceContext& context, Op op,
if
(
batch_size
==
1
)
{
if
(
batch_size
==
1
)
{
KeLstmBackward
<
T
,
Op
,
KeLstmBackward
<
T
,
Op
,
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
grad
,
frame_size
,
batch_size
,
active_node
,
active_gat
e
,
op
,
value
,
grad
,
frame_size
,
batch_size
,
cell_clip
,
active_nod
e
,
active_state
);
active_
gate
,
active_
state
);
}
else
{
}
else
{
KeLstmBackward
<
T
,
Op
,
KeLstmBackward
<
T
,
Op
,
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
op
,
value
,
grad
,
frame_size
,
batch_size
,
active_node
,
active_gat
e
,
op
,
value
,
grad
,
frame_size
,
batch_size
,
cell_clip
,
active_nod
e
,
active_state
);
active_
gate
,
active_
state
);
}
}
}
}
...
...
paddle/fluid/operators/math/detail/lstm_kernel.h
浏览文件 @
a3f7ebd6
...
@@ -29,7 +29,7 @@ class lstm {
...
@@ -29,7 +29,7 @@ class lstm {
public:
public:
HOSTDEVICE
void
operator
()(
T
*
value_in
,
T
*
value_ig
,
T
*
value_fg
,
T
*
value_og
,
HOSTDEVICE
void
operator
()(
T
*
value_in
,
T
*
value_ig
,
T
*
value_fg
,
T
*
value_og
,
T
*
prev_state
,
T
*
state
,
T
*
state_atv
,
T
*
output
,
T
*
prev_state
,
T
*
state
,
T
*
state_atv
,
T
*
output
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
...
@@ -37,6 +37,15 @@ class lstm {
...
@@ -37,6 +37,15 @@ class lstm {
*
value_ig
=
activation
(
*
value_ig
+
(
*
prev_state
)
*
(
*
checkI
),
active_gate
);
*
value_ig
=
activation
(
*
value_ig
+
(
*
prev_state
)
*
(
*
checkI
),
active_gate
);
*
value_fg
=
activation
(
*
value_fg
+
(
*
prev_state
)
*
(
*
checkF
),
active_gate
);
*
value_fg
=
activation
(
*
value_fg
+
(
*
prev_state
)
*
(
*
checkF
),
active_gate
);
*
state
=
(
*
value_in
)
*
(
*
value_ig
)
+
(
*
prev_state
)
*
(
*
value_fg
);
*
state
=
(
*
value_in
)
*
(
*
value_ig
)
+
(
*
prev_state
)
*
(
*
value_fg
);
if
(
*
cell_clip
>
0.0
)
{
if
(
*
state
<
-
1.0
*
(
*
cell_clip
))
{
*
state
=
-
1.0
*
(
*
cell_clip
);
}
if
(
*
state
>
*
cell_clip
)
{
*
state
=
*
cell_clip
;
}
}
*
value_og
=
activation
(
*
value_og
+
(
*
state
)
*
(
*
checkO
),
active_gate
);
*
value_og
=
activation
(
*
value_og
+
(
*
state
)
*
(
*
checkO
),
active_gate
);
*
state_atv
=
activation
(
*
state
,
active_state
);
*
state_atv
=
activation
(
*
state
,
active_state
);
*
output
=
(
*
value_og
)
*
(
*
state_atv
);
*
output
=
(
*
value_og
)
*
(
*
state_atv
);
...
@@ -52,7 +61,7 @@ class lstm {
...
@@ -52,7 +61,7 @@ class lstm {
__m256
*
value_fg
,
__m256
*
value_og
,
__m256
*
value_fg
,
__m256
*
value_og
,
__m256
*
prev_state
,
__m256
*
state
,
__m256
*
prev_state
,
__m256
*
state
,
__m256
*
state_atv
,
__m256
*
output
,
__m256
*
checkI
,
__m256
*
state_atv
,
__m256
*
output
,
__m256
*
checkI
,
__m256
*
checkF
,
__m256
*
checkO
,
__m256
*
checkF
,
__m256
*
checkO
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
...
@@ -65,6 +74,13 @@ class lstm {
...
@@ -65,6 +74,13 @@ class lstm {
active_gate
);
active_gate
);
*
state
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
value_in
,
*
value_ig
),
*
state
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
value_in
,
*
value_ig
),
_mm256_mul_ps
(
*
prev_state
,
*
value_fg
));
_mm256_mul_ps
(
*
prev_state
,
*
value_fg
));
if
(
*
cell_clip
>
0.0
f
)
{
__m256
min
=
_mm256_set1_ps
(
0.0
f
-
*
cell_clip
);
__m256
max
=
_mm256_set1_ps
(
*
cell_clip
);
*
state
=
_mm256_min_ps
(
max
,
*
state
);
*
state
=
_mm256_max_ps
(
min
,
*
state
);
}
*
value_og
=
activation
(
*
value_og
=
activation
(
_mm256_add_ps
(
*
value_og
,
_mm256_mul_ps
(
*
state
,
*
checkO
)),
active_gate
);
_mm256_add_ps
(
*
value_og
,
_mm256_mul_ps
(
*
state
,
*
checkO
)),
active_gate
);
*
state_atv
=
activation
(
*
state
,
active_state
);
*
state_atv
=
activation
(
*
state
,
active_state
);
...
@@ -86,15 +102,26 @@ class lstm {
...
@@ -86,15 +102,26 @@ class lstm {
T
*
prev_state
,
T
*
prev_state_grad
,
T
*
state
,
T
*
prev_state
,
T
*
prev_state_grad
,
T
*
state
,
T
*
state_grad
,
T
*
state_atv
,
T
*
output_grad
,
T
*
state_grad
,
T
*
state_atv
,
T
*
output_grad
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
checkIGrad
,
T
*
checkI
,
T
*
checkF
,
T
*
checkO
,
T
*
checkIGrad
,
T
*
checkFGrad
,
T
*
checkOGrad
,
T
*
checkFGrad
,
T
*
checkOGrad
,
T
*
cell_clip
,
ActivationType
active_node
,
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_state
)
{
*
grad_og
=
*
grad_og
=
activation
((
*
output_grad
)
*
(
*
state_atv
),
*
value_og
,
active_gate
);
activation
((
*
output_grad
)
*
(
*
state_atv
),
*
value_og
,
active_gate
);
if
(
*
cell_clip
>
0.0
f
)
{
if
(
*
state
>=
(
*
cell_clip
)
||
*
state
<=
(
0.0
f
-
(
*
cell_clip
)))
{
*
state_grad
=
0.0
f
;
}
else
{
*
state_grad
+=
activation
((
*
output_grad
)
*
(
*
value_og
),
*
state_atv
,
active_state
)
+
(
*
grad_og
)
*
(
*
checkO
);
}
}
else
{
*
state_grad
+=
*
state_grad
+=
activation
((
*
output_grad
)
*
(
*
value_og
),
*
state_atv
,
active_state
)
+
activation
((
*
output_grad
)
*
(
*
value_og
),
*
state_atv
,
active_state
)
+
(
*
grad_og
)
*
(
*
checkO
);
(
*
grad_og
)
*
(
*
checkO
);
}
*
grad_in
=
activation
((
*
state_grad
)
*
(
*
value_ig
),
*
value_in
,
active_node
);
*
grad_in
=
activation
((
*
state_grad
)
*
(
*
value_ig
),
*
value_in
,
active_node
);
*
grad_ig
=
activation
((
*
state_grad
)
*
(
*
value_in
),
*
value_ig
,
active_gate
);
*
grad_ig
=
activation
((
*
state_grad
)
*
(
*
value_in
),
*
value_ig
,
active_gate
);
*
grad_fg
=
*
grad_fg
=
...
@@ -117,15 +144,24 @@ class lstm {
...
@@ -117,15 +144,24 @@ class lstm {
__m256
*
prev_state
,
__m256
*
prev_state_grad
,
__m256
*
state
,
__m256
*
prev_state
,
__m256
*
prev_state_grad
,
__m256
*
state
,
__m256
*
state_grad
,
__m256
*
state_atv
,
__m256
*
output_grad
,
__m256
*
state_grad
,
__m256
*
state_atv
,
__m256
*
output_grad
,
__m256
*
checkI
,
__m256
*
checkF
,
__m256
*
checkO
,
__m256
*
checkIGrad
,
__m256
*
checkI
,
__m256
*
checkF
,
__m256
*
checkO
,
__m256
*
checkIGrad
,
__m256
*
checkFGrad
,
__m256
*
checkOGrad
,
ActivationType
active_node
,
__m256
*
checkFGrad
,
__m256
*
checkOGrad
,
T
*
cell_clip
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
ActivationType
active_node
,
ActivationType
active_gate
,
ActivationType
active_state
)
{
*
grad_og
=
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
state_atv
),
*
value_og
,
*
grad_og
=
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
state_atv
),
*
value_og
,
active_gate
);
active_gate
);
if
(
*
cell_clip
>
0.0
f
)
{
T
*
state_
=
reinterpret_cast
<
T
*>
(
state
);
if
(
*
state_
>=
(
*
cell_clip
)
||
*
state_
<=
(
0.0
f
-
(
*
cell_clip
)))
{
*
state_grad
=
_mm256_set1_ps
(
0.0
f
);
}
else
{
*
state_grad
=
*
state_grad
=
_mm256_add_ps
(
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
value_og
),
_mm256_add_ps
(
activation
(
_mm256_mul_ps
(
*
output_grad
,
*
value_og
),
*
state_atv
,
active_state
),
*
state_atv
,
active_state
),
*
state_grad
);
*
state_grad
);
*
state_grad
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
grad_og
,
*
checkO
),
*
state_grad
);
*
state_grad
=
_mm256_add_ps
(
_mm256_mul_ps
(
*
grad_og
,
*
checkO
),
*
state_grad
);
}
}
*
grad_in
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_ig
),
*
value_in
,
*
grad_in
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_ig
),
*
value_in
,
active_node
);
active_node
);
*
grad_ig
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_in
),
*
value_ig
,
*
grad_ig
=
activation
(
_mm256_mul_ps
(
*
state_grad
,
*
value_in
),
*
value_ig
,
...
...
paddle/fluid/operators/math/lstm_compute.cc
浏览文件 @
a3f7ebd6
...
@@ -24,12 +24,12 @@ template <class T>
...
@@ -24,12 +24,12 @@ template <class T>
struct
LstmUnitFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
LstmUnitFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
const
detail
::
ActivationType
&
cand_act
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
detail
::
cpu_lstm_forward
(
detail
::
forward
::
lstm
<
T
>
(),
value
,
frame_size
,
detail
::
cpu_lstm_forward
(
detail
::
forward
::
lstm
<
T
>
(),
value
,
frame_size
,
cand_act
,
gate_act
,
cell_act
);
c
ell_clip
,
c
and_act
,
gate_act
,
cell_act
);
value
.
gate_value
+=
frame_size
*
4
;
value
.
gate_value
+=
frame_size
*
4
;
value
.
state_value
+=
frame_size
;
value
.
state_value
+=
frame_size
;
value
.
state_active_value
+=
frame_size
;
value
.
state_active_value
+=
frame_size
;
...
@@ -45,13 +45,14 @@ template <class T>
...
@@ -45,13 +45,14 @@ template <class T>
struct
LstmUnitGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
struct
LstmUnitGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
const
detail
::
ActivationType
&
cand_act
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
detail
::
cpu_lstm_backward
(
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
detail
::
cpu_lstm_backward
(
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
frame_size
,
cand_act
,
gate_act
,
cell_act
);
frame_size
,
cell_clip
,
cand_act
,
gate_act
,
cell_act
);
value
.
gate_value
+=
frame_size
*
4
;
value
.
gate_value
+=
frame_size
*
4
;
value
.
state_value
+=
frame_size
;
value
.
state_value
+=
frame_size
;
...
...
paddle/fluid/operators/math/lstm_compute.cu
浏览文件 @
a3f7ebd6
...
@@ -24,12 +24,12 @@ template <class T>
...
@@ -24,12 +24,12 @@ template <class T>
struct
LstmUnitFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
LstmUnitFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
const
detail
::
ActivationType
&
cand_act
)
{
detail
::
gpu_lstm_forward
<
T
>
(
context
,
detail
::
forward
::
lstm
<
T
>
(),
value
,
detail
::
gpu_lstm_forward
<
T
>
(
context
,
detail
::
forward
::
lstm
<
T
>
(),
value
,
frame_size
,
batch_size
,
c
and_act
,
gate
_act
,
frame_size
,
batch_size
,
c
ell_clip
,
cand
_act
,
cell_act
);
gate_act
,
cell_act
);
}
}
};
};
...
@@ -37,13 +37,13 @@ template <class T>
...
@@ -37,13 +37,13 @@ template <class T>
struct
LstmUnitGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
struct
LstmUnitGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
)
{
const
detail
::
ActivationType
&
cand_act
)
{
detail
::
gpu_lstm_backward
(
context
,
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
detail
::
gpu_lstm_backward
(
context
,
detail
::
backward
::
lstm
<
T
>
(),
value
,
grad
,
frame_size
,
batch_size
,
c
and_act
,
gate
_act
,
frame_size
,
batch_size
,
c
ell_clip
,
cand
_act
,
cell_act
);
gate_act
,
cell_act
);
}
}
};
};
...
...
paddle/fluid/operators/math/lstm_compute.h
浏览文件 @
a3f7ebd6
...
@@ -50,7 +50,7 @@ template <typename DeviceContext, typename T>
...
@@ -50,7 +50,7 @@ template <typename DeviceContext, typename T>
class
LstmUnitFunctor
{
class
LstmUnitFunctor
{
public:
public:
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
);
const
detail
::
ActivationType
&
cand_act
);
...
@@ -61,7 +61,7 @@ class LstmUnitGradFunctor {
...
@@ -61,7 +61,7 @@ class LstmUnitGradFunctor {
public:
public:
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
static
void
compute
(
const
DeviceContext
&
context
,
LstmMetaValue
<
T
>
value
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
LstmMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
&
gate_act
,
T
cell_clip
,
const
detail
::
ActivationType
&
gate_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cell_act
,
const
detail
::
ActivationType
&
cand_act
);
const
detail
::
ActivationType
&
cand_act
);
};
};
...
...
paddle/fluid/operators/math/sample_prob.cc
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/sample_prob.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
class
SampleWithProb
<
platform
::
CPUDeviceContext
,
float
>;
template
class
SampleWithProb
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/sample_prob.cu
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <thrust/random.h>
#include <thrust/sort.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sample_prob.h"
#include "paddle/fluid/operators/math/sampler.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__device__
T
gpu_adjust_prob
(
const
T
prob
,
const
int
num_samples
,
const
int
num_tries
)
{
if
(
num_samples
==
num_tries
)
{
return
prob
*
num_samples
;
}
else
{
return
-
expm1
(
num_tries
*
log1p
(
-
prob
));
}
}
class
GPULogUniformSampler
{
public:
__device__
int64_t
Sample
(
float
random
,
const
int
range
,
const
float
log_range
)
const
;
__device__
float
Probability
(
int64_t
value
,
const
float
log_range
)
const
;
};
__device__
int64_t
GPULogUniformSampler
::
Sample
(
float
random
,
const
int
range
,
const
float
log_range
)
const
{
// Got Log Uniform distribution from uniform distribution by
// inverse_transform_sampling method
const
int64_t
value
=
static_cast
<
int64_t
>
(
exp
(
random
*
log_range
))
-
1
;
// Mathematically, value should be <= range_, but might not be due to some
// floating point roundoff, so we mod by range_.
return
value
%
range
;
}
__device__
float
GPULogUniformSampler
::
Probability
(
int64_t
value
,
const
float
log_range
)
const
{
// Given f(x) = 1/[(x+1) * log_range_]
// The value's probability is integral of f(x) from value to (value + 1)
return
(
log
((
value
+
2.0
)
/
(
value
+
1.0
)))
/
log_range
;
}
template
<
typename
T
>
__global__
void
SamplingCondidate
(
const
size_t
n
,
const
int
num_tries
,
const
int
range
,
const
float
log_range
,
const
int
num_true
,
const
std
::
size_t
num_samples
,
const
int64_t
*
label_data
,
int64_t
*
samples_data
,
T
*
probabilities_data
)
{
const
int
num_sampled_classes
=
num_true
+
num_samples
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
0
;
GPULogUniformSampler
sampler
;
for
(;
idx
<
n
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
col_idx
=
idx
%
num_sampled_classes
;
int
row_idx
=
idx
/
num_sampled_classes
;
if
(
col_idx
<
num_true
)
{
samples_data
[
idx
]
=
label_data
[
row_idx
*
num_true
+
col_idx
];
}
else
{
samples_data
[
idx
]
=
samples_data
[
col_idx
];
}
probabilities_data
[
idx
]
=
sampler
.
Probability
(
samples_data
[
idx
],
log_range
);
probabilities_data
[
idx
]
=
gpu_adjust_prob
(
probabilities_data
[
idx
],
num_samples
,
num_tries
);
}
}
template
<
typename
T
>
int
UniqSampler
(
const
Sampler
&
sampler
,
const
std
::
size_t
num_samples
,
int64_t
*
samples_data
)
{
// sample num_samles unique samples for an example, note that they are not
// all negative samples
std
::
unordered_set
<
int64_t
>
tmp_samples
;
tmp_samples
.
clear
();
int
num_tries
=
0
;
int
j
=
0
;
while
(
j
<
num_samples
)
{
++
num_tries
;
auto
v
=
sampler
.
Sample
();
auto
insert_ok
=
tmp_samples
.
insert
(
v
).
second
;
if
(
!
insert_ok
)
{
continue
;
}
samples_data
[
j
]
=
v
;
++
j
;
}
return
num_tries
;
}
template
<
typename
T
>
void
GPUSampleWithProb
<
T
>::
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
int
seed
,
const
int
dict_size
,
const
bool
uniq
,
const
std
::
size_t
num_samples
,
const
Tensor
*
L
,
Tensor
*
S
,
Tensor
*
P
)
{
// UNDERSTAND: dimension issues
const
auto
lbl_dim
=
L
->
dims
();
const
int
batch_size
=
lbl_dim
[
0
];
const
int
num_true
=
lbl_dim
[
1
];
const
int
num_sampled_classes
=
num_true
+
num_samples
;
framework
::
DDim
ret_dim
{
batch_size
,
num_sampled_classes
};
// UNDERSTAND: raw data view
const
int64_t
*
label_data
=
L
->
data
<
int64_t
>
();
int64_t
*
samples_data
=
S
->
data
<
int64_t
>
();
T
*
probabilities_data
=
P
->
data
<
T
>
();
int
s_size
=
num_samples
;
framework
::
DDim
s_dim
{
s_size
};
Tensor
s
;
int64_t
*
s_data
=
s
.
mutable_data
<
int64_t
>
(
s_dim
,
platform
::
CPUPlace
());
math
::
LogUniformSampler
sampler
(
dict_size
,
seed
);
int
range
=
dict_size
;
float
log_range
=
log
(
range
+
1
);
int
num_tries
=
UniqSampler
<
T
>
(
sampler
,
num_samples
,
s_data
);
VLOG
(
1
)
<<
"num_tries: "
<<
num_tries
;
PADDLE_ENFORCE
(
cudaMemcpy
(
samples_data
+
num_true
,
s_data
,
sizeof
(
int64_t
)
*
num_samples
,
cudaMemcpyHostToDevice
));
int
threads
=
512
;
const
size_t
size
=
batch_size
*
num_sampled_classes
;
int
grid
=
(
batch_size
*
num_sampled_classes
+
threads
-
1
)
/
threads
;
SamplingCondidate
<
T
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
size
,
num_tries
,
range
,
log_range
,
num_true
,
num_samples
,
label_data
,
samples_data
,
probabilities_data
);
}
template
class
GPUSampleWithProb
<
float
>;
template
class
GPUSampleWithProb
<
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/sample_prob.h
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/sampler.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
using
Tensor
=
framework
::
Tensor
;
/* UNDERSTAND: utility function to adjust probability for unique sampling,
return whatever as it is if not using unique samping */
template
<
typename
T
>
static
T
adjust_prob
(
const
T
prob
,
const
int
num_samples
,
const
int
num_tries
)
{
if
(
num_samples
==
num_tries
)
{
return
prob
*
num_samples
;
}
else
{
return
-
expm1
(
num_tries
*
log1p
(
-
prob
));
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SampleWithProb
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
Sampler
&
sampler
,
const
std
::
size_t
num_samples
,
const
Tensor
*
L
,
Tensor
*
S
,
Tensor
*
P
)
{
// UNDERSTAND: dimension issues
const
auto
lbl_dim
=
L
->
dims
();
const
int
batch_size
=
lbl_dim
[
0
];
const
int
num_true
=
lbl_dim
[
1
];
const
int
num_sampled_classes
=
num_true
+
num_samples
;
framework
::
DDim
ret_dim
{
batch_size
,
num_sampled_classes
};
// UNDERSTAND: raw data view
const
int64_t
*
label_data
=
L
->
data
<
int64_t
>
();
int64_t
*
samples_data
=
S
->
mutable_data
<
int64_t
>
(
ret_dim
,
context
.
GetPlace
());
T
*
probabilities_data
=
P
->
mutable_data
<
T
>
(
ret_dim
,
context
.
GetPlace
());
// temp sets for unique sampling
std
::
unordered_set
<
int64_t
>
tmp_samples
;
int
j
=
0
;
// column index
// add true labels, not that efficient
while
(
j
<
num_true
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
samples_index
=
i
*
num_sampled_classes
+
j
;
auto
v
=
label_data
[
i
*
num_true
+
j
];
samples_data
[
samples_index
]
=
v
;
probabilities_data
[
samples_index
]
=
sampler
.
Probability
(
v
);
}
++
j
;
}
// sample num_samles unique samples for an example, note that they are not
// all negative samples
tmp_samples
.
clear
();
int
num_tries
=
0
;
while
(
j
<
num_sampled_classes
)
{
++
num_tries
;
auto
v
=
sampler
.
Sample
();
auto
insert_ok
=
tmp_samples
.
insert
(
v
).
second
;
if
(
!
insert_ok
)
{
continue
;
}
auto
p
=
sampler
.
Probability
(
v
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
samples_index
=
i
*
num_sampled_classes
+
j
;
samples_data
[
samples_index
]
=
v
;
probabilities_data
[
samples_index
]
=
p
;
}
++
j
;
}
// compute Q(y|x), because of unique sampling, probabilities need to be
// adjusted
for
(
int
k
=
0
;
k
<
num_sampled_classes
;
++
k
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
samples_index
=
i
*
num_sampled_classes
+
k
;
probabilities_data
[
samples_index
]
=
adjust_prob
(
probabilities_data
[
samples_index
],
num_samples
,
num_tries
);
}
}
}
};
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
GPUSampleWithProb
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
int
seed
,
const
int
dict_size
,
const
bool
uniq
,
const
std
::
size_t
num_samples
,
const
Tensor
*
L
,
Tensor
*
S
,
Tensor
*
P
);
};
#endif
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
浏览文件 @
a3f7ebd6
...
@@ -225,7 +225,7 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
...
@@ -225,7 +225,7 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_src_mem
));
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_src_mem
));
PADDLE_ENFORCE
(
src_memory
!=
nullptr
,
PADDLE_ENFORCE
(
src_memory
!=
nullptr
,
"Fail to find src_memory in device context"
);
"Fail to find src_memory in device context"
);
src_memory
->
set_data_handle
(
*
p_src_data
.
get
()
);
src_memory
->
set_data_handle
(
*
p_src_data
);
std
::
shared_ptr
<
memory
>
diff_src_memory
;
std
::
shared_ptr
<
memory
>
diff_src_memory
;
...
...
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
浏览文件 @
a3f7ebd6
...
@@ -198,7 +198,7 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -198,7 +198,7 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
}
// push primitive to stream and wait until it's executed
// push primitive to stream and wait until it's executed
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
*
(
pool_p
.
get
())
};
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
*
pool_p
};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
...
@@ -367,8 +367,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -367,8 +367,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
dev_ctx
.
SetBlob
(
key_pool_diff_dst_mem_p
,
diff_dst_memory
);
dev_ctx
.
SetBlob
(
key_pool_diff_dst_mem_p
,
diff_dst_memory
);
pool_bwd_p
=
std
::
make_shared
<
pooling_backward
>
(
pool_bwd_p
=
std
::
make_shared
<
pooling_backward
>
(
pool_bwd_pd
,
*
(
diff_dst_memory
.
get
()),
*
workspace_memory
,
pool_bwd_pd
,
*
diff_dst_memory
,
*
workspace_memory
,
*
diff_src_memory
);
*
(
diff_src_memory
));
dev_ctx
.
SetBlob
(
key_pool_bwd_p
,
pool_bwd_p
);
dev_ctx
.
SetBlob
(
key_pool_bwd_p
,
pool_bwd_p
);
}
else
{
}
else
{
...
@@ -404,7 +403,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -404,7 +403,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
if
(
is_diff_dst_reordered
)
{
if
(
is_diff_dst_reordered
)
{
pipeline
.
push_back
(
reorder_diff_dst
);
pipeline
.
push_back
(
reorder_diff_dst
);
}
}
pipeline
.
push_back
(
*
(
pool_bwd_p
.
get
())
);
pipeline
.
push_back
(
*
pool_bwd_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
in_x_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
in_x_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
a3f7ebd6
...
@@ -66,8 +66,7 @@ class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
...
@@ -66,8 +66,7 @@ class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
"Fail to find softmax primitive in device context"
);
"Fail to find softmax primitive in device context"
);
if
(
softmax_p
==
nullptr
)
{
if
(
softmax_p
==
nullptr
)
{
softmax_p
=
std
::
make_shared
<
mkldnn
::
softmax_forward
>
(
softmax_p
=
std
::
make_shared
<
mkldnn
::
softmax_forward
>
(
*
(
softmax_pd_
.
get
()),
*
softmax_pd_
,
*
(
static_cast
<
mkldnn
::
memory
*>
(
src_memory_p
.
get
())),
*
(
static_cast
<
mkldnn
::
memory
*>
(
src_memory_p
.
get
())),
*
(
static_cast
<
mkldnn
::
memory
*>
(
dst_memory_p
.
get
())));
*
(
static_cast
<
mkldnn
::
memory
*>
(
dst_memory_p
.
get
())));
dev_ctx_
.
SetBlob
(
prim_key
,
softmax_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
softmax_p
);
}
else
{
}
else
{
...
@@ -88,8 +87,8 @@ class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
...
@@ -88,8 +87,8 @@ class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
"Fail to find softmax backward primitive in device context"
);
"Fail to find softmax backward primitive in device context"
);
if
(
softmax_bwd_p
==
nullptr
)
{
if
(
softmax_bwd_p
==
nullptr
)
{
softmax_bwd_p
=
std
::
make_shared
<
mkldnn
::
softmax_backward
>
(
softmax_bwd_p
=
std
::
make_shared
<
mkldnn
::
softmax_backward
>
(
*
softmax_bwd_pd_
,
*
(
dst_memory_p
.
get
()),
*
(
diff_dst_memory_p
.
get
())
,
*
softmax_bwd_pd_
,
*
dst_memory_p
,
*
diff_dst_memory_p
,
*
(
diff_src_memory_p
.
get
())
);
*
diff_src_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
softmax_bwd_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
softmax_bwd_p
);
}
else
{
}
else
{
is_reusing_
=
true
;
is_reusing_
=
true
;
...
...
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
浏览文件 @
a3f7ebd6
...
@@ -160,7 +160,7 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -160,7 +160,7 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
get_selected_row
=
[
&
](
size_t
i
)
->
const
SelectedRows
&
{
auto
get_selected_row
=
[
&
](
size_t
i
)
->
const
SelectedRows
&
{
if
(
i
==
0
&&
in0
)
{
if
(
i
==
0
&&
in0
)
{
return
*
in0
.
get
()
;
return
*
in0
;
}
else
{
}
else
{
return
in_vars
[
i
]
->
Get
<
SelectedRows
>
();
return
in_vars
[
i
]
->
Get
<
SelectedRows
>
();
}
}
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
a3f7ebd6
...
@@ -262,28 +262,37 @@ Example:
...
@@ -262,28 +262,37 @@ Example:
For exclusive = false:
For exclusive = false:
$$
$$
hstart = i * strides[0] - paddings[0]
hstart = i * strides[0] - paddings[0]
$$
$$
hend = hstart + ksize[0]
hend = hstart + ksize[0]
$$
$$
wstart = j * strides[1] - paddings[1]
wstart = j * strides[1] - paddings[1]
$$
$$
wend = wstart + ksize[1]
wend = wstart + ksize[1]
$$
$$
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
$$
$$
For exclusive = true:
For exclusive = true:
$$
$$
hstart = max(0, i * strides[0] - paddings[0])
hstart = max(0, i * strides[0] - paddings[0])
$$
$$
hend = min(H, hstart + ksize[0])
hend = min(H, hstart + ksize[0])
$$
$$
wstart = max(0, j * strides[1] - paddings[1])
wstart = max(0, j * strides[1] - paddings[1])
$$
$$
wend = min(W, wstart + ksize[1])
wend = min(W, wstart + ksize[1])
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
$$
For adaptive = true:
$$
$$
hstart = floor(i * H_{in} / H_{out})
hend = ceil((i + 1) * H_{in} / H_{out})
wstart = floor(j * W_{in} / W_{out})
wend = ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
$$
)DOC"
);
)DOC"
);
}
}
...
@@ -393,45 +402,65 @@ Example:
...
@@ -393,45 +402,65 @@ Example:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
For ceil_mode = false:
For ceil_mode = false:
$$
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
$$
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[2]} + 1
$$
$$
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
$$
For ceil_mode = true:
For ceil_mode = true:
$$
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
$$
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1
$$
$$
$$
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
For exclusive = false:
For exclusive = false:
$$
$$
dstart = i * strides[0] - paddings[0]
dstart = i * strides[0] - paddings[0]
$$
$$
dend = dstart + ksize[0]
dend = dstart + ksize[0]
$$
$$
hstart = j * strides[1] - paddings[1]
hstart = j * strides[1] - paddings[1]
$$
$$
hend = hstart + ksize[1]
hend = hstart + ksize[1]
$$
$$
wstart = k * strides[2] - paddings[2]
wstart = k * strides[2] - paddings[2]
$$
$$
wend = wstart + ksize[2]
wend = wstart + ksize[2]
$$
$$
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
$$
$$
For exclusive = true:
For exclusive = true:
$$
$$
dstart = max(0, i * strides[0] - paddings[0])
dstart = max(0, i * strides[0] - paddings[0])
$$
$$
dend = min(D, dstart + ksize[0])
dend = min(D, dstart + ksize[0])
hstart = max(0, j * strides[1] - paddings[1])
$$
$$
hend = min(H, hstart + ksize[1])
hend = min(H, hstart + ksize[1])
$$
$$
wstart = max(0, k * strides[2] - paddings[2])
wstart = max(0, k * strides[2] - paddings[2])
$$
$$
wend = min(W, wstart + ksize[2])
wend = min(W, wstart + ksize[2])
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
$$
For adaptive = true:
$$
$$
dstart = floor(i * D_{in} / D_{out})
dend = ceil((i + 1) * D_{in} / D_{out})
hstart = floor(j * H_{in} / H_{out})
hend = ceil((j + 1) * H_{in} / H_{out})
wstart = floor(k * W_{in} / W_{out})
wend = ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
$$
...
...
paddle/fluid/operators/sample_logits_op.cc
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sample_logits_op.h"
#include "paddle/fluid/operators/math/sample_prob.h"
namespace
paddle
{
namespace
operators
{
class
SampleLogitsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Logits"
,
"(Tensor, default: Tensor<float>), The unscaled log probabilities "
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
"and K is the class number."
);
AddInput
(
"Labels"
,
"(Tensor) The ground truth which is a 2-D tensor. Labels is a "
"Tensor<int64> with shape [N x NT], where NT is the number of"
"true labels for each example."
);
AddInput
(
"CustomizedSamples"
,
"(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
"NT + S],"
" where N is the batch size, NT is the number of true labels "
"and S is the number of negtive sample for each example."
"The first NT elements of each row should be the same with true "
"labels, "
"followed by S custom negtive samples. This tensor"
"is only used when use_customized_samples is true."
)
.
AsDispensable
();
AddInput
(
"CustomizedProbabilities"
,
"(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
"The tensor has the same shape with CustomSamples,"
"and each element represents probability of element in CustomSamples. "
"This "
"tensor is only used when use_customized_samples is true."
)
.
AsDispensable
();
AddOutput
(
"Samples"
,
"(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
"NT + S]."
"The outputs value of sampler, including NT true lables and S "
"negetive samples "
"for each example. This will be used in"
"backward calculation."
)
.
AsIntermediate
();
AddOutput
(
"Probabilities"
,
"(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
"The probabilites of sampled positive and negtive labels."
)
.
AsIntermediate
();
AddOutput
(
"SampledLogits"
,
"(Tensor, default: Tensor<float>), A 2-D tensor with shape"
"[N, NT + S]. The outputs value of sampled logits, which will be"
"used in backward propagation."
)
.
AsIntermediate
();
AddOutput
(
"SampledLabels"
,
"(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled labels"
"with shape [N, NT]. The tonsor contains hard labels as input to "
" softmax op, that is 0, 1, ..., NT-1 because of the first NT elements"
" of Sampels are positive lables."
);
AddAttr
<
bool
>
(
"use_customized_samples"
,
"An indicator whether to use customized samples with probabilities, if "
"True"
"the operator will use customized samples and customized probabilities"
"otherwise, the operator will generate them by itself."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"uniq"
,
"An indicator whether to sample non-repetitive negtive labels, if True"
"the operator will sample negtive labels without replacement."
"Otherwise, the operator will sample negtive labels with replacement."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"remove_accidental_hits"
,
"An indicator whether to remove accidental hits when samples hits true"
"labels, the removal is implemented by subtracting the corresponding"
"logits by float_max to subpress their softmax to be zero."
)
.
SetDefault
(
true
);
AddAttr
<
int
>
(
"num_samples"
,
"The number of negative samples."
);
AddAttr
<
int
>
(
"seed"
,
"Random seed for generating samples"
).
SetDefault
(
0
);
AddComment
(
R"DOC(
"""
Computes sampled output training logits and labels suitable for implementing
sampled softmax.
"""
)DOC"
);
}
};
class
SampleLogitsOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Logits"
),
"Input(Logits) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Labels"
),
"Input(Labels) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Samples"
),
"Output(Samples) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Probabilities"
),
"Output(Probabilities) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SampledLogits"
),
"Output(SampledLogits) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"SampledLabels"
),
"Output(SampledLabels) should be not null."
);
auto
logits_dims
=
ctx
->
GetInputDim
(
"Logits"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Labels"
);
PADDLE_ENFORCE_EQ
(
logits_dims
.
size
(),
2UL
,
"The logits of softmax_with_cross_entropy should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2UL
,
"The labels should be a 2-D tensor."
);
const
int
num_samples
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_samples"
);
const
int
num_sampled_classes
=
labels_dims
[
1
]
+
num_samples
;
ctx
->
SetOutputDim
(
"Samples"
,
{
logits_dims
[
0
],
num_sampled_classes
});
ctx
->
SetOutputDim
(
"Probabilities"
,
{
logits_dims
[
0
],
num_sampled_classes
});
ctx
->
SetOutputDim
(
"SampledLogits"
,
{
logits_dims
[
0
],
num_sampled_classes
});
ctx
->
SetOutputDim
(
"SampledLabels"
,
{
logits_dims
[
0
],
labels_dims
[
1
]});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"Logits"
));
framework
::
OpKernelType
kt
=
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
return
kt
;
}
};
// UNDERSTAND: InferShape for Grad
class
SampleLogitsOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Logits"
),
"Input(Logits) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Labels"
),
"Input(Labels) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Samples"
),
"Input(Samples) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"SampledLogits"
),
"Input(SampledLogits) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"SampledLogits"
)),
"Input(SampledLogits@Grad) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Logits"
)),
"Output(Logits@Grad) should be not null."
);
auto
logit_dims
=
ctx
->
GetInputDim
(
"Logits"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Labels"
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
"The label should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
logit_dims
.
size
(),
2UL
,
"The logits should be a 2-D tensor."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Logits"
),
ctx
->
GetInputDim
(
"Logits"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"SampledLogits"
)));
framework
::
OpKernelType
kt
=
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
return
kt
;
}
};
// UNDERSTAND: what's the rule for making a GradMaker TODO
class
SampleLogitsGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"sample_logits_grad"
);
grad_op
->
SetInput
(
"Logits"
,
Input
(
"Logits"
));
grad_op
->
SetInput
(
"Labels"
,
Input
(
"Labels"
));
grad_op
->
SetInput
(
"Samples"
,
Output
(
"Samples"
));
grad_op
->
SetInput
(
"SampledLogits"
,
Output
(
"SampledLogits"
));
grad_op
->
SetInput
(
framework
::
GradVarName
(
"SampledLogits"
),
OutputGrad
(
"SampledLogits"
));
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Logits"
),
InputGrad
(
"Logits"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sample_logits
,
ops
::
SampleLogitsOp
,
ops
::
SampleLogitsOpMaker
,
ops
::
SampleLogitsGradMaker
);
REGISTER_OPERATOR
(
sample_logits_grad
,
ops
::
SampleLogitsOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sample_logits
,
ops
::
SampleLogitsKernel
<
float
>
,
ops
::
SampleLogitsKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
sample_logits_grad
,
ops
::
SampleLogitsGradKernel
<
float
>
,
ops
::
SampleLogitsGradKernel
<
double
>
);
paddle/fluid/operators/sample_logits_op.cu
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sample_prob.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/sample_logits_op.h"
namespace
paddle
{
namespace
operators
{
// UNDERSTAND: something like take_along_axis in numpy.
template
<
typename
T
>
__global__
void
GPUTakeAlongD1
(
size_t
size
,
const
int
batch_size
,
const
int
array_slice_size
,
const
int
idx_slice_size
,
const
T
*
p_array
,
const
int64_t
*
p_index
,
T
*
p_value
)
{
const
auto
value_slice_size
=
idx_slice_size
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
idx
<
size
;
idx
+=
step_size
)
{
int
i
=
idx
/
idx_slice_size
;
auto
array_index
=
p_index
[
idx
];
p_value
[
idx
]
=
p_array
[
i
*
array_slice_size
+
array_index
];
}
}
// UNDERSTAND: something like put_along_axis in numpy but if there is duplicate
// indices, scatter is done in += way.
template
<
typename
T
>
__global__
void
GPUPutAlongD1
(
size_t
size
,
const
int
batch_size
,
const
int
array_slice_size
,
const
int
idx_slice_size
,
T
*
p_array
,
const
int64_t
*
p_index
,
const
T
*
p_value
)
{
const
auto
value_slice_size
=
idx_slice_size
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
blockDim
.
x
*
gridDim
.
x
;
// size == batch_size
for
(;
idx
<
size
;
idx
+=
step_size
)
{
int
i
=
idx
;
for
(
int
j
=
0
;
j
<
idx_slice_size
;
++
j
)
{
auto
array_index
=
p_index
[
i
*
idx_slice_size
+
j
];
p_array
[
i
*
array_slice_size
+
array_index
]
+=
p_value
[
i
*
idx_slice_size
+
j
];
}
}
}
// UNDERSTAND: set label as 0,1,...,num_true-1
template
<
typename
T
>
__global__
void
GPUSetLabel
(
size_t
size
,
const
int
num_true
,
int64_t
*
p_array
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
idx
<
size
;
idx
+=
step_size
)
{
p_array
[
idx
]
=
idx
%
num_true
;
}
}
// UNDERSTAND: compute accidentdal hits from samples and minus corresponding
// logits by a float max, here 1e20
template
<
typename
T
>
__global__
void
gpu_compute_remove_accidental_hits
(
const
int
size
,
const
int
num_true
,
const
int
idx_slice_size
,
const
int64_t
*
p_index
,
T
*
p_value
)
{
const
auto
value_slice_size
=
idx_slice_size
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
int
step_size
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
idx
<
size
;
idx
+=
step_size
)
{
int
i
=
idx
/
idx_slice_size
;
if
(
idx
%
idx_slice_size
<
num_true
)
continue
;
for
(
int
j
=
0
;
j
<
num_true
;
++
j
)
{
const
auto
true_idx
=
i
*
idx_slice_size
+
j
;
if
(
p_index
[
true_idx
]
==
p_index
[
idx
])
{
p_value
[
idx
]
-=
1e20
;
break
;
}
}
}
}
template
<
typename
T
>
class
SampleLogitsCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
Tensor
=
framework
::
Tensor
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// get necessary inputs
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Labels"
);
VLOG
(
3
)
<<
"Enter SampleLogitsCUDAKernel"
;
// get necessary outputs
Tensor
*
samples
=
context
.
Output
<
Tensor
>
(
"Samples"
);
Tensor
*
probabilities
=
context
.
Output
<
Tensor
>
(
"Probabilities"
);
Tensor
*
sampled_logits
=
context
.
Output
<
Tensor
>
(
"SampledLogits"
);
Tensor
*
sampled_labels
=
context
.
Output
<
Tensor
>
(
"SampledLabels"
);
// shapes
const
auto
batch_size
=
logits
->
dims
()[
0
];
const
auto
num_classes
=
logits
->
dims
()[
1
];
const
auto
labels_dim
=
labels
->
dims
();
const
auto
num_true
=
labels_dim
[
1
];
const
auto
samples_dim
=
samples
->
dims
();
// attrs
const
auto
num_samples
=
context
.
Attr
<
int
>
(
"num_samples"
);
const
bool
use_customized_samples
=
context
.
Attr
<
bool
>
(
"use_customized_samples"
);
const
bool
uniq
=
context
.
Attr
<
bool
>
(
"uniq"
);
const
bool
remove_accidental_hits
=
context
.
Attr
<
bool
>
(
"remove_accidental_hits"
);
// device contexts
auto
&
dev_ctx
=
context
.
cuda_device_context
();
// UNDERSTAND: allocate memories for temporaries
sampled_logits
->
mutable_data
<
T
>
(
samples_dim
,
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
sampled_logits
,
static_cast
<
T
>
(
0
));
auto
sampled_labels_data
=
sampled_labels
->
mutable_data
<
int64_t
>
(
labels_dim
,
context
.
GetPlace
());
int
threads
=
512
;
size_t
size
=
batch_size
*
num_true
;
int
grid
=
(
size
+
threads
-
1
)
/
threads
;
GPUSetLabel
<
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
size
,
num_true
,
sampled_labels_data
);
if
(
use_customized_samples
)
{
const
Tensor
*
customized_samples
=
context
.
Input
<
Tensor
>
(
"CustomizedSamples"
);
const
Tensor
*
customized_probabilities
=
context
.
Input
<
Tensor
>
(
"CustomizedProbabilities"
);
samples
->
ShareDataWith
(
*
customized_samples
);
probabilities
->
ShareDataWith
(
*
customized_probabilities
);
}
else
{
samples
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
probabilities
->
mutable_data
<
T
>
(
samples_dim
,
context
.
GetPlace
());
// UNDERSTAND: sampling
const
auto
seed
=
context
.
Attr
<
int
>
(
"seed"
);
auto
sampler_with_prob
=
math
::
GPUSampleWithProb
<
T
>
();
sampler_with_prob
(
context
.
cuda_device_context
(),
seed
,
num_classes
,
uniq
,
num_samples
,
labels
,
samples
,
probabilities
);
}
// UNDERSTAND: gather sampled logits and remove accidental hits if needed
const
auto
num_take
=
samples
->
dims
()[
1
];
const
auto
array_dims
=
logits
->
dims
();
const
auto
idx_dims
=
samples
->
dims
();
const
T
*
p_array
=
logits
->
data
<
T
>
();
const
int64_t
*
p_index
=
samples
->
data
<
int64_t
>
();
T
*
p_value
=
sampled_logits
->
data
<
T
>
();
// src slice size
const
auto
array_slice_size
=
array_dims
[
1
];
// index slice size
const
auto
idx_slice_size
=
idx_dims
[
1
];
size
=
batch_size
*
num_take
;
grid
=
(
size
+
threads
-
1
)
/
threads
;
GPUTakeAlongD1
<
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
size
,
batch_size
,
array_slice_size
,
idx_slice_size
,
p_array
,
p_index
,
p_value
);
if
(
remove_accidental_hits
)
{
const
size_t
size
=
batch_size
*
(
num_true
+
num_samples
);
int
grid
=
(
size
+
threads
-
1
)
/
threads
;
gpu_compute_remove_accidental_hits
<
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
size
,
num_true
,
idx_slice_size
,
p_index
,
p_value
);
}
// subtracted sampled logits with logQ(y|x)
auto
probs
=
EigenMatrix
<
T
>::
From
(
*
probabilities
);
auto
smp_logits
=
EigenMatrix
<
T
>::
From
(
*
sampled_logits
);
smp_logits
.
device
(
*
dev_ctx
.
eigen_device
())
=
(
smp_logits
-
probs
.
log
().
unaryExpr
(
TolerableValue
<
T
>
()))
.
unaryExpr
(
TolerableValue
<
T
>
());
}
};
template
<
typename
T
>
class
SampleLogitsGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
Tensor
=
framework
::
Tensor
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
logits_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
const
Tensor
*
samples
=
context
.
Input
<
Tensor
>
(
"Samples"
);
const
Tensor
*
sampled_logits_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"SampledLogits"
));
logits_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
cuda_device_context
();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
logits_grad
,
static_cast
<
T
>
(
0
));
// UNDERSTAND: scatter it back to logit_grad
const
auto
batch_size
=
samples
->
dims
()[
0
];
const
auto
num_put
=
samples
->
dims
()[
1
];
const
auto
array_dims
=
logits_grad
->
dims
();
const
auto
idx_dims
=
samples
->
dims
();
T
*
p_array
=
logits_grad
->
data
<
T
>
();
const
int64_t
*
p_index
=
samples
->
data
<
int64_t
>
();
const
T
*
p_value
=
sampled_logits_grad
->
data
<
T
>
();
// src slice size
const
auto
array_slice_size
=
array_dims
[
1
];
// index slice size
const
auto
idx_slice_size
=
idx_dims
[
1
];
int
threads
=
128
;
const
size_t
size
=
batch_size
;
int
grid
=
(
size
+
threads
-
1
)
/
threads
;
GPUPutAlongD1
<
T
><<<
grid
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
size
,
batch_size
,
array_slice_size
,
idx_slice_size
,
p_array
,
p_index
,
p_value
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sample_logits
,
ops
::
SampleLogitsCUDAKernel
<
float
>
,
ops
::
SampleLogitsCUDAKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
sample_logits_grad
,
ops
::
SampleLogitsGradCUDAKernel
<
float
>
,
ops
::
SampleLogitsGradCUDAKernel
<
double
>
);
paddle/fluid/operators/sample_logits_op.h
0 → 100644
浏览文件 @
a3f7ebd6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sample_prob.h"
#include "paddle/fluid/operators/math/softmax.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
struct
TolerableValue
{
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
return
kApproInf
;
if
(
x
==
-
INFINITY
)
return
-
kApproInf
;
return
x
;
}
};
// UNDERSTAND: something like take_along_axis in numpy.
template
<
typename
T
>
static
void
CPUTakeAlongD1
(
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
array
,
const
framework
::
Tensor
&
index
,
framework
::
Tensor
*
value
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()));
// UNDERSTAND: check shape src(B, C), index(B, K), out should also be (B, K)
PADDLE_ENFORCE
(
index
.
dims
().
size
()
==
2
&&
array
.
dims
().
size
()
==
2
&&
index
.
dims
()[
0
]
==
array
.
dims
()[
0
]
&&
index
.
dims
()
==
value
->
dims
());
const
auto
batch_size
=
index
.
dims
()[
0
];
const
auto
num_take
=
index
.
dims
()[
1
];
const
auto
array_dims
=
array
.
dims
();
const
auto
idx_dims
=
index
.
dims
();
// UNDERSTAND: no allocations here
const
T
*
p_array
=
array
.
data
<
T
>
();
const
int64_t
*
p_index
=
index
.
data
<
int64_t
>
();
T
*
p_value
=
value
->
data
<
T
>
();
// src slice size
const
auto
array_slice_size
=
array_dims
[
1
];
// index slice size
const
auto
idx_slice_size
=
idx_dims
[
1
];
const
auto
value_slice_size
=
idx_slice_size
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
num_take
;
++
j
)
{
auto
array_index
=
p_index
[
i
*
idx_slice_size
+
j
];
p_value
[
i
*
value_slice_size
+
j
]
=
p_array
[
i
*
array_slice_size
+
array_index
];
}
}
}
// UNDERSTAND: something like put_along_axis in numpy but if there is duplicate
// indices, scatter is done in += way.
template
<
typename
T
>
static
void
CPUPutAlongD1
(
const
platform
::
DeviceContext
&
ctx
,
framework
::
Tensor
*
array
,
const
framework
::
Tensor
&
index
,
const
framework
::
Tensor
&
value
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()));
// UNDERSTAND: check shape src(B, C), index(B, K), out should also be (B, K)
PADDLE_ENFORCE
(
index
.
dims
().
size
()
==
2
&&
array
->
dims
().
size
()
==
2
&&
index
.
dims
()[
0
]
==
array
->
dims
()[
0
]
&&
index
.
dims
()
==
value
.
dims
());
const
auto
batch_size
=
index
.
dims
()[
0
];
const
auto
num_put
=
index
.
dims
()[
1
];
auto
array_dims
=
array
->
dims
();
auto
idx_dims
=
index
.
dims
();
// UNDERSTAND: no allocations here
T
*
p_array
=
array
->
data
<
T
>
();
const
int64_t
*
p_index
=
index
.
data
<
int64_t
>
();
const
T
*
p_value
=
value
.
data
<
T
>
();
// slice sizes
const
auto
array_slice_size
=
array_dims
[
1
];
const
auto
idx_slice_size
=
idx_dims
[
1
];
const
auto
value_slice_size
=
idx_slice_size
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
num_put
;
++
j
)
{
auto
array_index
=
p_index
[
i
*
idx_slice_size
+
j
];
p_array
[
i
*
array_slice_size
+
array_index
]
+=
p_value
[
i
*
value_slice_size
+
j
];
}
}
}
// UNDERSTAND: compute accidentdal hits from samples and minus corresponding
// logits by a float max, here 1e20
template
<
typename
T
>
static
void
compute_remove_accidental_hits
(
const
platform
::
DeviceContext
&
ctx
,
framework
::
Tensor
*
sampled_logits
,
const
framework
::
Tensor
&
samples
,
const
int
num_true
)
{
const
auto
batch_size
=
sampled_logits
->
dims
()[
0
];
const
auto
num_sampled_classes
=
sampled_logits
->
dims
()[
1
];
T
*
sampled_logits_data
=
sampled_logits
->
data
<
T
>
();
const
auto
samples_data
=
samples
.
data
<
int64_t
>
();
std
::
unordered_set
<
int64_t
>
tmp_true_labels
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
tmp_true_labels
.
clear
();
tmp_true_labels
.
insert
(
samples_data
+
i
*
num_sampled_classes
,
samples_data
+
i
*
num_sampled_classes
+
num_true
);
for
(
int
j
=
num_true
;
j
<
num_sampled_classes
;
++
j
)
{
const
auto
idx
=
i
*
num_sampled_classes
+
j
;
if
(
tmp_true_labels
.
find
(
samples_data
[
idx
])
!=
tmp_true_labels
.
end
())
sampled_logits_data
[
idx
]
-=
1e20
;
}
}
}
template
<
typename
T
>
class
SampleLogitsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
Tensor
=
framework
::
Tensor
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
context
.
GetPlace
()),
"This kernel only runs on CPU."
);
VLOG
(
3
)
<<
"Enter SampleLogitsKernel"
;
// get necessary inputs
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Labels"
);
// get necessary outputs
Tensor
*
samples
=
context
.
Output
<
Tensor
>
(
"Samples"
);
Tensor
*
probabilities
=
context
.
Output
<
Tensor
>
(
"Probabilities"
);
Tensor
*
sampled_logits
=
context
.
Output
<
Tensor
>
(
"SampledLogits"
);
Tensor
*
sampled_labels
=
context
.
Output
<
Tensor
>
(
"SampledLabels"
);
// shapes
const
auto
batch_size
=
logits
->
dims
()[
0
];
const
auto
num_classes
=
logits
->
dims
()[
1
];
const
auto
labels_dim
=
labels
->
dims
();
const
auto
num_true
=
labels_dim
[
1
];
const
auto
samples_dim
=
samples
->
dims
();
// attrs
const
auto
num_samples
=
context
.
Attr
<
int
>
(
"num_samples"
);
const
bool
use_customized_samples
=
context
.
Attr
<
bool
>
(
"use_customized_samples"
);
const
bool
remove_accidental_hits
=
context
.
Attr
<
bool
>
(
"remove_accidental_hits"
);
// device contexts
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
// UNDERSTAND: allocate memories for temporaries
sampled_logits
->
mutable_data
<
T
>
(
samples_dim
,
context
.
GetPlace
());
auto
sampled_labels_data
=
sampled_labels
->
mutable_data
<
int64_t
>
(
labels_dim
,
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
j
=
0
;
j
<
num_true
;
++
j
)
{
sampled_labels_data
[
i
*
num_true
+
j
]
=
j
;
}
}
if
(
use_customized_samples
)
{
const
Tensor
*
customized_samples
=
context
.
Input
<
Tensor
>
(
"CustomizedSamples"
);
const
Tensor
*
customized_probabilities
=
context
.
Input
<
Tensor
>
(
"CustomizedProbabilities"
);
samples
->
ShareDataWith
(
*
customized_samples
);
probabilities
->
ShareDataWith
(
*
customized_probabilities
);
}
else
{
samples
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
probabilities
->
mutable_data
<
T
>
(
samples_dim
,
context
.
GetPlace
());
// UNDERSTAND: sampling
const
auto
seed
=
context
.
Attr
<
int
>
(
"seed"
);
auto
sampler_with_prob
=
math
::
SampleWithProb
<
platform
::
CPUDeviceContext
,
T
>
();
sampler_with_prob
(
dev_ctx
,
math
::
LogUniformSampler
(
num_classes
,
seed
),
num_samples
,
labels
,
samples
,
probabilities
);
}
// UNDERSTAND: gather sampled logits and remove accidental hits if needed
CPUTakeAlongD1
<
T
>
(
dev_ctx
,
*
logits
,
*
samples
,
sampled_logits
);
if
(
remove_accidental_hits
)
{
compute_remove_accidental_hits
<
T
>
(
dev_ctx
,
sampled_logits
,
*
samples
,
num_true
);
}
// subtracted sampled logits with logQ(y|x)
auto
probs
=
EigenMatrix
<
T
>::
From
(
*
probabilities
);
auto
smp_logits
=
EigenMatrix
<
T
>::
From
(
*
sampled_logits
);
smp_logits
.
device
(
*
dev_ctx
.
eigen_device
())
=
(
smp_logits
-
probs
.
log
().
unaryExpr
(
TolerableValue
<
T
>
()))
.
unaryExpr
(
TolerableValue
<
T
>
());
}
};
template
<
typename
T
>
class
SampleLogitsGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
Tensor
=
framework
::
Tensor
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
logits_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
const
Tensor
*
samples
=
context
.
Input
<
Tensor
>
(
"Samples"
);
const
Tensor
*
sampled_logits_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"SampledLogits"
));
logits_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
logits_grad
,
static_cast
<
T
>
(
0
));
// UNDERSTAND: scatter it back to logit_grad
CPUPutAlongD1
<
T
>
(
dev_ctx
,
logits_grad
,
*
samples
,
*
sampled_logits_grad
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/device_context.cc
浏览文件 @
a3f7ebd6
...
@@ -394,7 +394,7 @@ void MKLDNNDeviceContext::SetBlob(const std::string& name,
...
@@ -394,7 +394,7 @@ void MKLDNNDeviceContext::SetBlob(const std::string& name,
int
tid
=
platform
::
get_cur_thread_id
();
int
tid
=
platform
::
get_cur_thread_id
();
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
.
get
()
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
);
// Find KeyBlob for current thread
// Find KeyBlob for current thread
auto
map_it
=
pMap
->
find
(
tid
);
auto
map_it
=
pMap
->
find
(
tid
);
...
@@ -427,7 +427,7 @@ std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
...
@@ -427,7 +427,7 @@ std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
int
tid
=
platform
::
get_cur_thread_id
();
int
tid
=
platform
::
get_cur_thread_id
();
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
.
get
()
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
);
// Find KeyBlob for current thread firstly
// Find KeyBlob for current thread firstly
auto
map_it
=
pMap
->
find
(
tid
);
auto
map_it
=
pMap
->
find
(
tid
);
...
...
paddle/fluid/platform/device_tracer.cc
浏览文件 @
a3f7ebd6
...
@@ -136,7 +136,7 @@ void EnableActivity() {
...
@@ -136,7 +136,7 @@ void EnableActivity() {
CUPTI_CALL
(
dynload
::
cuptiActivityEnable
(
CUPTI_ACTIVITY_KIND_DRIVER
));
CUPTI_CALL
(
dynload
::
cuptiActivityEnable
(
CUPTI_ACTIVITY_KIND_DRIVER
));
CUPTI_CALL
(
dynload
::
cuptiActivityEnable
(
CUPTI_ACTIVITY_KIND_RUNTIME
));
CUPTI_CALL
(
dynload
::
cuptiActivityEnable
(
CUPTI_ACTIVITY_KIND_RUNTIME
));
// We don't track these activities for now.
// We don't track these activities for now.
//
CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_MEMSET));
CUPTI_CALL
(
dynload
::
cuptiActivityEnable
(
CUPTI_ACTIVITY_KIND_MEMSET
));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_OVERHEAD));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_OVERHEAD));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_DEVICE));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_DEVICE));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONTEXT));
// CUPTI_CALL(dynload::cuptiActivityEnable(CUPTI_ACTIVITY_KIND_CONTEXT));
...
@@ -155,7 +155,7 @@ void DisableActivity() {
...
@@ -155,7 +155,7 @@ void DisableActivity() {
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_CONTEXT));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_CONTEXT));
CUPTI_CALL
(
dynload
::
cuptiActivityDisable
(
CUPTI_ACTIVITY_KIND_DRIVER
));
CUPTI_CALL
(
dynload
::
cuptiActivityDisable
(
CUPTI_ACTIVITY_KIND_DRIVER
));
CUPTI_CALL
(
dynload
::
cuptiActivityDisable
(
CUPTI_ACTIVITY_KIND_RUNTIME
));
CUPTI_CALL
(
dynload
::
cuptiActivityDisable
(
CUPTI_ACTIVITY_KIND_RUNTIME
));
//
CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MEMSET));
CUPTI_CALL
(
dynload
::
cuptiActivityDisable
(
CUPTI_ACTIVITY_KIND_MEMSET
));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_NAME));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_NAME));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MARKER));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_MARKER));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_OVERHEAD));
// CUPTI_CALL(dynload::cuptiActivityDisable(CUPTI_ACTIVITY_KIND_OVERHEAD));
...
@@ -212,6 +212,14 @@ void CUPTIAPI bufferCompleted(CUcontext ctx, uint32_t streamId, uint8_t *buffer,
...
@@ -212,6 +212,14 @@ void CUPTIAPI bufferCompleted(CUcontext ctx, uint32_t streamId, uint8_t *buffer,
memcpy
->
correlationId
,
memcpy
->
bytes
);
memcpy
->
correlationId
,
memcpy
->
bytes
);
break
;
break
;
}
}
case
CUPTI_ACTIVITY_KIND_MEMSET
:
{
auto
*
memset
=
reinterpret_cast
<
const
CUpti_ActivityMemset
*>
(
record
);
tracer
->
AddKernelRecords
(
"MEMSET"
,
memset
->
start
,
memset
->
end
,
memset
->
deviceId
,
memset
->
streamId
,
memset
->
correlationId
);
break
;
}
case
CUPTI_ACTIVITY_KIND_DRIVER
:
{
case
CUPTI_ACTIVITY_KIND_DRIVER
:
{
auto
*
api
=
reinterpret_cast
<
const
CUpti_ActivityAPI
*>
(
record
);
auto
*
api
=
reinterpret_cast
<
const
CUpti_ActivityAPI
*>
(
record
);
if
(
api
->
start
!=
0
&&
api
->
end
!=
0
)
if
(
api
->
start
!=
0
&&
api
->
end
!=
0
)
...
@@ -348,6 +356,8 @@ class DeviceTracerImpl : public DeviceTracer {
...
@@ -348,6 +356,8 @@ class DeviceTracerImpl : public DeviceTracer {
const
std
::
vector
<
int
>
cbids
{
const
std
::
vector
<
int
>
cbids
{
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpyAsync_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaMemcpyAsync_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaMemset_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaMemsetAsync_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020
,
CUPTI_RUNTIME_TRACE_CBID_cudaLaunchKernel_v7000
CUPTI_RUNTIME_TRACE_CBID_cudaLaunchKernel_v7000
#if CUDA_VERSION >= 9000
#if CUDA_VERSION >= 9000
...
...
paddle/fluid/platform/dynload/mklml.h
浏览文件 @
a3f7ebd6
...
@@ -86,8 +86,6 @@ extern void* mklml_dso_handle;
...
@@ -86,8 +86,6 @@ extern void* mklml_dso_handle;
__macro(vdPowx); \
__macro(vdPowx); \
__macro(vsInv); \
__macro(vsInv); \
__macro(vdInv); \
__macro(vdInv); \
__macro(vmsErf); \
__macro(vmdErf); \
__macro(MKL_Set_Num_Threads)
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
MKLML_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_MKLML_WRAP
);
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
a3f7ebd6
...
@@ -548,9 +548,8 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
...
@@ -548,9 +548,8 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
forward_t
>
(
*
conv_pd_
,
*
(
src_memory_p
),
conv_p
=
std
::
make_shared
<
forward_t
>
(
*
conv_pd_
,
*
src_memory_p
,
*
(
weights_memory_p
.
get
()),
*
weights_memory_p
,
*
dst_memory_p
);
*
(
dst_memory_p
.
get
()));
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
}
else
{
...
@@ -570,9 +569,9 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
...
@@ -570,9 +569,9 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
forward_t
>
(
conv_p
=
std
::
make_shared
<
forward_t
>
(
*
conv_pd_
,
*
src_memory_p
,
*
conv_pd_
,
*
(
src_memory_p
),
*
(
weights_memory_p
.
get
())
,
*
weights_memory_p
,
*
bias_memory_p
,
*
(
bias_memory_p
.
get
()),
*
(
dst_memory_p
.
get
())
);
*
dst_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
}
else
{
...
...
paddle/fluid/train/demo/demo_trainer.cc
浏览文件 @
a3f7ebd6
...
@@ -73,7 +73,7 @@ int main() {
...
@@ -73,7 +73,7 @@ int main() {
PADDLE_ENFORCE_NE
(
loss_name
,
""
,
"loss not found"
);
PADDLE_ENFORCE_NE
(
loss_name
,
""
,
"loss not found"
);
// init all parameters
// init all parameters
executor
.
Run
(
*
startup_program
.
get
()
,
&
scope
,
0
);
executor
.
Run
(
*
startup_program
,
&
scope
,
0
);
// prepare data
// prepare data
auto
x_var
=
scope
.
Var
(
"x"
);
auto
x_var
=
scope
.
Var
(
"x"
);
...
@@ -101,7 +101,7 @@ int main() {
...
@@ -101,7 +101,7 @@ int main() {
clock_t
t1
=
clock
();
clock_t
t1
=
clock
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
executor
.
Run
(
*
train_program
.
get
()
,
&
scope
,
0
,
false
,
true
);
executor
.
Run
(
*
train_program
,
&
scope
,
0
,
false
,
true
);
std
::
cout
<<
"step: "
<<
i
<<
" loss: "
std
::
cout
<<
"step: "
<<
i
<<
" loss: "
<<
loss_var
->
Get
<
paddle
::
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
]
<<
loss_var
->
Get
<
paddle
::
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
]
<<
std
::
endl
;
<<
std
::
endl
;
...
...
paddle/fluid/train/test_train_recognize_digits.cc
浏览文件 @
a3f7ebd6
...
@@ -74,7 +74,7 @@ void Train() {
...
@@ -74,7 +74,7 @@ void Train() {
float
first_loss
=
0.0
;
float
first_loss
=
0.0
;
float
last_loss
=
0.0
;
float
last_loss
=
0.0
;
for
(
int
i
=
0
;
i
<
100
;
++
i
)
{
for
(
int
i
=
0
;
i
<
100
;
++
i
)
{
executor
.
Run
(
*
train_program
.
get
()
,
&
scope
,
0
,
false
,
true
);
executor
.
Run
(
*
train_program
,
&
scope
,
0
,
false
,
true
);
if
(
i
==
0
)
{
if
(
i
==
0
)
{
first_loss
=
loss_var
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
first_loss
=
loss_var
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
}
else
if
(
i
==
99
)
{
}
else
if
(
i
==
99
)
{
...
...
python/paddle/fluid/compiler.py
浏览文件 @
a3f7ebd6
...
@@ -19,6 +19,7 @@ import sys
...
@@ -19,6 +19,7 @@ import sys
from
..
import
compat
as
cpt
from
..
import
compat
as
cpt
from
.
import
core
from
.
import
core
from
.
import
framework
__all__
=
[
'CompiledProgram'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
__all__
=
[
'CompiledProgram'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
...
@@ -110,6 +111,8 @@ class CompiledProgram(object):
...
@@ -110,6 +111,8 @@ class CompiledProgram(object):
self
.
_exec_strategy
=
ExecutionStrategy
()
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_build_strategy
=
BuildStrategy
()
self
.
_build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
self
.
_program
)
return
self
return
self
def
with_inference_optimize
(
self
,
config
):
def
with_inference_optimize
(
self
,
config
):
...
...
python/paddle/fluid/framework.py
浏览文件 @
a3f7ebd6
...
@@ -87,6 +87,15 @@ def _current_expected_place():
...
@@ -87,6 +87,15 @@ def _current_expected_place():
return
_imperative_current_expected_place_
return
_imperative_current_expected_place_
def
is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
class
NameScope
(
object
):
class
NameScope
(
object
):
def
__init__
(
self
,
name
=
""
,
parent
=
None
):
def
__init__
(
self
,
name
=
""
,
parent
=
None
):
self
.
_children
=
dict
()
self
.
_children
=
dict
()
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
a3f7ebd6
...
@@ -17,7 +17,7 @@ import contextlib
...
@@ -17,7 +17,7 @@ import contextlib
import
sys
import
sys
import
numpy
as
np
import
numpy
as
np
import
collections
import
collections
from
..
import
unique_name
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid
import
framework
from
paddle.fluid
import
framework
from
paddle.fluid.imperative
import
base
from
paddle.fluid.imperative
import
base
...
@@ -26,14 +26,33 @@ __all__ = ['Layer', 'PyLayer']
...
@@ -26,14 +26,33 @@ __all__ = ['Layer', 'PyLayer']
class
Layer
(
core
.
Layer
):
class
Layer
(
core
.
Layer
):
"""Layers composed of operators."""
"""Layers composed of operators.
Args:
name_scope: prefix name used by the layer to name parameters.
If prefix is "my_model/layer_1", parameter name in MyLayer
can be "my_model/layer_1/MyLayer/w_n", where w is the parameter
base name and n is an unique suffix auto-generated.
dtype: data type for the variables in the layer.
"""
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
def
__init__
(
self
,
name_scope
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
self
.
_full_name
=
unique_name
.
generate
(
name_scope
+
"/"
+
self
.
__class__
.
__name__
)
self
.
_built
=
False
self
.
_built
=
False
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
self
.
_parameters
=
collections
.
OrderedDict
()
self
.
_parameters
=
collections
.
OrderedDict
()
self
.
_sub_layers
=
collections
.
OrderedDict
()
self
.
_sub_layers
=
collections
.
OrderedDict
()
def
full_name
(
self
):
"""Full name for this layers.
Full name is composed by name_scope + "/" + MyLayer.__class__.__name__
Returns full name of this name.
"""
return
self
.
_full_name
def
parameters
(
self
,
include_sublayers
=
True
):
def
parameters
(
self
,
include_sublayers
=
True
):
"""Returns a list of Parameters from current and sub-layers.
"""Returns a list of Parameters from current and sub-layers.
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
a3f7ebd6
...
@@ -27,6 +27,7 @@ __all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
...
@@ -27,6 +27,7 @@ __all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
class
Conv2D
(
layers
.
Layer
):
class
Conv2D
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
@@ -38,19 +39,17 @@ class Conv2D(layers.Layer):
...
@@ -38,19 +39,17 @@ class Conv2D(layers.Layer):
act
=
None
,
act
=
None
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
name
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv2D
,
self
).
__init__
(
name
=
nam
e
,
dtype
=
dtype
)
super
(
Conv2D
,
self
).
__init__
(
name
_scop
e
,
dtype
=
dtype
)
# TODO(minqiyang): Move this to the top.
# TODO(minqiyang): Move this to the top.
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
dtype
=
dtype
,
dtype
=
dtype
,
name
=
name
,
act
=
act
)
act
=
act
)
self
.
_groups
=
groups
self
.
_groups
=
groups
...
@@ -143,6 +142,7 @@ class Conv2D(layers.Layer):
...
@@ -143,6 +142,7 @@ class Conv2D(layers.Layer):
class
Pool2D
(
layers
.
Layer
):
class
Pool2D
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
pool_size
=-
1
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_stride
=
1
,
...
@@ -151,7 +151,6 @@ class Pool2D(layers.Layer):
...
@@ -151,7 +151,6 @@ class Pool2D(layers.Layer):
use_cudnn
=
True
,
use_cudnn
=
True
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
,
exclusive
=
True
,
name
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
if
pool_type
not
in
[
"max"
,
"avg"
]:
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
raise
ValueError
(
...
@@ -166,10 +165,10 @@ class Pool2D(layers.Layer):
...
@@ -166,10 +165,10 @@ class Pool2D(layers.Layer):
if
not
isinstance
(
use_cudnn
,
bool
):
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
raise
ValueError
(
"use_cudnn should be True or False"
)
super
(
Pool2D
,
self
).
__init__
(
name
=
nam
e
,
dtype
=
dtype
)
super
(
Pool2D
,
self
).
__init__
(
name
_scop
e
,
dtype
=
dtype
)
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
dtype
=
dtype
,
name
=
nam
e
)
self
.
_helper
=
LayerHelper
(
self
.
full_name
(),
dtype
=
dtyp
e
)
self
.
_pool_type
=
pool_type
self
.
_pool_type
=
pool_type
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
...
@@ -205,25 +204,24 @@ class Pool2D(layers.Layer):
...
@@ -205,25 +204,24 @@ class Pool2D(layers.Layer):
class
FC
(
layers
.
Layer
):
class
FC
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
size
,
size
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
num_flatten_dims
=
1
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
act
=
None
,
act
=
None
):
name
=
None
):
super
(
FC
,
self
).
__init__
(
name_scope
)
super
(
FC
,
self
).
__init__
()
self
.
_size
=
size
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'FC'
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
act
=
act
,
act
=
act
)
name
=
name
)
def
_build_once
(
self
,
input
):
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
input_shape
=
input
.
shape
...
@@ -282,6 +280,7 @@ class FC(layers.Layer):
...
@@ -282,6 +280,7 @@ class FC(layers.Layer):
class
BatchNorm
(
layers
.
Layer
):
class
BatchNorm
(
layers
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
act
=
None
,
act
=
None
,
is_test
=
False
,
is_test
=
False
,
...
@@ -292,22 +291,20 @@ class BatchNorm(layers.Layer):
...
@@ -292,22 +291,20 @@ class BatchNorm(layers.Layer):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
data_layout
=
'NCHW'
,
data_layout
=
'NCHW'
,
in_place
=
False
,
in_place
=
False
,
name
=
None
,
moving_mean_name
=
None
,
moving_mean_name
=
None
,
moving_variance_name
=
None
,
moving_variance_name
=
None
,
do_model_average_for_mean_and_var
=
False
,
do_model_average_for_mean_and_var
=
False
,
fuse_with_relu
=
False
,
fuse_with_relu
=
False
,
use_global_stats
=
False
):
use_global_stats
=
False
):
super
(
BatchNorm
,
self
).
__init__
()
super
(
BatchNorm
,
self
).
__init__
(
name_scope
)
assert
bias_attr
is
not
False
,
"bias_attr should not be False in batch_norm."
assert
bias_attr
is
not
False
,
"bias_attr should not be False in batch_norm."
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'batch_norm'
,
self
.
full_name
()
,
param_attr
=
param_attr
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
bias_attr
=
bias_attr
,
name
=
name
,
act
=
act
)
act
=
act
)
if
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
if
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
...
@@ -419,6 +416,7 @@ class Embedding(layers.Layer):
...
@@ -419,6 +416,7 @@ class Embedding(layers.Layer):
constructor.
constructor.
Args:
Args:
name_scope: See base class.
size(tuple|list): The shape of the look up table parameter. It should
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
embeddings and the size of each embedding vector respectively.
...
@@ -446,6 +444,7 @@ class Embedding(layers.Layer):
...
@@ -446,6 +444,7 @@ class Embedding(layers.Layer):
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
size
,
size
,
is_sparse
=
False
,
is_sparse
=
False
,
is_distributed
=
False
,
is_distributed
=
False
,
...
@@ -453,7 +452,7 @@ class Embedding(layers.Layer):
...
@@ -453,7 +452,7 @@ class Embedding(layers.Layer):
param_attr
=
None
,
param_attr
=
None
,
dtype
=
'float32'
):
dtype
=
'float32'
):
super
(
Embedding
,
self
).
__init__
()
super
(
Embedding
,
self
).
__init__
(
name_scope
)
self
.
_size
=
size
self
.
_size
=
size
self
.
_is_sparse
=
is_sparse
self
.
_is_sparse
=
is_sparse
self
.
_is_distributed
=
is_distributed
self
.
_is_distributed
=
is_distributed
...
@@ -468,7 +467,7 @@ class Embedding(layers.Layer):
...
@@ -468,7 +467,7 @@ class Embedding(layers.Layer):
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'embedding'
,
param_attr
=
param_attr
)
self
.
_helper
=
LayerHelper
(
self
.
full_name
()
,
param_attr
=
param_attr
)
self
.
_w
=
self
.
_helper
.
create_parameter
(
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_param_attr
,
attr
=
self
.
_param_attr
,
shape
=
self
.
_size
,
shape
=
self
.
_size
,
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
a3f7ebd6
...
@@ -34,6 +34,9 @@ class LayerHelper(object):
...
@@ -34,6 +34,9 @@ class LayerHelper(object):
self
.
kwargs
=
kwargs
self
.
kwargs
=
kwargs
self
.
layer_type
=
layer_type
self
.
layer_type
=
layer_type
name
=
self
.
kwargs
.
get
(
'name'
,
None
)
name
=
self
.
kwargs
.
get
(
'name'
,
None
)
# TODO(panyx0718, minqiyang): imperative mode
# can not use both `layer_type` and `name`. Deprecate LayerHelper
# and write a Helper for imperative mode.
if
name
is
None
:
if
name
is
None
:
self
.
kwargs
[
'name'
]
=
unique_name
.
generate
(
self
.
layer_type
)
self
.
kwargs
[
'name'
]
=
unique_name
.
generate
(
self
.
layer_type
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
a3f7ebd6
...
@@ -551,9 +551,10 @@ def yolov3_loss(x,
...
@@ -551,9 +551,10 @@ def yolov3_loss(x,
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchors = [0, 1, 2]
anchor_mask = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80, anchors=anchors,
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel, anchors=anchors,
ignore_thresh=0.5, downsample_ratio=32)
anchor_mask=anchor_mask, class_num=80,
ignore_thresh=0.7, downsample_ratio=32)
"""
"""
helper
=
LayerHelper
(
'yolov3_loss'
,
**
locals
())
helper
=
LayerHelper
(
'yolov3_loss'
,
**
locals
())
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a3f7ebd6
...
@@ -87,6 +87,7 @@ __all__ = [
...
@@ -87,6 +87,7 @@ __all__ = [
'transpose'
,
'transpose'
,
'im2sequence'
,
'im2sequence'
,
'nce'
,
'nce'
,
'sampled_softmax_with_cross_entropy'
,
'hsigmoid'
,
'hsigmoid'
,
'beam_search'
,
'beam_search'
,
'row_conv'
,
'row_conv'
,
...
@@ -668,7 +669,11 @@ def dynamic_lstmp(input,
...
@@ -668,7 +669,11 @@ def dynamic_lstmp(input,
candidate_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
proj_activation
=
'tanh'
,
proj_activation
=
'tanh'
,
dtype
=
'float32'
,
dtype
=
'float32'
,
name
=
None
):
name
=
None
,
h_0
=
None
,
c_0
=
None
,
cell_clip
=
None
,
proj_clip
=
None
):
"""
"""
**Dynamic LSTMP Layer**
**Dynamic LSTMP Layer**
...
@@ -785,6 +790,17 @@ def dynamic_lstmp(input,
...
@@ -785,6 +790,17 @@ def dynamic_lstmp(input,
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the projection size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
cell_clip(float): If provided the cell state is clipped
by this value prior to the cell output activation.
proj_clip(float): If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`.
Returns:
Returns:
tuple: A tuple of two output variable: the projection of hidden state,
\
tuple: A tuple of two output variable: the projection of hidden state,
\
...
@@ -831,25 +847,41 @@ def dynamic_lstmp(input,
...
@@ -831,25 +847,41 @@ def dynamic_lstmp(input,
batch_hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
helper
.
append_op
(
type
=
'lstmp'
,
inputs
=
{
'Input'
:
input
,
'Input'
:
input
,
'Weight'
:
weight
,
'Weight'
:
weight
,
'ProjWeight'
:
proj_weight
,
'ProjWeight'
:
proj_weight
,
'Bias'
:
bias
'Bias'
:
bias
},
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
proj_size
),
\
'The shape of h0 should be (batch_size, %d)'
%
proj_size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
if
cell_clip
:
assert
cell_clip
>=
0
,
"cell_clip should not be negtive."
if
proj_clip
:
assert
proj_clip
>=
0
,
"proj_clip should not be negtive."
helper
.
append_op
(
type
=
'lstmp'
,
inputs
=
inputs
,
outputs
=
{
outputs
=
{
'Projection'
:
projection
,
'Projection'
:
projection
,
'Cell'
:
cell
,
'Cell'
:
cell
,
'OrderedP0'
:
ordered_proj0
,
'BatchHidden'
:
batch_hidden
,
'BatchHidden'
:
batch_hidden
,
'BatchGate'
:
batch_gate
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
'BatchCellPreAct'
:
batch_cell_pre_act
},
},
attrs
=
{
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'use_peepholes'
:
use_peepholes
,
'cell_clip'
:
cell_clip
,
'proj_clip'
:
proj_clip
,
'is_reverse'
:
is_reverse
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'cell_activation'
:
cell_activation
,
...
@@ -2569,7 +2601,27 @@ def adaptive_pool2d(input,
...
@@ -2569,7 +2601,27 @@ def adaptive_pool2d(input,
require_index
=
False
,
require_index
=
False
,
name
=
None
):
name
=
None
):
"""
"""
${comment}
**Adaptive Pool2d Operator**
The adaptive_pool2d operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(pool_size) should contain two elements which
represent height and width, respectively. Also the H and W dimensions of output(Out)
is same as Parameter(pool_size).
For average adaptive pool2d:
.. math::
hstart &= floor(i * H_{in} / H_{out})
hend &= ceil((i + 1) * H_{in} / H_{out})
wstart &= floor(j * W_{in} / W_{out})
wend &= ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) &=
\\
frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Args:
Args:
input (Variable): The input tensor of pooling operator. The format of
input (Variable): The input tensor of pooling operator. The format of
...
@@ -2579,8 +2631,8 @@ def adaptive_pool2d(input,
...
@@ -2579,8 +2631,8 @@ def adaptive_pool2d(input,
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
it must contain two integers, (pool_size_Height, pool_size_Width).
pool_type: ${pooling_type_comment}
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point
along with outputs.
require_index (bool): If true, the index of max pooling point
will be returned along
i
t cannot be set in average pooling type.
with outputs. I
t cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
layer will be named automatically.
...
@@ -2661,18 +2713,42 @@ def adaptive_pool3d(input,
...
@@ -2661,18 +2713,42 @@ def adaptive_pool3d(input,
require_index
=
False
,
require_index
=
False
,
name
=
None
):
name
=
None
):
"""
"""
${comment}
**Adaptive Pool3d Operator**
The adaptive_pool3d operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(pool_size) should contain
three elements which represent height and width, respectively. Also the D, H and W
dimensions of output(Out) is same as Parameter(pool_size).
For average adaptive pool3d:
.. math::
dstart &= floor(i * D_{in} / D_{out})
dend &= ceil((i + 1) * D_{in} / D_{out})
hstart &= floor(j * H_{in} / H_{out})
hend &= ceil((j + 1) * H_{in} / H_{out})
wstart &= floor(k * W_{in} / W_{out})
wend &= ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) &=
\\
frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Args:
Args:
input (Variable): The input tensor of pooling operator. The format of
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
input tensor is NC
D
HW, where N is batch size, C is
the number of channels,
H is the height of the
the number of channels,
D is the depth of the feature,
feature, and W is the width of the feature.
H is the height of the
feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain t
wo
integers, (Depth, Height, Width).
it must contain t
hree
integers, (Depth, Height, Width).
pool_type: ${pooling_type_comment}
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point
along with outputs.
require_index (bool): If true, the index of max pooling point
will be returned along
i
t cannot be set in average pooling type.
with outputs. I
t cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
layer will be named automatically.
...
@@ -2709,7 +2785,7 @@ def adaptive_pool3d(input,
...
@@ -2709,7 +2785,7 @@ def adaptive_pool3d(input,
name='data', shape=[3, 32, 32], dtype='float32')
name='data', shape=[3, 32, 32], dtype='float32')
pool_out, mask = fluid.layers.adaptive_pool3d(
pool_out, mask = fluid.layers.adaptive_pool3d(
input=data,
input=data,
pool_size=[3, 3],
pool_size=[3, 3
, 3
],
pool_type='avg')
pool_type='avg')
"""
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
if
pool_type
not
in
[
"max"
,
"avg"
]:
...
@@ -5765,6 +5841,132 @@ def softmax_with_cross_entropy(logits,
...
@@ -5765,6 +5841,132 @@ def softmax_with_cross_entropy(logits,
return
loss
return
loss
def
sampled_softmax_with_cross_entropy
(
logits
,
label
,
num_samples
,
num_true
=
1
,
remove_accidental_hits
=
True
,
use_customized_samples
=
False
,
customized_samples
=
None
,
customized_probabilities
=
None
,
seed
=
0
):
"""
**Sampled Softmax With Cross Entropy Operator.**
Cross entropy loss with sampled softmax is used as the output layer for
larger output classes extensively. This operator samples a number of samples
for all examples, and computes the softmax normalized values for each
row of the sampled tensor, after which cross-entropy loss is computed.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
For examples with T true labels (T >= 1), we assume that each true label has
a probability of 1/T. For each sample, S samples are generated using a
log uniform distribution. True labels are concatenated with these samples to
form T + S samples for each example. So, assume the shape of logits is
[N x K], the shape for samples is [N x (T+S)]. For each sampled label, a
probability is calculated, which corresponds to the Q(y|x) in
[Jean et al., 2014](http://arxiv.org/abs/1412.2007).
Logits are sampled according to the sampled labels. Then if
remove_accidental_hits is True, if a sample[i, j] accidentally hits true
labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to
make its softmax result close to zero. Then sampled logits are subtracted by
logQ(y|x), these sampled logits and re-indexed labels are used to compute
a softmax with cross entropy.
Args:
logits (Variable): The unscaled log probabilities, which is a 2-D tensor
with shape [N x K]. N is the batch_size, and K is the class number.
label (Variable): The ground truth which is a 2-D tensor. Label is a
Tensor<int64> with shape [N x T], where T is the number of true
labels per example.
num_samples (int): The number for each example, num_samples should be
less than the number of class.
num_true(int): The number of target classes per training example.
remove_accidental_hits (bool): A flag indicating whether to remove
accidental hits when sampling. If True and if a sample[i, j]
accidentally hits true labels, then the corresponding
sampled_logits[i, j] is minus by 1e20 to make its softmax result
close to zero. Default is True.
use_customized_samples (bool): Whether to use custom samples and probabities to sample
logits.
customized_samples (Variable): User defined samples, which is a 2-D tensor
with shape [N, T + S]. S is the num_samples, and T is the number of true
labels per example.
customized_probabilities (Variable): User defined probabilities of samples,
a 2-D tensor which has the same shape with customized_samples.
seed (int): The random seed for generating random number, which is used
in the process of sampling. Default is 0.
Returns:
Variable: Return the cross entropy loss which is a 2-D tensor with shape
[N x 1].
Examples:
.. code-block:: python
logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
label = fluid.layers.data(name='label', shape=[5], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.sampled_softmax_with_cross_entropy(
logits=fc, label=label, num_samples=25)
"""
helper
=
LayerHelper
(
'sample_logits'
,
**
locals
())
samples
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int64'
)
probabilities
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
sampled_logits
\
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
sampled_label
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int64'
)
sampled_softlabel
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
helper
.
append_op
(
type
=
'sample_logits'
,
inputs
=
{
'Logits'
:
logits
,
'Labels'
:
label
,
'CustomizedSamples'
:
customized_samples
,
'CustomizedProbabilities'
:
customized_probabilities
},
outputs
=
{
'Samples'
:
samples
,
'Probabilities'
:
probabilities
,
'SampledLabels'
:
sampled_label
,
'SampledLogits'
:
sampled_logits
},
attrs
=
{
'use_customized_samples'
:
use_customized_samples
,
'uniq'
:
True
,
'remove_accidental_hits'
:
remove_accidental_hits
,
'num_samples'
:
num_samples
,
'seed'
:
seed
})
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
softmax
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
helper
.
append_op
(
type
=
'one_hot'
,
inputs
=
{
'X'
:
sampled_label
},
attrs
=
{
'depth'
:
num_samples
+
1
},
outputs
=
{
'Out'
:
sampled_softlabel
})
helper
.
append_op
(
type
=
'softmax_with_cross_entropy'
,
inputs
=
{
'Logits'
:
sampled_logits
,
'Label'
:
sampled_softlabel
},
outputs
=
{
'Softmax'
:
softmax
,
'Loss'
:
loss
},
attrs
=
{
'soft_label'
:
True
,
'ignore_index'
:
False
,
'numeric_stable_mode'
:
False
})
return
loss
/
num_true
def
smooth_l1
(
x
,
y
,
inside_weight
=
None
,
outside_weight
=
None
,
sigma
=
None
):
def
smooth_l1
(
x
,
y
,
inside_weight
=
None
,
outside_weight
=
None
,
sigma
=
None
):
"""
"""
This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
a3f7ebd6
...
@@ -29,15 +29,6 @@ ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
...
@@ -29,15 +29,6 @@ ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
def
_is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
framework
.
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
class
ParallelExecutor
(
object
):
class
ParallelExecutor
(
object
):
"""
"""
ParallelExecutor is designed for data parallelism, which focuses on distributing
ParallelExecutor is designed for data parallelism, which focuses on distributing
...
@@ -140,7 +131,7 @@ class ParallelExecutor(object):
...
@@ -140,7 +131,7 @@ class ParallelExecutor(object):
# FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
# FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
# num_trainers is 1, so the current fields of build_strategy doesn't tell if
# num_trainers is 1, so the current fields of build_strategy doesn't tell if
# it's distributed model.
# it's distributed model.
build_strategy
.
is_distribution
=
_
is_pserver_mode
(
build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
main_program
)
or
num_trainers
>
1
main_program
)
or
num_trainers
>
1
# step4: get main_program, scope, local_scopes
# step4: get main_program, scope, local_scopes
...
...
python/paddle/fluid/tests/unittests/test_base_layer.py
浏览文件 @
a3f7ebd6
...
@@ -20,10 +20,10 @@ from paddle.fluid.layer_helper import LayerHelper
...
@@ -20,10 +20,10 @@ from paddle.fluid.layer_helper import LayerHelper
class
L1
(
fluid
.
imperative
.
Layer
):
class
L1
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L1
,
self
).
__init__
()
super
(
L1
,
self
).
__init__
(
prefix
)
self
.
_helper
=
LayerHelper
(
self
.
_helper
=
LayerHelper
(
'MyLayer'
,
self
.
full_name
()
,
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
...
@@ -43,20 +43,20 @@ class L1(fluid.imperative.Layer):
...
@@ -43,20 +43,20 @@ class L1(fluid.imperative.Layer):
class
L2
(
fluid
.
imperative
.
Layer
):
class
L2
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L2
,
self
).
__init__
()
super
(
L2
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L1
()
self
.
layer1
=
L1
(
self
.
full_name
()
)
self
.
layer2
=
L1
()
self
.
layer2
=
L1
(
self
.
full_name
()
)
def
forward
(
self
):
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
return
self
.
layer1
()
+
self
.
layer2
()
class
L3
(
fluid
.
imperative
.
Layer
):
class
L3
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
prefix
):
super
(
L3
,
self
).
__init__
()
super
(
L3
,
self
).
__init__
(
prefix
)
self
.
layer1
=
L2
()
self
.
layer1
=
L2
(
self
.
full_name
()
)
self
.
layer2
=
L2
()
self
.
layer2
=
L2
(
self
.
full_name
()
)
def
forward
(
self
):
def
forward
(
self
):
return
self
.
layer1
()
+
self
.
layer2
()
return
self
.
layer1
()
+
self
.
layer2
()
...
@@ -65,16 +65,23 @@ class L3(fluid.imperative.Layer):
...
@@ -65,16 +65,23 @@ class L3(fluid.imperative.Layer):
class
TestBaseLayer
(
unittest
.
TestCase
):
class
TestBaseLayer
(
unittest
.
TestCase
):
def
test_one_level
(
self
):
def
test_one_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
l
=
L1
()
l
=
L1
(
'test_one_level'
)
ret
=
l
()
ret
=
l
()
self
.
assertEqual
(
l
.
w1
.
name
,
"
MyLayer
_0.w_0"
)
self
.
assertEqual
(
l
.
w1
.
name
,
"
test_one_level/L1_0
_0.w_0"
)
self
.
assertEqual
(
l
.
w2
.
name
,
"
MyLayer
_0.w_1"
)
self
.
assertEqual
(
l
.
w2
.
name
,
"
test_one_level/L1_0
_0.w_1"
)
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.2
*
np
.
ones
([
2
,
2
])))
def
test_three_level
(
self
):
def
test_three_level
(
self
):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
l
=
L3
()
l
=
L3
(
'test_three_level'
)
names
=
[
p
.
name
for
p
in
l
.
parameters
()]
ret
=
l
()
ret
=
l
()
self
.
assertEqual
(
names
[
0
],
"test_three_level/L3_0/L2_0/L1_0_0.w_0"
)
self
.
assertEqual
(
names
[
1
],
"test_three_level/L3_0/L2_0/L1_0_0.w_1"
)
self
.
assertEqual
(
names
[
2
],
"test_three_level/L3_0/L2_0/L1_1_0.w_0"
)
self
.
assertEqual
(
names
[
3
],
"test_three_level/L3_0/L2_0/L1_1_0.w_1"
)
self
.
assertEqual
(
names
[
4
],
"test_three_level/L3_0/L2_1/L1_0_0.w_0"
)
self
.
assertEqual
(
names
[
5
],
"test_three_level/L3_0/L2_1/L1_0_0.w_1"
)
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.8
*
np
.
ones
([
2
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
0.8
*
np
.
ones
([
2
,
2
])))
...
...
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
a3f7ebd6
...
@@ -15,7 +15,6 @@
...
@@ -15,7 +15,6 @@
import
contextlib
import
contextlib
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
sys
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
...
@@ -24,8 +23,8 @@ from test_imperative_base import new_program_scope
...
@@ -24,8 +23,8 @@ from test_imperative_base import new_program_scope
class
MyLayer
(
fluid
.
imperative
.
Layer
):
class
MyLayer
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
MyLayer
,
self
).
__init__
()
super
(
MyLayer
,
self
).
__init__
(
name_scope
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
)
x
=
fluid
.
layers
.
relu
(
inputs
)
...
@@ -50,12 +49,14 @@ class MyPyLayer(fluid.imperative.PyLayer):
...
@@ -50,12 +49,14 @@ class MyPyLayer(fluid.imperative.PyLayer):
class
MLP
(
fluid
.
imperative
.
Layer
):
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
()
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
3
,
self
.
_fc1
=
FC
(
self
.
full_name
(),
3
,
fluid
.
ParamAttr
(
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
self
.
_fc2
=
FC
(
4
,
self
.
_fc2
=
FC
(
self
.
full_name
(),
4
,
fluid
.
ParamAttr
(
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
...
@@ -67,8 +68,9 @@ class MLP(fluid.imperative.Layer):
...
@@ -67,8 +68,9 @@ class MLP(fluid.imperative.Layer):
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
step_input_size
,
hidden_size
,
output_size
,
param_attr
):
def
__init__
(
self
,
name_scope
,
step_input_size
,
hidden_size
,
output_size
,
super
(
SimpleRNNCell
,
self
).
__init__
()
param_attr
):
super
(
SimpleRNNCell
,
self
).
__init__
(
name_scope
)
self
.
step_input_size
=
step_input_size
self
.
step_input_size
=
step_input_size
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
output_size
=
output_size
self
.
output_size
=
output_size
...
@@ -158,10 +160,11 @@ class SimpleRNNCell(fluid.imperative.Layer):
...
@@ -158,10 +160,11 @@ class SimpleRNNCell(fluid.imperative.Layer):
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
SimpleRNN
,
self
).
__init__
()
super
(
SimpleRNN
,
self
).
__init__
(
name_scope
)
self
.
seq_len
=
4
self
.
seq_len
=
4
self
.
_cell
=
SimpleRNNCell
(
self
.
_cell
=
SimpleRNNCell
(
self
.
full_name
(),
3
,
3
,
3
,
3
,
3
,
3
,
...
@@ -205,7 +208,7 @@ class TestImperative(unittest.TestCase):
...
@@ -205,7 +208,7 @@ class TestImperative(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
cl
=
core
.
Layer
()
cl
.
forward
([])
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
()
l
=
fluid
.
imperative
.
Layer
(
"l"
)
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_pylayer_func_id
(
self
):
def
test_pylayer_func_id
(
self
):
...
@@ -281,7 +284,7 @@ class TestImperative(unittest.TestCase):
...
@@ -281,7 +284,7 @@ class TestImperative(unittest.TestCase):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
()
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
var_inp
)[
0
]
x
=
l
(
var_inp
)[
0
]
self
.
assertIsNotNone
(
x
)
self
.
assertIsNotNone
(
x
)
dy_out
=
x
.
_numpy
()
dy_out
=
x
.
_numpy
()
...
@@ -291,7 +294,7 @@ class TestImperative(unittest.TestCase):
...
@@ -291,7 +294,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
l
=
MyLayer
()
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
inp
)[
0
]
x
=
l
(
inp
)[
0
]
param_grads
=
fluid
.
backward
.
append_backward
(
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
...
@@ -309,7 +312,7 @@ class TestImperative(unittest.TestCase):
...
@@ -309,7 +312,7 @@ class TestImperative(unittest.TestCase):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
()
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
var_inp
)
out
=
mlp
(
var_inp
)
dy_out
=
out
.
_numpy
()
dy_out
=
out
.
_numpy
()
out
.
_backward
()
out
.
_backward
()
...
@@ -318,7 +321,7 @@ class TestImperative(unittest.TestCase):
...
@@ -318,7 +321,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
mlp
=
MLP
()
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
inp
)
out
=
mlp
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
param_grads
=
fluid
.
backward
.
append_backward
(
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
...
@@ -334,10 +337,10 @@ class TestImperative(unittest.TestCase):
...
@@ -334,10 +337,10 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
params
=
mlp
.
parameters
(
True
)
params
=
mlp
.
parameters
(
True
)
self
.
assertEqual
(
"
FC
_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_0
_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"
FC
_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_0
_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"
FC_1
.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_1_0
.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"
FC_1
.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
"
mlp/MLP_0/FC_1_0
.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
len
(
params
),
4
)
self
.
assertEqual
(
len
(
params
),
4
)
sublayers
=
mlp
.
sublayers
(
True
)
sublayers
=
mlp
.
sublayers
(
True
)
...
@@ -353,7 +356,7 @@ class TestImperative(unittest.TestCase):
...
@@ -353,7 +356,7 @@ class TestImperative(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
()
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
outs
[
3
].
_backward
()
...
@@ -364,7 +367,7 @@ class TestImperative(unittest.TestCase):
...
@@ -364,7 +367,7 @@ class TestImperative(unittest.TestCase):
with
new_program_scope
():
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
()
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
...
...
python/paddle/fluid/tests/unittests/test_imperative_gan.py
浏览文件 @
a3f7ebd6
...
@@ -28,10 +28,10 @@ from paddle.fluid.imperative.base import to_variable
...
@@ -28,10 +28,10 @@ from paddle.fluid.imperative.base import to_variable
class
Discriminator
(
fluid
.
imperative
.
Layer
):
class
Discriminator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
Discriminator
,
self
).
__init__
()
super
(
Discriminator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
s
ize
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc1
=
FC
(
s
elf
.
full_name
(),
size
=
32
,
act
=
'elu'
)
self
.
_fc2
=
FC
(
s
ize
=
1
,
name
=
"d_fc2"
)
self
.
_fc2
=
FC
(
s
elf
.
full_name
(),
size
=
1
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
...
@@ -39,11 +39,11 @@ class Discriminator(fluid.imperative.Layer):
...
@@ -39,11 +39,11 @@ class Discriminator(fluid.imperative.Layer):
class
Generator
(
fluid
.
imperative
.
Layer
):
class
Generator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
,
name_scope
):
super
(
Generator
,
self
).
__init__
()
super
(
Generator
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
s
ize
=
64
,
act
=
'elu'
,
name
=
"g_fc1"
)
self
.
_fc1
=
FC
(
s
elf
.
full_name
(),
size
=
64
,
act
=
'elu'
)
self
.
_fc2
=
FC
(
s
ize
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc2
=
FC
(
s
elf
.
full_name
(),
size
=
64
,
act
=
'elu'
)
self
.
_fc3
=
FC
(
s
ize
=
1
,
name
=
"g_fc3"
)
self
.
_fc3
=
FC
(
s
elf
.
full_name
(),
size
=
1
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
...
@@ -65,8 +65,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -65,8 +65,8 @@ class TestImperativeMnist(unittest.TestCase):
scope
=
fluid
.
core
.
Scope
()
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
with
new_program_scope
(
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
img
=
fluid
.
layers
.
data
(
img
=
fluid
.
layers
.
data
(
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
...
@@ -93,8 +93,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -93,8 +93,8 @@ class TestImperativeMnist(unittest.TestCase):
sgd
.
minimize
(
d_loss
)
sgd
.
minimize
(
d_loss
)
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
noise
=
fluid
.
layers
.
data
(
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
...
@@ -134,8 +134,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -134,8 +134,8 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
discriminator
=
Discriminator
(
"d"
)
generator
=
Generator
()
generator
=
Generator
(
"g"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
a3f7ebd6
...
@@ -28,6 +28,7 @@ from test_imperative_base import new_program_scope
...
@@ -28,6 +28,7 @@ from test_imperative_base import new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
@@ -44,9 +45,10 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -44,9 +45,10 @@ class SimpleImgConvPool(fluid.imperative.Layer):
use_cudnn
=
False
,
use_cudnn
=
False
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
):
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
()
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
...
@@ -59,6 +61,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -59,6 +61,7 @@ class SimpleImgConvPool(fluid.imperative.Layer):
use_cudnn
=
use_cudnn
)
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_stride
=
pool_stride
,
...
@@ -73,19 +76,20 @@ class SimpleImgConvPool(fluid.imperative.Layer):
...
@@ -73,19 +76,20 @@ class SimpleImgConvPool(fluid.imperative.Layer):
class
MNIST
(
fluid
.
imperative
.
Layer
):
class
MNIST
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
def
__init__
(
self
,
name_scope
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MNIST
,
self
).
__init__
()
super
(
MNIST
,
self
).
__init__
(
name_scope
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
10
,
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
loc
=
0.0
,
scale
=
scale
)),
...
@@ -106,7 +110,7 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -106,7 +110,7 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
MNIST
()
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
@@ -150,7 +154,7 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -150,7 +154,7 @@ class TestImperativeMnist(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
()
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
浏览文件 @
a3f7ebd6
...
@@ -28,12 +28,13 @@ from paddle.fluid.backward import append_backward
...
@@ -28,12 +28,13 @@ from paddle.fluid.backward import append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
hidden_size
,
hidden_size
,
num_steps
,
num_steps
,
num_layers
=
2
,
num_layers
=
2
,
init_scale
=
0.1
,
init_scale
=
0.1
,
dropout
=
None
):
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
super
(
SimpleLSTMRNN
,
self
).
__init__
(
name_scope
)
self
.
_hidden_size
=
hidden_size
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_init_scale
=
init_scale
...
@@ -130,13 +131,14 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
...
@@ -130,13 +131,14 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
class
PtbModel
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
hidden_size
,
hidden_size
,
vocab_size
,
vocab_size
,
num_layers
=
2
,
num_layers
=
2
,
num_steps
=
20
,
num_steps
=
20
,
init_scale
=
0.1
,
init_scale
=
0.1
,
dropout
=
None
):
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
super
(
PtbModel
,
self
).
__init__
(
name_scope
)
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
init_scale
=
init_scale
...
@@ -146,12 +148,14 @@ class PtbModel(fluid.imperative.Layer):
...
@@ -146,12 +148,14 @@ class PtbModel(fluid.imperative.Layer):
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'PtbModel'
,
act
=
"tanh"
)
self
.
_helper
=
LayerHelper
(
'PtbModel'
,
act
=
"tanh"
)
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
self
.
full_name
(),
hidden_size
,
hidden_size
,
num_steps
,
num_steps
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
init_scale
=
init_scale
,
dropout
=
dropout
)
dropout
=
dropout
)
self
.
embedding
=
Embedding
(
self
.
embedding
=
Embedding
(
self
.
full_name
(),
size
=
[
vocab_size
,
hidden_size
],
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
dtype
=
'float32'
,
is_sparse
=
False
,
is_sparse
=
False
,
...
@@ -226,6 +230,7 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -226,6 +230,7 @@ class TestImperativePtbRnn(unittest.TestCase):
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
...
@@ -265,6 +270,7 @@ class TestImperativePtbRnn(unittest.TestCase):
...
@@ -265,6 +270,7 @@ class TestImperativePtbRnn(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
ptb_model
=
PtbModel
(
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_layers
=
num_layers
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
a3f7ebd6
...
@@ -70,15 +70,17 @@ def optimizer_setting(params):
...
@@ -70,15 +70,17 @@ def optimizer_setting(params):
class
ConvBNLayer
(
fluid
.
imperative
.
Layer
):
class
ConvBNLayer
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
stride
=
1
,
stride
=
1
,
groups
=
1
,
groups
=
1
,
act
=
None
):
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
self
.
_conv
=
Conv2D
(
self
.
_conv
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
...
@@ -88,7 +90,7 @@ class ConvBNLayer(fluid.imperative.Layer):
...
@@ -88,7 +90,7 @@ class ConvBNLayer(fluid.imperative.Layer):
act
=
None
,
act
=
None
,
bias_attr
=
None
)
bias_attr
=
None
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_conv
(
inputs
)
...
@@ -98,21 +100,29 @@ class ConvBNLayer(fluid.imperative.Layer):
...
@@ -98,21 +100,29 @@ class ConvBNLayer(fluid.imperative.Layer):
class
BottleneckBlock
(
fluid
.
imperative
.
Layer
):
class
BottleneckBlock
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
def
__init__
(
self
,
super
(
BottleneckBlock
,
self
).
__init__
()
name_scope
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
1
,
filter_size
=
1
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -120,6 +130,7 @@ class BottleneckBlock(fluid.imperative.Layer):
...
@@ -120,6 +130,7 @@ class BottleneckBlock(fluid.imperative.Layer):
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -141,13 +152,13 @@ class BottleneckBlock(fluid.imperative.Layer):
...
@@ -141,13 +152,13 @@ class BottleneckBlock(fluid.imperative.Layer):
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
'elementwise_add_activation'
,
act
=
'relu'
)
layer_helper
=
LayerHelper
(
self
.
full_name
()
,
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet
(
fluid
.
imperative
.
Layer
):
class
ResNet
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
def
__init__
(
self
,
name_scope
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
,
self
).
__init__
(
name_scope
)
self
.
layers
=
layers
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
supported_layers
=
[
50
,
101
,
152
]
...
@@ -163,9 +174,18 @@ class ResNet(fluid.imperative.Layer):
...
@@ -163,9 +174,18 @@ class ResNet(fluid.imperative.Layer):
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
Pool2D
(
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
self
.
bottleneck_block_list
=
[]
num_channels
=
64
num_channels
=
64
...
@@ -175,6 +195,7 @@ class ResNet(fluid.imperative.Layer):
...
@@ -175,6 +195,7 @@ class ResNet(fluid.imperative.Layer):
bottleneck_block
=
self
.
add_sublayer
(
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
BottleneckBlock
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
...
@@ -184,12 +205,13 @@ class ResNet(fluid.imperative.Layer):
...
@@ -184,12 +205,13 @@ class ResNet(fluid.imperative.Layer):
shortcut
=
True
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
import
math
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
FC
(
size
=
class_dim
,
self
.
out
=
FC
(
self
.
full_name
(),
size
=
class_dim
,
act
=
'softmax'
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
...
@@ -214,7 +236,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -214,7 +236,7 @@ class TestImperativeResnet(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
resnet
=
ResNet
()
resnet
=
ResNet
(
"resnet"
)
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
import
random
import
random
...
@@ -275,7 +297,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -275,7 +297,7 @@ class TestImperativeResnet(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
resnet
=
ResNet
()
resnet
=
ResNet
(
"resnet"
)
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a3f7ebd6
...
@@ -374,6 +374,17 @@ class TestBook(unittest.TestCase):
...
@@ -374,6 +374,17 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_sampled_softmax_with_cross_entropy
(
self
):
program
=
Program
()
with
program_guard
(
program
):
logits
=
layers
.
data
(
name
=
'Logits'
,
shape
=
[
256
],
dtype
=
'float64'
)
label
=
layers
.
data
(
name
=
'Label'
,
shape
=
[
1
],
dtype
=
'int64'
)
num_samples
=
25
output
=
layers
.
sampled_softmax_with_cross_entropy
(
logits
,
label
,
num_samples
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
@
decorators
.
prog_scope
()
@
decorators
.
prog_scope
()
def
test_nce
(
self
):
def
test_nce
(
self
):
window_size
=
5
window_size
=
5
...
...
python/paddle/fluid/tests/unittests/test_lstmp_op.py
浏览文件 @
a3f7ebd6
...
@@ -36,12 +36,14 @@ def lstmp(
...
@@ -36,12 +36,14 @@ def lstmp(
w_b
=
None
,
# 1 x 4D
w_b
=
None
,
# 1 x 4D
w_c
=
None
,
# 1 x 3D
w_c
=
None
,
# 1 x 3D
is_reverse
=
False
,
is_reverse
=
False
,
proj_clip
=
0.0
,
cell_clip
=
0.0
,
act_gate
=
None
,
act_gate
=
None
,
act_cell
=
None
,
act_cell
=
None
,
act_cand
=
None
,
act_cand
=
None
,
act_proj
=
None
):
act_proj
=
None
):
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
act_cell
,
act_cand
,
def
_step
(
x
,
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
proj_clip
,
cell_clip
,
act_gate
,
act_proj
):
act_
cell
,
act_cand
,
act_
proj
):
g
=
np
.
dot
(
r_pre
,
w_r
)
# 1 x 4D
g
=
np
.
dot
(
r_pre
,
w_r
)
# 1 x 4D
g
=
g
+
x
g
=
g
+
x
g
=
np
.
reshape
(
g
,
(
1
,
g
.
size
))
g
=
np
.
reshape
(
g
,
(
1
,
g
.
size
))
...
@@ -55,6 +57,17 @@ def lstmp(
...
@@ -55,6 +57,17 @@ def lstmp(
g_f
=
act_gate
(
g_f
+
w_fc
*
c_pre
)
# 1 x D
g_f
=
act_gate
(
g_f
+
w_fc
*
c_pre
)
# 1 x D
c
=
g_f
*
c_pre
+
g_i
*
act_cand
(
c
)
# 1 x D
c
=
g_f
*
c_pre
+
g_i
*
act_cand
(
c
)
# 1 x D
def
array_clip
(
a
,
clip
):
size
=
np
.
prod
(
a
.
shape
)
new_a
=
np
.
reshape
(
a
,
(
size
))
for
i
in
range
(
size
):
new_a
[
i
]
=
max
(
new_a
[
i
],
-
1.0
*
clip
)
new_a
[
i
]
=
min
(
new_a
[
i
],
clip
)
new_a
=
np
.
reshape
(
new_a
,
a
.
shape
)
return
new_a
if
cell_clip
>
0.0
:
c
=
array_clip
(
c
,
cell_clip
)
if
w_c
is
None
:
if
w_c
is
None
:
g_o
=
act_gate
(
g_o
)
# 1 x D
g_o
=
act_gate
(
g_o
)
# 1 x D
else
:
else
:
...
@@ -64,6 +77,8 @@ def lstmp(
...
@@ -64,6 +77,8 @@ def lstmp(
# projection
# projection
r
=
np
.
dot
(
h
,
w_rh
)
r
=
np
.
dot
(
h
,
w_rh
)
r
=
act_proj
(
r
)
r
=
act_proj
(
r
)
if
proj_clip
>
0.0
:
r
=
array_clip
(
r
,
proj_clip
)
return
r
,
c
return
r
,
c
def
_reverse
(
x
,
offset
):
def
_reverse
(
x
,
offset
):
...
@@ -87,13 +102,13 @@ def lstmp(
...
@@ -87,13 +102,13 @@ def lstmp(
# compute one sequence
# compute one sequence
seq_len
=
lod
[
0
][
i
]
seq_len
=
lod
[
0
][
i
]
x
=
input
[
offset
[
i
]:
offset
[
i
+
1
],
:]
x
=
input
[
offset
[
i
]:
offset
[
i
+
1
],
:]
r_pre
=
np
.
dot
(
h0
[
i
],
w_rh
)
# 1 x P
r_pre
=
h0
[
i
]
r_pre
=
act_proj
(
r_pre
)
c_pre
=
c0
[
i
]
# 1 x D
c_pre
=
c0
[
i
]
# 1 x D
for
j
in
range
(
seq_len
):
for
j
in
range
(
seq_len
):
# compute one step
# compute one step
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
act_gate
,
r_pre
,
c_pre
=
_step
(
x
[
j
],
w_r
,
w_rh
,
w_c
,
r_pre
,
c_pre
,
proj_clip
,
act_cell
,
act_cand
,
act_proj
)
cell_clip
,
act_gate
,
act_cell
,
act_cand
,
act_proj
)
projection
.
append
(
r_pre
.
flatten
())
projection
.
append
(
r_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
cell
.
append
(
c_pre
.
flatten
())
...
@@ -123,13 +138,12 @@ class TestLstmpOp(LstmTest.TestLstmOp):
...
@@ -123,13 +138,12 @@ class TestLstmpOp(LstmTest.TestLstmOp):
T
=
sum
(
self
.
lod
[
0
])
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
'float64'
)
x
=
np
.
random
.
normal
(
size
=
(
T
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
has_initial_state
:
if
self
.
has_initial_state
:
h0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
h0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
P
)).
astype
(
'float64'
)
c0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
random
.
normal
(
size
=
(
N
,
self
.
D
)).
astype
(
'float64'
)
else
:
else
:
h0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
h0
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
c0
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
P
,
4
*
self
.
D
)).
astype
(
'float64'
)
w
=
np
.
random
.
normal
(
size
=
(
self
.
P
,
4
*
self
.
D
)).
astype
(
'float64'
)
if
self
.
use_peepholes
:
if
self
.
use_peepholes
:
...
@@ -140,9 +154,12 @@ class TestLstmpOp(LstmTest.TestLstmOp):
...
@@ -140,9 +154,12 @@ class TestLstmpOp(LstmTest.TestLstmOp):
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
use_peepholes
else
None
w_rh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
self
.
P
)).
astype
(
'float64'
)
w_rh
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
self
.
P
)).
astype
(
'float64'
)
proj_clip
=
0.1
cell_clip
=
0.1
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
r
,
c
=
lstmp
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_rh
,
w_b
,
w_c
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cell
],
proj_clip
,
cell_clip
,
ACTIVATION
[
self
.
act_gate
],
ACTIVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
])
ACTIVATION
[
self
.
act_cell
],
ACTIVATION
[
self
.
act_cand
],
ACTIVATION
[
self
.
act_proj
])
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'ProjWeight'
:
w_rh
}
...
@@ -159,6 +176,8 @@ class TestLstmpOp(LstmTest.TestLstmOp):
...
@@ -159,6 +176,8 @@ class TestLstmpOp(LstmTest.TestLstmOp):
self
.
attrs
=
{
self
.
attrs
=
{
'use_peepholes'
:
self
.
use_peepholes
,
'use_peepholes'
:
self
.
use_peepholes
,
'is_reverse'
:
self
.
is_reverse
,
'is_reverse'
:
self
.
is_reverse
,
'proj_clip'
:
proj_clip
,
'cell_clip'
:
cell_clip
,
'gate_activation'
:
self
.
act_gate
,
'gate_activation'
:
self
.
act_gate
,
'cell_activation'
:
self
.
act_cell
,
'cell_activation'
:
self
.
act_cell
,
'candidate_activation'
:
self
.
act_cand
,
'candidate_activation'
:
self
.
act_cand
,
...
@@ -171,14 +190,14 @@ class TestLstmpOp(LstmTest.TestLstmOp):
...
@@ -171,14 +190,14 @@ class TestLstmpOp(LstmTest.TestLstmOp):
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
(
N
,
self
.
D
)).
astype
(
'float64'
)
(
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
)
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
)
class
TestLstmpOpHasInitial
(
TestLstmpOp
):
class
TestLstmpOpHasInitial
(
TestLstmpOp
):
...
@@ -188,7 +207,6 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -188,7 +207,6 @@ class TestLstmpOpHasInitial(TestLstmpOp):
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -196,11 +214,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -196,11 +214,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
,
'C0'
],
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
,
'C0'
],
[
'Projection'
],
[
'Projection'
],
numeric_grad_delta
=
0.0000005
,
max_relative_error
=
1e-2
)
max_relative_error
=
1e-2
)
def
test_check_grad_ingore_bias
(
self
):
def
test_check_grad_ingore_bias
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -208,11 +226,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -208,11 +226,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'ProjWeight'
,
'Weight'
],
[
'Projection'
],
[
'Input'
,
'ProjWeight'
,
'Weight'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Bias'
))
no_grad_set
=
set
(
'Bias'
))
def
test_check_grad_ingore_weight
(
self
):
def
test_check_grad_ingore_weight
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -220,11 +238,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -220,11 +238,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
[
'Input'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Weight'
))
no_grad_set
=
set
(
'Weight'
))
def
test_check_grad_ingore_proj_weight
(
self
):
def
test_check_grad_ingore_proj_weight
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -232,11 +250,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -232,11 +250,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'Bias'
],
[
'Projection'
],
[
'Input'
,
'Weight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'ProjWeight'
))
no_grad_set
=
set
(
'ProjWeight'
))
def
test_check_grad_ingore_input
(
self
):
def
test_check_grad_ingore_input
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -244,11 +262,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -244,11 +262,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
[
'Weight'
,
'ProjWeight'
,
'Bias'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'Input'
))
no_grad_set
=
set
(
'Input'
))
def
test_check_grad_ingore_h0
(
self
):
def
test_check_grad_ingore_h0
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -256,11 +274,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -256,11 +274,11 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'C0'
],
[
'Projection'
],
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'C0'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'H0'
))
no_grad_set
=
set
(
'H0'
))
def
test_check_grad_ingore_c0
(
self
):
def
test_check_grad_ingore_c0
(
self
):
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
outputs
[
'OrderedP0'
]
=
np
.
zeros
((
N
,
self
.
P
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchHidden'
]
=
np
.
zeros
((
N
,
self
.
D
)).
astype
(
'float64'
)
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
self
.
outputs
[
'BatchCellPreAct'
]
=
np
.
zeros
(
...
@@ -268,6 +286,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
...
@@ -268,6 +286,7 @@ class TestLstmpOpHasInitial(TestLstmpOp):
self
.
check_grad
(
self
.
check_grad
(
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
],
[
'Projection'
],
[
'Input'
,
'Weight'
,
'ProjWeight'
,
'Bias'
,
'H0'
],
[
'Projection'
],
max_relative_error
=
1e-2
,
max_relative_error
=
1e-2
,
numeric_grad_delta
=
0.0000005
,
no_grad_set
=
set
(
'C0'
))
no_grad_set
=
set
(
'C0'
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录