Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a3b3ec68
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a3b3ec68
编写于
12月 03, 2021
作者:
J
jianghaicheng
提交者:
GitHub
12月 03, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ipu_backend (#36322)
上级
a6d2fddb
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
2020 addition
and
0 deletion
+2020
-0
CMakeLists.txt
CMakeLists.txt
+1
-0
cmake/configure.cmake
cmake/configure.cmake
+5
-0
cmake/external/poplar.cmake
cmake/external/poplar.cmake
+61
-0
cmake/external/protobuf.cmake
cmake/external/protobuf.cmake
+5
-0
cmake/flags.cmake
cmake/flags.cmake
+7
-0
cmake/third_party.cmake
cmake/third_party.cmake
+5
-0
paddle/fluid/platform/device/CMakeLists.txt
paddle/fluid/platform/device/CMakeLists.txt
+5
-0
paddle/fluid/platform/device/ipu/CMakeLists.txt
paddle/fluid/platform/device/ipu/CMakeLists.txt
+8
-0
paddle/fluid/platform/device/ipu/common.h
paddle/fluid/platform/device/ipu/common.h
+35
-0
paddle/fluid/platform/device/ipu/device.cc
paddle/fluid/platform/device/ipu/device.cc
+39
-0
paddle/fluid/platform/device/ipu/device.h
paddle/fluid/platform/device/ipu/device.h
+44
-0
paddle/fluid/platform/device/ipu/ipu_backend.cc
paddle/fluid/platform/device/ipu/ipu_backend.cc
+195
-0
paddle/fluid/platform/device/ipu/ipu_backend.h
paddle/fluid/platform/device/ipu/ipu_backend.h
+103
-0
paddle/fluid/platform/device/ipu/ipu_compiler.cc
paddle/fluid/platform/device/ipu/ipu_compiler.cc
+397
-0
paddle/fluid/platform/device/ipu/ipu_compiler.h
paddle/fluid/platform/device/ipu/ipu_compiler.h
+93
-0
paddle/fluid/platform/device/ipu/ipu_executor.cc
paddle/fluid/platform/device/ipu/ipu_executor.cc
+209
-0
paddle/fluid/platform/device/ipu/ipu_executor.h
paddle/fluid/platform/device/ipu/ipu_executor.h
+83
-0
paddle/fluid/platform/device/ipu/ipu_optimizer.cc
paddle/fluid/platform/device/ipu/ipu_optimizer.cc
+136
-0
paddle/fluid/platform/device/ipu/ipu_optimizer.h
paddle/fluid/platform/device/ipu/ipu_optimizer.h
+76
-0
paddle/fluid/platform/device/ipu/ipu_strategy.cc
paddle/fluid/platform/device/ipu/ipu_strategy.cc
+21
-0
paddle/fluid/platform/device/ipu/ipu_strategy.h
paddle/fluid/platform/device/ipu/ipu_strategy.h
+39
-0
paddle/fluid/platform/device/ipu/ipu_utils.cc
paddle/fluid/platform/device/ipu/ipu_utils.cc
+155
-0
paddle/fluid/platform/device/ipu/ipu_utils.h
paddle/fluid/platform/device/ipu/ipu_utils.h
+101
-0
paddle/fluid/platform/device/ipu/supported_ops_autogen.h
paddle/fluid/platform/device/ipu/supported_ops_autogen.h
+197
-0
未找到文件。
CMakeLists.txt
浏览文件 @
a3b3ec68
...
...
@@ -46,6 +46,7 @@ option(WITH_XPU "Compile PaddlePaddle with BAIDU KUNLUN XPU" OFF)
option
(
WITH_WIN_DUMP_DBG
"Compile with windows core dump debug mode"
OFF
)
option
(
WITH_ASCEND
"Compile PaddlePaddle with ASCEND"
OFF
)
option
(
WITH_ROCM
"Compile PaddlePaddle with ROCM platform"
OFF
)
option
(
WITH_IPU
"Compile PaddlePaddle with Graphcore IPU"
OFF
)
# NOTE(zhiqiu): WITH_ASCEND_CL can be compile on x86_64, so we can set WITH_ASCEND=OFF and WITH_ASCEND_CL=ON
# to develop some acl related functionality on x86
option
(
WITH_ASCEND_CL
"Compile PaddlePaddle with ASCEND CL"
${
WITH_ASCEND
}
)
...
...
cmake/configure.cmake
浏览文件 @
a3b3ec68
...
...
@@ -97,6 +97,11 @@ if(WITH_XPU)
add_definitions
(
-DPADDLE_WITH_XPU
)
endif
()
if
(
WITH_IPU
)
message
(
STATUS
"Compile with IPU!"
)
add_definitions
(
-DPADDLE_WITH_IPU
)
endif
()
if
(
WITH_GPU
)
add_definitions
(
-DPADDLE_WITH_CUDA
)
add_definitions
(
-DEIGEN_USE_GPU
)
...
...
cmake/external/poplar.cmake
0 → 100644
浏览文件 @
a3b3ec68
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if
(
WITH_IPU
)
set
(
POPLAR_DIR CACHE PATH
"Path to a Poplar install"
)
set
(
POPART_DIR CACHE PATH
"Path to a Popart install"
)
set
(
POPLAR_SDK_DIR CACHE PATH
"Path to an extracted SDK archive or to a Poplar & Popart install directory (Will populate POPLAR_DIR and POPART_DIR)"
)
if
(
DEFINED ENV{POPLAR_SDK_DIR}
)
set
(
POPLAR_SDK_DIR $ENV{POPLAR_SDK_DIR}
)
execute_process
(
COMMAND find
${
POPLAR_SDK_DIR
}
/ -maxdepth 1 -type d -name
"popart*"
OUTPUT_VARIABLE POPART_DIR OUTPUT_STRIP_TRAILING_WHITESPACE
)
execute_process
(
COMMAND find
${
POPLAR_SDK_DIR
}
/ -maxdepth 1 -type d -name
"poplar-*"
-o -name
"poplar"
OUTPUT_VARIABLE POPLAR_DIR OUTPUT_STRIP_TRAILING_WHITESPACE
)
if
(
NOT IS_DIRECTORY
"
${
POPLAR_DIR
}
"
)
message
(
FATAL_ERROR
"Couldn't find a
\"
poplar
\"
or
\"
poplar-*
\"
folder in '
${
POPLAR_SDK_DIR
}
'"
)
endif
()
if
(
NOT IS_DIRECTORY
"
${
POPART_DIR
}
"
)
message
(
FATAL_ERROR
"Couldn't find a
\"
popart*
\"
folder in '
${
POPLAR_SDK_DIR
}
'"
)
endif
()
else
()
message
(
FATAL_ERROR
"You must provide a path to a Poplar install using export POPLAR_SDK_DIR=/path/to/poplar_sdk"
)
endif
()
message
(
"POPLAR_DIR is
${
POPLAR_DIR
}
"
)
message
(
"POPART_DIR is
${
POPART_DIR
}
"
)
if
(
EXISTS
${
POPLAR_DIR
}
)
list
(
APPEND CMAKE_PREFIX_PATH
${
POPLAR_DIR
}
)
set
(
ENABLE_POPLAR_CMD
"source
${
POPLAR_DIR
}
/enable.sh"
)
find_package
(
poplar REQUIRED
)
include_directories
(
"
${
POPLAR_DIR
}
/include"
)
link_directories
(
"
${
POPLAR_DIR
}
/lib"
)
endif
()
if
(
NOT poplar_FOUND
)
message
(
FATAL_ERROR
"You must provide a path to a Poplar install using -DPOPLAR_DIR=/path/to/popart/build/install"
)
endif
()
if
(
EXISTS
${
POPART_DIR
}
)
list
(
APPEND CMAKE_PREFIX_PATH
${
POPART_DIR
}
)
set
(
ENABLE_POPART_CMD
"source
${
POPART_DIR
}
/enable.sh"
)
find_package
(
popart REQUIRED COMPONENTS popart-only
)
include_directories
(
"
${
POPART_DIR
}
/include"
)
link_directories
(
"
${
POPART_DIR
}
/lib"
)
endif
()
if
(
NOT popart_FOUND
)
message
(
FATAL_ERROR
"You must provide a path to a Popart build using -DPOPART_DIR=/path/to/popart/build"
)
endif
()
add_definitions
(
-DONNX_NAMESPACE=onnx
)
add_custom_target
(
extern_poplar DEPENDS poplar popart-only
)
endif
()
cmake/external/protobuf.cmake
浏览文件 @
a3b3ec68
...
...
@@ -204,6 +204,9 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
elseif
(
WITH_ASCEND_CL AND NOT WITH_ASCEND_CXX11
)
SET
(
PROTOBUF_REPOSITORY https://gitee.com/tianjianhe/protobuf.git
)
SET
(
PROTOBUF_TAG v3.8.0
)
elseif
(
WITH_IPU
)
SET
(
PROTOBUF_REPOSITORY
${
GIT_URL
}
/protocolbuffers/protobuf.git
)
SET
(
PROTOBUF_TAG d750fbf648256c7c631f51ffdbf67d7c18b0114e
)
else
()
SET
(
PROTOBUF_REPOSITORY
${
GIT_URL
}
/protocolbuffers/protobuf.git
)
SET
(
PROTOBUF_TAG 9f75c5aa851cd877fb0d93ccc31b8567a6706546
)
...
...
@@ -243,6 +246,8 @@ ENDFUNCTION()
if
(
WITH_ASCEND OR WITH_ASCEND_CL
)
SET
(
PROTOBUF_VERSION 3.8.0
)
elseif
(
WITH_IPU
)
SET
(
PROTOBUF_VERSION 3.6.1
)
else
()
SET
(
PROTOBUF_VERSION 3.1.0
)
endif
()
...
...
cmake/flags.cmake
浏览文件 @
a3b3ec68
...
...
@@ -151,6 +151,13 @@ set(COMMON_FLAGS
${
fsanitize
}
)
if
(
WITH_IPU
)
set
(
COMMON_FLAGS
${
COMMON_FLAGS
}
-Wno-sign-compare
# Warnings in Popart
-Wno-non-virtual-dtor
# Warnings in Popart
)
endif
()
if
(
NOT APPLE
)
if
((
${
CMAKE_CXX_COMPILER_VERSION
}
VERSION_GREATER 8.0
)
OR
(
WITH_ROCM
))
set
(
COMMON_FLAGS
...
...
cmake/third_party.cmake
浏览文件 @
a3b3ec68
...
...
@@ -391,4 +391,9 @@ if (WIN32)
list
(
APPEND third_party_deps extern_dirent
)
endif
(
WIN32
)
if
(
WITH_IPU
)
include
(
external/poplar
)
list
(
APPEND third_party_deps extern_poplar
)
endif
()
add_custom_target
(
third_party ALL DEPENDS
${
third_party_deps
}
)
paddle/fluid/platform/device/CMakeLists.txt
浏览文件 @
a3b3ec68
...
...
@@ -10,3 +10,8 @@ ENDIF()
IF
(
WITH_ASCEND OR WITH_ASCEND_CL
)
add_subdirectory
(
npu
)
ENDIF
()
# IPU
IF
(
WITH_IPU
)
add_subdirectory
(
ipu
)
ENDIF
()
paddle/fluid/platform/device/ipu/CMakeLists.txt
0 → 100644
浏览文件 @
a3b3ec68
cc_library
(
ipu_device SRCS device.cc DEPS enforce popart
)
cc_library
(
ipu_utils SRCS ipu_utils.cc DEPS memory framework_proto popart
)
cc_library
(
ipu_strategy SRCS ipu_strategy.cc DEPS popart graph framework_proto enforce
)
cc_library
(
ipu_optimizer SRCS ipu_optimizer.cc DEPS popart enforce
)
cc_library
(
ipu_executor SRCS ipu_executor.cc DEPS ipu_optimizer ipu_utils popart graph framework_proto
)
cc_library
(
popart_canonicalization_utils SRCS
${
POPART_CANONICALIZATION_SRC
}
DEPS framework_proto enforce ipu_utils
)
cc_library
(
ipu_compiler SRCS ipu_compiler.cc DEPS popart graph ipu_utils graph_helper
)
cc_library
(
ipu_backend SRCS ipu_backend.cc DEPS popart ipu_compiler graph framework_proto enforce ipu_utils ipu_strategy ipu_device ipu_executor graph_helper
)
paddle/fluid/platform/device/ipu/common.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/names.hpp>
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
static
constexpr
const
char
*
sIpuIndexAttr
=
"ipu_index"
;
static
constexpr
const
char
*
sIpuStageAttr
=
"ipu_stage"
;
static
constexpr
const
char
*
sOpIdentifyIdAttr
=
"op_identify_id"
;
static
constexpr
const
char
*
sDebugInfoId
=
"__debug_info_id"
;
static
constexpr
const
char
*
sBeta1
=
"beta1"
;
static
constexpr
const
char
*
sBeta2
=
"beta2"
;
static
constexpr
const
char
*
sBeta1Pow
=
"Beta1Pow"
;
static
constexpr
const
char
*
sBeta2Pow
=
"Beta2Pow"
;
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/device.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/device.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
Device
::
Device
(
const
popart
::
DeviceInfo
&
device_info
)
:
id_
(
device_info
.
getId
()),
is_attached_
(
device_info
.
isAttached
())
{
popart
::
DeviceType
popart_device_type
=
device_info
.
getType
();
switch
(
popart_device_type
)
{
case
popart
::
DeviceType
::
IpuModel
:
device_type_
=
DeviceType
::
IpuModel
;
break
;
case
popart
::
DeviceType
::
Ipu
:
device_type_
=
DeviceType
::
Ipu
;
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"popart::DeviceType:Unsupported type %d"
,
popart_device_type
));
}
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/device.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/devicemanager.hpp>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
enum
class
DeviceType
{
IpuModel
=
0
,
Cpu
,
Ipu
,
OfflineIpu
,
Sim
};
class
Device
{
public:
Device
()
{}
explicit
Device
(
const
popart
::
DeviceInfo
&
device_info
);
int
getId
()
const
{
return
id_
;
}
bool
isAttached
()
const
{
return
is_attached_
;
}
DeviceType
getType
()
const
{
return
device_type_
;
}
private:
int
id_
;
bool
is_attached_
;
DeviceType
device_type_
;
/* TODO:: Add more elements in the future */
};
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_backend.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/ipu_backend.h"
#include "paddle/fluid/platform/ipu/ipu_utils.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
std
::
shared_ptr
<
IpuBackend
>
IpuBackend
::
instance_
=
nullptr
;
IpuBackend
::
IpuBackend
()
{
compiler_
=
std
::
make_shared
<
Compiler
>
();
executor_
=
std
::
make_unique
<
Executor
>
();
}
void
IpuBackend
::
Clear
()
{
executor_
.
reset
();
// detach device
if
(
device_
!=
nullptr
&&
device_
->
isAttached
())
{
device_
->
detach
();
device_
.
reset
();
device_
=
nullptr
;
}
}
IpuBackend
::~
IpuBackend
()
{
Clear
();
}
std
::
shared_ptr
<
IpuBackend
>
IpuBackend
::
GetInstance
()
{
if
(
!
instance_
)
{
instance_
.
reset
(
new
IpuBackend
());
}
return
instance_
;
}
// This api should only call from python, always return a new object
std
::
shared_ptr
<
IpuBackend
>
IpuBackend
::
GetNewInstance
()
{
instance_
.
reset
(
new
IpuBackend
());
return
instance_
;
}
void
IpuBackend
::
Compile
(
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>&
feed_list
,
const
std
::
vector
<
std
::
string
>&
fetch_list
)
{
VLOG
(
10
)
<<
"enter IpuBackend::Compile"
;
compiler_
->
InitInputs
(
graph
,
feed_list
);
compiler_
->
LowerWeights
(
graph
,
scope_
);
compiler_
->
LowerBody
(
graph
);
compiler_
->
InitOutputs
(
fetch_list
);
executor_
->
SetWeights
(
compiler_
->
GetWeights
());
VLOG
(
10
)
<<
"leave IpuBackend::Compile"
;
}
void
IpuBackend
::
Run
(
const
std
::
vector
<
const
framework
::
Tensor
*>&
inputs
,
const
std
::
vector
<
framework
::
Tensor
*>&
outputs
,
const
framework
::
ExecutionContext
&
ctx
)
{
Prepare
();
auto
inputs_id
=
compiler_
->
GetInputs
();
auto
outputs_id
=
compiler_
->
GetOutputs
();
executor_
->
Run
(
inputs_id
,
inputs
,
outputs_id
,
outputs
,
ctx
);
}
void
IpuBackend
::
Prepare
()
{
if
(
is_prepared_
)
{
return
;
}
else
{
is_prepared_
=
true
;
}
// convert Model to fp16
if
(
ipu_strategy_
->
enable_fp16
)
{
compiler_
->
ConvertProtoToFp16
();
}
auto
proto
=
compiler_
->
GetModelProto
();
auto
tensors
=
compiler_
->
GetTensors
();
auto
outputs
=
compiler_
->
GetOutputs
();
executor_
->
Prepare
(
proto
,
tensors
,
outputs
,
device_
);
}
void
IpuBackend
::
SetScope
(
const
framework
::
Scope
&
scope
)
{
scope_
=
&
scope
;
executor_
->
SetScope
(
&
scope
);
}
void
IpuBackend
::
SetIpuStrategy
(
const
IpuStrategy
&
strategy
)
{
ipu_strategy_
=
&
strategy
;
executor_
->
SetIpuStrategy
(
strategy
);
compiler_
->
SetIpuStrategy
(
strategy
);
}
size_t
IpuBackend
::
GetNumDevices
()
{
// IpuModel
bool
ipu_model
=
GetBoolEnv
(
"POPLAR_IPUMODEL"
);
if
(
ipu_model
)
return
1
;
// Real dev
size_t
num_devices
=
popart
::
DeviceManager
::
createDeviceManager
().
enumerateDevices
().
size
();
PADDLE_ENFORCE_GT
(
num_devices
,
0
,
platform
::
errors
::
Unavailable
(
"Do not found any IPU devices, please make "
"sure Poplar sdk is enabled or enable ENV
\"
POPLAR_IPUMODEL=1
\"
"
));
return
num_devices
;
}
std
::
vector
<
int
>
IpuBackend
::
GetDeviceIds
()
{
bool
ipu_model
=
GetBoolEnv
(
"POPLAR_IPUMODEL"
);
if
(
ipu_model
)
{
return
{
0
};
}
std
::
vector
<
int
>
device_ids
;
auto
devices
=
popart
::
DeviceManager
::
createDeviceManager
().
enumerateDevices
();
PADDLE_ENFORCE_GT
(
devices
.
size
(),
0
,
platform
::
errors
::
Unavailable
(
"Do not found any IPU devices, please make "
"sure Poplar sdk is enabled."
));
for
(
auto
device
:
devices
)
{
device_ids
.
push_back
(
device
->
getId
());
}
return
device_ids
;
}
Device
IpuBackend
::
GetDevice
(
int
id
)
{
bool
ipu_model
=
GetBoolEnv
(
"POPLAR_IPUMODEL"
);
if
(
ipu_model
)
{
std
::
map
<
std
::
string
,
std
::
string
>
deviceOpts
{{
"numIPUs"
,
"1 "
}};
device_
=
popart
::
DeviceManager
::
createDeviceManager
().
createIpuModelDevice
(
deviceOpts
);
Device
device
(
*
device_
.
get
());
return
device
;
}
size_t
num_devices
=
GetNumDevices
();
if
(
id
<
0
||
id
>=
num_devices
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"device id %d is invalid, number devices is %d"
,
id
,
num_devices
));
}
std
::
shared_ptr
<
popart
::
DeviceInfo
>
popart_device_info
=
popart
::
DeviceManager
::
createDeviceManager
().
getDevice
(
popart
::
SyncPattern
::
Full
,
id
);
Device
device
(
*
popart_device_info
.
get
());
return
device
;
}
void
IpuBackend
::
AttachDevice
(
int
id
)
{
// trick here
// Compiler ipu is not same as the runtime ipu.
VLOG
(
10
)
<<
"comile ipu id = "
<<
id
;
bool
ipu_model
=
GetBoolEnv
(
"POPLAR_IPUMODEL"
);
if
(
ipu_model
)
{
return
;
}
device_
=
popart
::
DeviceManager
::
createDeviceManager
().
acquireAvailableDevice
(
UpperIpuNum
());
PADDLE_ENFORCE_NOT_NULL
(
device_
,
platform
::
errors
::
Unavailable
(
"Can't attach IPU, ipu_num = %d."
,
UpperIpuNum
()));
}
bool
IpuBackend
::
DeviceIsAttached
()
{
return
device_
!=
nullptr
;
}
// num_ipus must be pow(2,n);
int
IpuBackend
::
UpperIpuNum
()
{
PADDLE_ENFORCE_GT
(
ipu_strategy_
->
num_ipus
,
0
,
platform
::
errors
::
Unavailable
(
"The ipu num get is wrong, please make sure the "
"sharding or pipline parameter is right."
));
int
i
=
0
;
while
(
std
::
pow
(
2
,
i
)
<
ipu_strategy_
->
num_ipus
)
{
i
++
;
}
return
std
::
pow
(
2
,
i
);
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_backend.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include <popart/devicemanager.hpp>
#include <popart/names.hpp>
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/ipu/device.h"
#include "paddle/fluid/platform/ipu/ipu_compiler.h"
#include "paddle/fluid/platform/ipu/ipu_executor.h"
#include "paddle/fluid/platform/ipu/ipu_strategy.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
class
IpuBackend
{
// IpuBackend is the center of paddle-ipu, its function include:
// 1. Compile paddle model to popart model
// 2. Run popart model, inference or training
// 3. Request and release device
// 4. Other helper function
public:
IpuBackend
();
~
IpuBackend
();
void
Clear
();
// return if exsits, else create and return
static
std
::
shared_ptr
<
IpuBackend
>
GetInstance
();
// always return a new instance_
static
std
::
shared_ptr
<
IpuBackend
>
GetNewInstance
();
// what compile does include(call compiler_):
// 1. map paddle-op -> poart op
// 2. construct popart onnx compute graph
void
Compile
(
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
feed_list
,
const
std
::
vector
<
std
::
string
>
&
fetch_list
);
// what run does include:
// 1. construct forward onnx graph
// 2. graph-level optimization
// 3. autodiff
void
Run
(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
framework
::
Tensor
*>
&
outputs
,
const
framework
::
ExecutionContext
&
ctx
);
Executor
&
GetExecutor
()
{
return
*
executor_
;
}
void
SetScope
(
const
framework
::
Scope
&
scope
);
const
framework
::
Scope
*
GetScope
()
{
return
scope_
;
}
void
SetIpuStrategy
(
const
IpuStrategy
&
strategy
);
const
IpuStrategy
*
GetIpuStrategy
()
{
return
ipu_strategy_
;
}
// Device
size_t
GetNumDevices
();
std
::
vector
<
int
>
GetDeviceIds
();
Device
GetDevice
(
int
id
);
void
AttachDevice
(
int
id
);
bool
DeviceIsAttached
();
private:
int
UpperIpuNum
();
void
Prepare
();
private:
std
::
shared_ptr
<
Compiler
>
compiler_
;
std
::
unique_ptr
<
Executor
>
executor_
;
std
::
shared_ptr
<
popart
::
DeviceInfo
>
device_
;
bool
is_prepared_
=
false
;
// not own
const
framework
::
Scope
*
scope_
=
nullptr
;
const
IpuStrategy
*
ipu_strategy_
=
nullptr
;
private:
static
std
::
shared_ptr
<
IpuBackend
>
instance_
;
};
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_compiler.cc
0 → 100644
浏览文件 @
a3b3ec68
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/ipu/ipu_compiler.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/platform/ipu/ipu_utils.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
template
<
typename
T
>
T
GetAttrAllowNull
(
std
::
string
attr
,
framework
::
OpDesc
*
op_desc
)
{
if
(
op_desc
->
HasAttr
(
attr
))
{
return
BOOST_GET_CONST
(
T
,
op_desc
->
GetAttr
(
attr
));
}
else
{
return
{};
}
}
template
<
typename
T
>
nonstd
::
optional
<
T
>
GetOptAttrAllowNull
(
std
::
string
attr
,
framework
::
OpDesc
*
op_desc
)
{
if
(
op_desc
->
HasAttr
(
attr
))
{
return
BOOST_GET_CONST
(
T
,
op_desc
->
GetAttr
(
attr
));
}
else
{
return
{};
}
}
Compiler
::
Compiler
()
{
builder_
=
popart
::
Builder
::
create
();
RegisterOpFunc
();
}
Compiler
::~
Compiler
()
{}
void
Compiler
::
RegisterOpFunc
()
{
VLOG
(
10
)
<<
"enter Compiler::RegisterOpFunc"
;
#define INT_VEC std::vector<std::int64_t>
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
#define BOOL bool
#define STRING std::string
#define STRING_VEC std::vector<std::string*>
#define NONE
#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE
name_function_
=
{
#define OP_DECL(FuncName, OnnxImpl, Args) \
{#FuncName, [&](framework::OpDesc* op_desc) { \
auto op_type = op_desc->Type(); \
VLOG(10) << "build op:" << op_type << " args " << #Args; \
auto inputs = GetOpInputs(op_desc); \
auto output_names = GetOpOutputs(op_desc); \
auto debug_context = BuildDebugContext(op_desc); \
auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1(); \
auto aiOnnxOpset = builder_->aiOnnxOpset11(); \
auto output_ids = OnnxImpl(inputs Args, debug_context); \
SetIpuIndexStage(output_ids, op_desc); \
InsertTensors(output_names, output_ids); \
}}, // NOLINT
#include "paddle/fluid/platform/ipu/supported_ops_autogen.h"
};
#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
#undef INT
#undef FLOAT
#undef FLOAT_VEC
#undef INT_VEC
}
void
Compiler
::
LowerBody
(
const
framework
::
ir
::
Graph
*
graph
)
{
VLOG
(
10
)
<<
"enter Compiler::LowerBody"
;
auto
nodes
=
framework
::
ir
::
TopologySortOperations
(
*
graph
);
for
(
auto
*
node
:
nodes
)
{
auto
*
op_desc
=
node
->
Op
();
auto
op_type
=
op_desc
->
Type
();
VLOG
(
10
)
<<
"node->type: "
<<
op_type
;
if
(
op_type
==
"popart_constant"
)
{
auto
dims
=
BOOST_GET_CONST
(
std
::
vector
<
int64_t
>
,
op_desc
->
GetAttr
(
"dims"
));
auto
dtype_
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
"dtype"
));
auto
dtype
=
OnnxDtype2PopartType
(
dtype_
);
popart
::
TensorInfo
tensor_info
{
dtype
,
dims
};
auto
value_attr
=
op_desc
->
GetAttr
(
"value"
);
auto
const_data
=
std
::
unique_ptr
<
popart
::
ConstVoidData
>
{};
switch
(
dtype
)
{
case
popart
::
DataType
::
FLOAT
:
const_data
.
reset
(
new
popart
::
ConstVoidData
(
BOOST_GET_CONST
(
std
::
vector
<
float
>
,
value_attr
).
data
(),
tensor_info
));
break
;
case
popart
::
DataType
::
INT32
:
const_data
.
reset
(
new
popart
::
ConstVoidData
(
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
value_attr
).
data
(),
tensor_info
));
break
;
case
popart
::
DataType
::
DOUBLE
:
const_data
.
reset
(
new
popart
::
ConstVoidData
(
BOOST_GET_CONST
(
std
::
vector
<
double
>
,
value_attr
).
data
(),
tensor_info
));
break
;
case
popart
::
DataType
::
INT64
:
const_data
.
reset
(
new
popart
::
ConstVoidData
(
BOOST_GET_CONST
(
std
::
vector
<
int64_t
>
,
value_attr
).
data
(),
tensor_info
));
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"The popart datatype is not supported, popart::DataType is %d"
,
dtype
));
}
popart
::
TensorId
result
=
builder_
->
aiOnnxOpset11
().
constant
(
*
const_data
);
SetIpuIndexStage
(
result
,
op_desc
);
InsertTensors
(
GetOpOutputs
(
op_desc
),
result
);
}
else
if
(
op_type
==
"popart_batchnormalization"
)
{
auto
inputs
=
GetOpInputs
(
op_desc
);
auto
outputs
=
GetOpOutputs
(
op_desc
);
auto
num_outputs
=
outputs
.
size
();
auto
epsilon
=
BOOST_GET_CONST
(
float
,
op_desc
->
GetAttr
(
"epsilon"
));
auto
momentum
=
BOOST_GET_CONST
(
float
,
op_desc
->
GetAttr
(
"momentum"
));
auto
result
=
builder_
->
aiOnnxOpset11
().
batchnormalization
(
inputs
,
num_outputs
,
epsilon
,
momentum
);
SetIpuIndexStage
(
result
,
op_desc
);
InsertTensors
(
GetOpOutputs
(
op_desc
),
result
);
}
else
if
(
op_type
==
"popart_nllloss"
)
{
auto
inputs
=
GetOpInputs
(
op_desc
);
auto
ignoreIndex
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
"ignoreIndex"
));
auto
result
=
builder_
->
aiGraphcoreOpset1
().
nllloss
(
inputs
,
popart
::
ReductionType
::
NoReduction
,
ignoreIndex
);
SetIpuIndexStage
(
result
,
op_desc
);
InsertTensors
(
GetOpOutputs
(
op_desc
),
result
);
}
else
if
(
op_type
==
"popart_topk"
)
{
auto
inputs
=
GetOpInputs
(
op_desc
);
auto
outputs
=
GetOpOutputs
(
op_desc
);
int64_t
axis
=
BOOST_GET_CONST
(
int64_t
,
op_desc
->
GetAttr
(
"axis"
));
int
sorted_INT32
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
"sorted"
));
int64_t
sorted
=
int64_t
{
sorted_INT32
};
auto
aiOnnxOpset
=
builder_
->
aiOnnxOpset11
();
popart
::
ConvInputs
result
;
if
(
inputs
.
size
()
==
2
)
{
VLOG
(
10
)
<<
"[Compiler::LowerBody] size of inputs for <popart_topk> is 2"
;
result
=
aiOnnxOpset
.
topk
(
inputs
,
axis
,
sorted
);
}
else
if
(
inputs
.
size
()
==
1
)
{
VLOG
(
10
)
<<
"[Compiler::LowerBody] size of inputs for <popart_topk> is 1"
;
int64_t
k
=
BOOST_GET_CONST
(
int64_t
,
op_desc
->
GetAttr
(
"k"
));
popart
::
TensorInfo
kShape
{
"INT64"
,
std
::
vector
<
int64_t
>
{
1
}};
popart
::
ConstVoidData
kData
=
{
&
k
,
kShape
};
auto
K_t
=
aiOnnxOpset
.
constant
(
kData
);
result
=
aiOnnxOpset
.
topk
({
inputs
[
0
],
K_t
},
axis
,
sorted
);
}
result
[
1
]
=
aiOnnxOpset
.
cast
({
result
[
1
]},
"INT32"
);
SetIpuIndexStage
(
result
,
op_desc
);
VLOG
(
10
)
<<
"[Compiler::LowerBody] output[1]: "
<<
outputs
[
1
];
VLOG
(
10
)
<<
"[Compiler::LowerBody] output[1]: "
<<
GetOpOutputs
(
op_desc
)[
1
]
<<
" -> "
<<
result
[
1
];
tensors_
.
emplace
(
GetOpOutputs
(
op_desc
)[
1
],
result
[
1
]);
// topk indices
VLOG
(
10
)
<<
"[Compiler::LowerBody] output[0]: "
<<
outputs
[
0
];
VLOG
(
10
)
<<
"[Compiler::LowerBody] output[0]: "
<<
GetOpOutputs
(
op_desc
)[
0
]
<<
" -> "
<<
result
[
0
];
tensors_
.
emplace
(
GetOpOutputs
(
op_desc
)[
0
],
result
[
0
]);
// topk values
}
else
{
auto
itr
=
name_function_
.
find
(
op_type
);
if
(
itr
!=
name_function_
.
end
())
{
itr
->
second
(
node
->
Op
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
NotFound
(
"Op %s is not registered in popart canonicalization"
,
op_type
));
}
}
}
VLOG
(
10
)
<<
"leave Compiler::LowerBody"
;
}
void
Compiler
::
InitInputs
(
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>&
feed_list
)
{
for
(
const
auto
&
feed_name
:
feed_list
)
{
feed_list_
.
push_back
(
feed_name
);
for
(
const
framework
::
ir
::
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsVar
())
{
auto
*
var_desc
=
n
->
Var
();
if
(
feed_name
==
var_desc
->
Name
())
{
VLOG
(
10
)
<<
"feed_name= "
<<
var_desc
->
Name
();
auto
data_type
=
VarType2PopartType
(
var_desc
->
GetDataType
());
if
(
ipu_strategy_
->
enable_fp16
)
{
data_type
=
popart
::
DataType
::
FLOAT16
;
}
popart
::
TensorInfo
input_info
{
data_type
,
var_desc
->
GetShape
()};
VLOG
(
10
)
<<
"popart input_info = "
<<
input_info
;
popart
::
TensorId
tensor_id
=
builder_
->
addInputTensor
(
input_info
,
feed_name
);
VLOG
(
10
)
<<
"popart input tensor id = "
<<
tensor_id
;
inputs_
.
push_back
(
tensor_id
);
tensors_
.
emplace
(
var_desc
->
Name
(),
tensor_id
);
}
}
}
}
}
void
Compiler
::
InitOutputs
(
const
std
::
vector
<
std
::
string
>&
fetch_list
)
{
for
(
const
auto
&
fetch_name
:
fetch_list
)
{
fetch_list_
.
push_back
(
fetch_name
);
auto
tensor
=
tensors_
.
find
(
fetch_name
);
PADDLE_ENFORCE_NE
(
tensor
,
tensors_
.
end
(),
platform
::
errors
::
NotFound
(
"output tensor %s does not exist."
,
fetch_name
));
VLOG
(
10
)
<<
"fetch_name= "
<<
fetch_name
;
VLOG
(
10
)
<<
"popart output tensor id = "
<<
tensor
->
second
;
builder_
->
addOutputTensor
(
tensor
->
second
);
outputs_
.
push_back
(
tensor
->
second
);
}
}
void
Compiler
::
LowerWeights
(
const
framework
::
ir
::
Graph
*
graph
,
const
framework
::
Scope
*
scope_
)
{
PADDLE_ENFORCE_NOT_NULL
(
scope_
,
platform
::
errors
::
PreconditionNotMet
(
"You should call set_scope before LowerWeights"
));
// at this step, the graph doesn't contains optimizer related states
for
(
const
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
if
(
node
->
Var
()
->
Persistable
()
&&
node
->
inputs
.
empty
())
{
auto
var_name
=
node
->
Var
()
->
Name
();
// workround: https://github.com/graphcore/Paddle/issues/151
if
(
tensors_
.
count
(
var_name
)
!=
0
)
{
continue
;
}
auto
var
=
scope_
->
FindVar
(
var_name
);
if
(
var
)
{
auto
tensor
=
var
->
Get
<
framework
::
LoDTensor
>
();
auto
dtype
=
VarType2PopartType
(
tensor
.
type
());
auto
shape
=
std
::
vector
<
int64_t
>
();
for
(
size_t
i
=
0
;
i
<
tensor
.
dims
().
size
();
++
i
)
{
shape
.
push_back
(
tensor
.
dims
().
at
(
i
));
}
popart
::
TensorInfo
tensor_info
(
dtype
,
shape
);
popart
::
ConstVoidData
const_data
{
tensor
.
data
<
void
>
(),
tensor_info
};
popart
::
TensorId
result
=
builder_
->
addInitializedInputTensor
(
const_data
,
var_name
);
tensors_
.
emplace
(
var_name
,
result
);
weights_
.
push_back
(
result
);
}
}
}
}
}
void
Compiler
::
InsertTensors
(
const
std
::
vector
<
std
::
string
>&
output_names
,
const
std
::
vector
<
std
::
string
>&
tensor_ids
)
{
PADDLE_ENFORCE_EQ
(
output_names
.
size
(),
tensor_ids
.
size
(),
platform
::
errors
::
Fatal
(
"InsertTensors size mismatch"
));
for
(
int
i
=
0
;
i
<
tensor_ids
.
size
();
i
++
)
{
std
::
string
tensor_id
=
tensor_ids
[
i
];
tensors_
.
emplace
(
output_names
[
i
],
tensor_ids
[
i
]);
}
}
void
Compiler
::
InsertTensors
(
const
std
::
vector
<
std
::
string
>&
output_names
,
const
std
::
string
&
tensor_id
)
{
PADDLE_ENFORCE_EQ
(
output_names
.
size
(),
1
,
platform
::
errors
::
Fatal
(
"InsertTensors size mismatch"
));
tensors_
.
emplace
(
output_names
[
0
],
tensor_id
);
}
void
Compiler
::
SetIpuIndexStage
(
const
std
::
vector
<
std
::
string
>&
tensor_ids
,
const
framework
::
OpDesc
*
op_desc
)
{
VLOG
(
10
)
<<
"enter Compiler::SetIpuIndexStage"
;
auto
tensor_ids_set
=
std
::
set
<
std
::
string
>
(
tensor_ids
.
begin
(),
tensor_ids
.
end
());
if
(
op_desc
->
HasAttr
(
sIpuIndexAttr
))
{
auto
ipu_index
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
sIpuIndexAttr
));
builder_
->
virtualGraph
(
tensor_ids_set
,
ipu_index
);
VLOG
(
10
)
<<
"set "
<<
sIpuIndexAttr
<<
" = "
<<
ipu_index
<<
" for op: "
<<
op_desc
->
Type
();
if
(
op_desc
->
HasAttr
(
sIpuStageAttr
))
{
auto
ipu_stage
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
sIpuStageAttr
));
builder_
->
pipelineStage
(
tensor_ids_set
,
ipu_stage
);
VLOG
(
10
)
<<
"set "
<<
sIpuStageAttr
<<
"= "
<<
ipu_stage
<<
" for op: "
<<
op_desc
->
Type
();
}
}
VLOG
(
10
)
<<
"leave Compiler::SetIpuIndexStage"
;
}
void
Compiler
::
SetIpuIndexStage
(
const
std
::
string
&
tensor_id
,
const
framework
::
OpDesc
*
op_desc
)
{
VLOG
(
10
)
<<
"enter Compiler::SetIpuIndexStage"
;
if
(
op_desc
->
HasAttr
(
sIpuIndexAttr
))
{
auto
ipu_index
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
sIpuIndexAttr
));
builder_
->
virtualGraph
(
tensor_id
,
ipu_index
);
VLOG
(
10
)
<<
"set "
<<
sIpuIndexAttr
<<
" = "
<<
ipu_index
<<
" for op: "
<<
op_desc
->
Type
();
if
(
op_desc
->
HasAttr
(
sIpuStageAttr
))
{
auto
ipu_stage
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
sIpuStageAttr
));
builder_
->
pipelineStage
(
tensor_id
,
ipu_stage
);
VLOG
(
10
)
<<
"set "
<<
sIpuStageAttr
<<
"= "
<<
ipu_stage
<<
" for op: "
<<
op_desc
->
Type
();
}
}
VLOG
(
10
)
<<
"leave Compiler::SetIpuIndexStage"
;
}
std
::
vector
<
popart
::
TensorId
>&
Compiler
::
GetWeights
()
{
return
weights_
;
}
// convertFloatsToHalfs
void
Compiler
::
ConvertProtoToFp16
()
{
popart
::
GraphTransformer
graph_transformer
(
builder_
->
getModelProto
());
graph_transformer
.
convertFloatsToHalfs
();
converted_proto_
=
graph_transformer
.
getModelProto
();
}
std
::
string
Compiler
::
GetModelProto
()
{
if
(
converted_proto_
.
length
())
{
return
converted_proto_
;
}
return
builder_
->
getModelProto
();
}
void
Compiler
::
SaveModelProto
(
const
std
::
string
&
path
)
{
builder_
->
saveModelProto
(
path
);
}
void
Compiler
::
SaveModelProtoNoCheck
(
const
std
::
string
&
path
)
{
auto
proto
=
GetModelProto
();
std
::
ofstream
onnxfile
(
path
,
std
::
ios_base
::
binary
);
onnxfile
.
write
(
proto
.
data
(),
proto
.
size
());
onnxfile
.
close
();
}
std
::
vector
<
std
::
string
>
Compiler
::
GetOpInputs
(
const
framework
::
OpDesc
*
op
)
{
auto
ins
=
op
->
Input
(
"__inputs__"
);
std
::
vector
<
std
::
string
>
inputs
;
for
(
const
auto
&
in
:
ins
)
{
if
(
tensors_
.
find
(
in
)
!=
tensors_
.
end
())
{
inputs
.
push_back
(
tensors_
[
in
]);
}
else
{
inputs
.
push_back
(
in
);
}
}
return
inputs
;
}
const
std
::
vector
<
std
::
string
>&
Compiler
::
GetOpOutputs
(
const
framework
::
OpDesc
*
op
)
{
return
op
->
Output
(
"__outputs__"
);
}
popart
::
DebugContext
Compiler
::
BuildDebugContext
(
const
framework
::
OpDesc
*
op
)
{
auto
op_identify_id
=
BOOST_GET_CONST
(
std
::
string
,
op
->
GetAttr
(
sOpIdentifyIdAttr
));
VLOG
(
10
)
<<
"op_identify_id of op: "
<<
op
->
Type
()
<<
" is "
<<
op_identify_id
;
return
popart
::
DebugContext
(
op_identify_id
);
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_compiler.h
0 → 100644
浏览文件 @
a3b3ec68
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <popart/builder.hpp>
#include <popart/graphtransformer.hpp>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/ipu/common.h"
#include "paddle/fluid/platform/ipu/ipu_strategy.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
class
Compiler
{
public:
Compiler
();
~
Compiler
();
void
RegisterOpFunc
();
void
LowerBody
(
const
framework
::
ir
::
Graph
*
graph
);
void
InitInputs
(
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
feed_list
);
void
InitOutputs
(
const
std
::
vector
<
std
::
string
>
&
fetch_list
);
void
LowerWeights
(
const
framework
::
ir
::
Graph
*
graph
,
const
framework
::
Scope
*
scope_
);
void
InsertTensors
(
const
std
::
vector
<
std
::
string
>
&
output_names
,
const
std
::
vector
<
std
::
string
>
&
tensor_ids
);
void
InsertTensors
(
const
std
::
vector
<
std
::
string
>
&
output_names
,
const
std
::
string
&
tensor_id
);
void
SetIpuIndexStage
(
const
std
::
vector
<
std
::
string
>
&
tensor_ids
,
const
framework
::
OpDesc
*
op_desc
);
void
SetIpuIndexStage
(
const
std
::
string
&
tensor_id
,
const
framework
::
OpDesc
*
op_desc
);
std
::
vector
<
popart
::
TensorId
>
GetInputs
()
{
return
inputs_
;
}
std
::
vector
<
popart
::
TensorId
>
GetOutputs
()
{
return
outputs_
;
}
std
::
map
<
std
::
string
,
popart
::
TensorId
>
GetTensors
()
{
return
tensors_
;
}
std
::
vector
<
popart
::
TensorId
>
&
GetWeights
();
std
::
string
GetModelProto
();
void
SetIpuStrategy
(
const
IpuStrategy
&
strategy
)
{
ipu_strategy_
=
&
strategy
;
};
void
SaveModelProto
(
const
std
::
string
&
path
);
void
SaveModelProtoNoCheck
(
const
std
::
string
&
path
);
void
ConvertProtoToFp16
();
private:
std
::
vector
<
std
::
string
>
GetOpInputs
(
const
framework
::
OpDesc
*
op
);
const
std
::
vector
<
std
::
string
>
&
GetOpOutputs
(
const
framework
::
OpDesc
*
op
);
popart
::
DebugContext
BuildDebugContext
(
const
framework
::
OpDesc
*
op
);
private:
std
::
unique_ptr
<
popart
::
Builder
>
builder_
;
using
OpFunc
=
std
::
function
<
void
(
framework
::
OpDesc
*
op_desc
)
>
;
std
::
unordered_map
<
std
::
string
,
OpFunc
>
name_function_
;
// stateful variable
std
::
map
<
std
::
string
,
popart
::
TensorId
>
tensors_
;
// feed_list_ & fetch_list save paddle tensor id
std
::
vector
<
std
::
string
>
feed_list_
;
std
::
vector
<
std
::
string
>
fetch_list_
;
// inputs_ & outputs_ save popart tensor id
std
::
vector
<
popart
::
TensorId
>
inputs_
;
std
::
vector
<
popart
::
TensorId
>
outputs_
;
// weights info map
std
::
vector
<
popart
::
TensorId
>
weights_
;
std
::
string
converted_proto_
=
""
;
const
IpuStrategy
*
ipu_strategy_
=
nullptr
;
};
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_executor.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/ipu_executor.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
Executor
::
Executor
()
{}
Executor
::~
Executor
()
{}
void
Executor
::
Prepare
(
const
std
::
string
&
proto
,
const
std
::
map
<
std
::
string
,
popart
::
TensorId
>
&
tensors
,
const
std
::
vector
<
popart
::
TensorId
>
&
outputs
,
std
::
shared_ptr
<
popart
::
DeviceInfo
>
device
)
{
auto
art
=
popart
::
AnchorReturnType
(
"All"
);
std
::
map
<
popart
::
TensorId
,
popart
::
AnchorReturnType
>
anchor_ids
;
for
(
const
auto
&
id
:
outputs
)
{
anchor_ids
.
emplace
(
id
,
art
);
}
auto
dataFlow
=
popart
::
DataFlow
(
ipu_strategy_
->
batches_per_step
,
anchor_ids
);
PADDLE_ENFORCE_NOT_NULL
(
device
,
platform
::
errors
::
Unavailable
(
"IPU device isn't attached, please call "
"IpuBackend::AttachDevice(id) first."
));
if
(
ipu_strategy_
!=
nullptr
&&
ipu_strategy_
->
is_training
)
{
VLOG
(
10
)
<<
"Creating TrainingSession from Onnx Model..."
;
auto
popart_optimizer
=
GetPopartOptimizer
(
opt_info
);
auto
it
=
tensors
.
find
(
opt_info
.
GetLoss
());
PADDLE_ENFORCE_NE
(
it
,
tensors
.
end
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"loss_id = %s doesn't exist in popart graph."
,
opt_info
.
GetLoss
()));
session_
=
popart
::
TrainingSession
::
createFromOnnxModel
(
proto
,
dataFlow
,
it
->
second
,
*
popart_optimizer
,
device
,
popart
::
InputShapeInfo
(),
ipu_strategy_
->
popart_options_
,
popart
::
Patterns
(
popart
::
PatternsLevel
::
Default
));
}
else
{
VLOG
(
10
)
<<
"Creating InferenceSession from Onnx Model..."
;
session_
=
popart
::
InferenceSession
::
createFromOnnxModel
(
proto
,
dataFlow
,
device
,
popart
::
InputShapeInfo
(),
ipu_strategy_
->
popart_options_
,
popart
::
Patterns
(
popart
::
PatternsLevel
::
Default
));
}
VLOG
(
10
)
<<
"Creating session from Onnx Model...done"
;
VLOG
(
10
)
<<
"Preparing session device..."
;
session_
->
prepareDevice
();
VLOG
(
10
)
<<
"Preparing session device...done"
;
SetWeightsIO
();
VLOG
(
10
)
<<
"Copy weights from paddle to popart..."
;
WeightsFromPaddle
();
VLOG
(
10
)
<<
"Copy weights from paddle to popart...done"
;
VLOG
(
10
)
<<
"Copy weights from host to device..."
;
session_
->
weightsFromHost
();
VLOG
(
10
)
<<
"Copy weights from host to device...done"
;
if
(
ipu_strategy_
->
save_init_onnx
)
{
session_
->
modelToHost
(
"test_init.onnx"
);
}
}
void
Executor
::
Run
(
const
std
::
vector
<
popart
::
TensorId
>
&
inputs_id
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
popart
::
TensorId
>
&
outputs_id
,
const
std
::
vector
<
framework
::
Tensor
*>
&
outputs
,
const
framework
::
ExecutionContext
&
ctx
)
{
// inputs
std
::
map
<
popart
::
TensorId
,
popart
::
IArray
&>
popart_inputs
;
std
::
map
<
popart
::
TensorId
,
PaddleIArray
>
input_wrappers
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
auto
tensor_id
=
inputs_id
[
i
];
framework
::
Tensor
*
tensor
=
nullptr
;
tensor
->
ShareDataWith
(
*
inputs
[
i
]);
input_wrappers
.
emplace
(
tensor_id
,
PaddleIArray
(
tensor
));
popart_inputs
.
emplace
(
tensor_id
,
input_wrappers
.
at
(
tensor_id
));
}
// anchors
std
::
map
<
popart
::
TensorId
,
popart
::
IArray
&>
popart_anchors
;
std
::
map
<
popart
::
TensorId
,
PaddleIArray
>
anchor_wrappers
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
tensor_id
=
outputs_id
[
i
];
framework
::
Tensor
*
tensor
=
nullptr
;
tensor
->
ShareDataWith
(
*
outputs
[
i
]);
// get dims & dtype from session
auto
fetch_info
=
session_
->
getInfo
(
tensor_id
);
auto
output_shape
=
fetch_info
.
shape
();
if
(
ipu_strategy_
->
batches_per_step
>
1
)
{
output_shape
.
insert
(
output_shape
.
begin
(),
ipu_strategy_
->
batches_per_step
);
}
tensor
->
Resize
(
framework
::
make_ddim
(
output_shape
));
auto
fetch_dtype
=
fetch_info
.
dataType
();
auto
paddle_type
=
PopartType2VarType
(
fetch_dtype
);
tensor
->
mutable_data
(
ctx
.
GetPlace
(),
paddle_type
);
anchor_wrappers
.
emplace
(
tensor_id
,
PaddleIArray
(
tensor
));
popart_anchors
.
emplace
(
tensor_id
,
anchor_wrappers
.
at
(
tensor_id
));
}
if
(
ipu_strategy_
!=
nullptr
&&
ipu_strategy_
->
is_training
)
{
VLOG
(
10
)
<<
"Update optimizer learning rate..."
;
SetLR
(
GetLRFromScope
());
auto
popart_optimizer
=
GetPopartOptimizer
(
opt_info
);
auto
&
session
=
dynamic_cast
<
popart
::
TrainingSession
&>
(
*
session_
);
session
.
updateOptimizerFromHost
(
popart_optimizer
.
get
());
}
popart
::
StepIO
stepio
(
popart_inputs
,
popart_anchors
);
VLOG
(
10
)
<<
"Running..."
;
session_
->
run
(
stepio
);
VLOG
(
10
)
<<
"Running...done"
;
if
(
ipu_strategy_
!=
nullptr
&&
ipu_strategy_
->
is_training
)
{
session_
->
weightsToHost
();
WeightsToPaddle
();
if
(
ipu_strategy_
->
save_last_onnx
)
{
session_
->
modelToHost
(
"test_last.onnx"
);
}
}
}
void
Executor
::
SetOptimizerType
(
const
std
::
string
&
type
)
{
opt_info
.
SetType
(
type
);
}
void
Executor
::
SetLR
(
float
lr_rate
)
{
opt_info
.
SetLR
(
lr_rate
);
}
void
Executor
::
SetOptimizerAttr
(
const
std
::
string
&
attr
,
float
value
)
{
opt_info
.
SetAttr
(
attr
,
value
);
}
void
Executor
::
SetLoss
(
const
std
::
string
&
loss
)
{
opt_info
.
SetLoss
(
loss
);
}
void
Executor
::
SetLRVarName
(
const
std
::
string
&
name
)
{
opt_info
.
SetLRVarName
(
name
);
}
void
Executor
::
SetWeights
(
const
std
::
vector
<
popart
::
TensorId
>
&
weights
)
{
weights_
=
weights
;
}
void
Executor
::
SetWeightsIO
()
{
auto
opt_type
=
opt_info
.
GetType
();
auto
pre_post_fix
=
GetOptPrePostfix
(
opt_type
);
for
(
const
auto
&
weight_id
:
weights_
)
{
for
(
const
auto
&
pair
:
pre_post_fix
)
{
if
(
!
IsOptimizerSupported
(
opt_type
))
{
continue
;
}
// pair.first : popart prefix, pair.second : paddle postfix
auto
popart_var_name
=
pair
.
first
+
weight_id
;
auto
paddle_var_name
=
weight_id
+
pair
.
second
;
if
(
scope_
->
FindVar
(
paddle_var_name
)
==
nullptr
)
{
continue
;
}
auto
var
=
scope_
->
GetVar
(
paddle_var_name
);
auto
data_ptr
=
var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
data
<
float
>
();
auto
tensor_info
=
session_
->
getInfo
(
popart_var_name
);
weights_io_
.
insert
(
popart_var_name
,
{
data_ptr
,
tensor_info
});
}
}
}
void
Executor
::
WeightsFromPaddle
()
{
session_
->
writeWeights
(
weights_io_
);
}
void
Executor
::
WeightsToPaddle
()
{
session_
->
readWeights
(
weights_io_
);
}
void
Executor
::
SetIpuStrategy
(
const
IpuStrategy
&
strategy
)
{
ipu_strategy_
=
&
strategy
;
}
float
Executor
::
GetLRFromScope
()
{
auto
lr_var
=
scope_
->
GetVar
(
opt_info
.
GetLRVarName
());
auto
tensor
=
lr_var
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
tensor
.
type
(),
framework
::
proto
::
VarType
::
FP32
,
platform
::
errors
::
InvalidArgument
(
"LR requiree float, but got (%s)."
,
tensor
.
type
()));
return
tensor
.
data
<
float
>
()[
0
];
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_executor.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/dataflow.hpp>
#include <popart/names.hpp>
#include <popart/session.hpp>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/ipu/common.h"
#include "paddle/fluid/platform/ipu/ipu_optimizer.h"
#include "paddle/fluid/platform/ipu/ipu_strategy.h"
#include "paddle/fluid/platform/ipu/ipu_utils.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
class
Executor
{
public:
Executor
();
~
Executor
();
void
Prepare
(
const
std
::
string
&
proto
,
const
std
::
map
<
std
::
string
,
popart
::
TensorId
>
&
tensors
,
const
std
::
vector
<
popart
::
TensorId
>
&
outputs
,
std
::
shared_ptr
<
popart
::
DeviceInfo
>
device
);
void
Run
(
const
std
::
vector
<
popart
::
TensorId
>
&
inputs_id
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
popart
::
TensorId
>
&
outputs_id
,
const
std
::
vector
<
framework
::
Tensor
*>
&
outputs
,
const
framework
::
ExecutionContext
&
ctx
);
// Optimizer
void
SetOptimizerType
(
const
std
::
string
&
type
);
void
SetOptimizerAttr
(
const
std
::
string
&
attr
,
float
value
);
void
SetLoss
(
const
std
::
string
&
loss
);
void
SetLR
(
float
lr_rate
);
void
SetLRVarName
(
const
std
::
string
&
name
);
void
SetWeights
(
const
std
::
vector
<
popart
::
TensorId
>
&
info
);
void
SetWeightsIO
();
void
WeightsFromPaddle
();
void
WeightsToPaddle
();
// Scope
void
SetScope
(
const
framework
::
Scope
*
scope
)
{
scope_
=
scope
;
}
// Strategy
void
SetIpuStrategy
(
const
IpuStrategy
&
strategy
);
private:
float
GetLRFromScope
();
public:
OptmizerMetaInfo
opt_info
;
std
::
unique_ptr
<
popart
::
Session
>
session_
;
private:
const
framework
::
Scope
*
scope_
=
nullptr
;
const
IpuStrategy
*
ipu_strategy_
=
nullptr
;
popart
::
WeightsIO
weights_io_
;
std
::
vector
<
popart
::
TensorId
>
weights_
;
};
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_optimizer.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/ipu_optimizer.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
OptmizerMetaInfo
::
OptmizerMetaInfo
()
{}
OptmizerMetaInfo
::~
OptmizerMetaInfo
()
{}
void
OptmizerMetaInfo
::
SetType
(
const
std
::
string
&
type
)
{
type_
=
OptTypeStr2Enum
(
type
);
}
float
OptmizerMetaInfo
::
GetAttr
(
const
std
::
string
&
attr
,
float
default_value
)
const
{
if
(
attrs_
.
count
(
attr
)
==
0
)
{
return
default_value
;
}
return
attrs_
.
at
(
attr
);
}
void
OptmizerMetaInfo
::
SetAttr
(
const
std
::
string
&
attr
,
float
value
)
{
attrs_
[
attr
]
=
value
;
}
OptimizerType
OptTypeStr2Enum
(
const
std
::
string
type
)
{
if
(
type
==
"sgd"
)
{
return
OptimizerType
::
SGD
;
}
else
if
(
type
==
"adam"
)
{
return
OptimizerType
::
Adam
;
}
else
if
(
type
==
"lamb"
)
{
return
OptimizerType
::
Lamb
;
}
else
{
return
OptimizerType
::
Undefined
;
}
}
std
::
unique_ptr
<
popart
::
Optimizer
>
GetPopartOptimizer
(
const
OptmizerMetaInfo
&
opt_meta_info
)
{
auto
opt_type
=
opt_meta_info
.
GetType
();
PADDLE_ENFORCE_NE
(
opt_type
,
OptimizerType
::
Undefined
,
platform
::
errors
::
InvalidArgument
(
"Optimizer type have not been set."
));
if
(
opt_type
==
OptimizerType
::
SGD
)
{
auto
optimizer
=
std
::
make_unique
<
popart
::
SGD
>
(
popart
::
OptimizerValue
(
opt_meta_info
.
GetLR
(),
false
),
popart
::
OptimizerValue
(
popart
::
SGD
::
getUnsetWeightDecay
()),
popart
::
OptimizerValue
(
popart
::
SGD
::
getUnsetMomentum
()),
popart
::
OptimizerValue
(
popart
::
SGD
::
getUnsetDampening
()),
popart
::
OptimizerValue
(
popart
::
SGD
::
getUnsetVelocityScaling
()),
popart
::
OptimizerValue
(
popart
::
SGD
::
getUnsetLossScaling
()));
return
optimizer
;
}
else
if
(
opt_type
==
OptimizerType
::
Adam
)
{
auto
optimizer
=
std
::
make_unique
<
popart
::
Adam
>
(
popart
::
OptimizerValue
(
opt_meta_info
.
GetLR
(),
false
),
popart
::
OptimizerValue
(
popart
::
Adam
::
getUnsetWeightDecay
()),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"beta1"
),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"beta2"
),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"epsilon"
),
false
),
popart
::
OptimizerValue
(
popart
::
Adam
::
getUnsetLossScaling
()),
popart
::
AdamMode
::
Adam
,
popart
::
WeightDecayMode
::
Decay
,
popart
::
DataType
::
FLOAT
,
popart
::
DataType
::
FLOAT
,
popart
::
DataType
::
FLOAT
);
return
optimizer
;
}
else
if
(
opt_type
==
OptimizerType
::
Lamb
)
{
auto
optimizer
=
std
::
make_unique
<
popart
::
Adam
>
(
popart
::
OptimizerValue
(
opt_meta_info
.
GetLR
(),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"weight_decay"
),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"beta1"
),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"beta2"
),
false
),
popart
::
OptimizerValue
(
opt_meta_info
.
GetAttr
(
"epsilon"
),
false
),
popart
::
OptimizerValue
(
popart
::
Adam
::
getUnsetLossScaling
()),
popart
::
AdamMode
::
Lamb
,
popart
::
WeightDecayMode
::
Decay
,
popart
::
DataType
::
FLOAT
,
popart
::
DataType
::
FLOAT
,
popart
::
DataType
::
FLOAT
);
return
optimizer
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Optimizer %d is not implemented now."
,
static_cast
<
int
>
(
opt_type
)));
}
}
bool
IsOptimizerSupported
(
OptimizerType
type
)
{
switch
(
type
)
{
case
OptimizerType
::
SGD
:
case
OptimizerType
::
Adam
:
case
OptimizerType
::
Lamb
:
return
true
;
default:
return
false
;
}
}
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
GetOptPrePostfix
(
OptimizerType
opt_type
)
{
// format: {popart_tensor_id, paddle_tensor_id}, ...
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
pre_post_fix
;
switch
(
opt_type
)
{
case
OptimizerType
::
SGD
:
pre_post_fix
.
push_back
(
std
::
make_pair
(
""
,
""
));
break
;
case
OptimizerType
::
Adam
:
case
OptimizerType
::
Lamb
:
pre_post_fix
.
push_back
(
std
::
make_pair
(
""
,
""
));
pre_post_fix
.
push_back
(
std
::
make_pair
(
"Accl1___"
,
"_moment1_0"
));
pre_post_fix
.
push_back
(
std
::
make_pair
(
"Accl2___"
,
"_moment2_0"
));
pre_post_fix
.
push_back
(
std
::
make_pair
(
"Step___"
,
"_beta1_pow_acc_0"
));
break
;
default:
pre_post_fix
.
push_back
(
std
::
make_pair
(
""
,
""
));
break
;
}
return
pre_post_fix
;
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_optimizer.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/adam.hpp>
#include <popart/names.hpp>
#include <popart/optimizer.hpp>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
enum
class
OptimizerType
{
SGD
=
0
,
Adam
,
Lamb
,
Undefined
};
class
OptmizerMetaInfo
{
public:
OptmizerMetaInfo
();
~
OptmizerMetaInfo
();
void
SetType
(
const
std
::
string
&
type
);
OptimizerType
GetType
()
const
{
return
type_
;
}
void
SetAttr
(
const
std
::
string
&
attr
,
float
value
);
float
GetAttr
(
const
std
::
string
&
attr
,
float
default_value
=
0.0
f
)
const
;
void
SetLoss
(
const
std
::
string
&
loss
)
{
loss_
=
loss
;
}
std
::
string
GetLoss
()
const
{
return
loss_
;
}
void
SetLR
(
float
lr_rate
)
{
lr_rate_
=
lr_rate
;
}
float
GetLR
()
const
{
return
lr_rate_
;
}
void
SetLRVarName
(
const
std
::
string
&
name
)
{
lr_var_name_
=
name
;
}
std
::
string
GetLRVarName
()
const
{
return
lr_var_name_
;
}
private:
// type: adam, sgd, ...
OptimizerType
type_
=
OptimizerType
::
Undefined
;
// loss: loss TensorId
std
::
string
loss_
;
// attrs: beta1, beta2, ...
std
::
map
<
std
::
string
,
float
>
attrs_
;
// learning rate
float
lr_rate_
=
1.0
;
std
::
string
lr_var_name_
;
};
OptimizerType
OptTypeStr2Enum
(
const
std
::
string
type
);
std
::
unique_ptr
<
popart
::
Optimizer
>
GetPopartOptimizer
(
const
OptmizerMetaInfo
&
info
);
bool
IsOptimizerSupported
(
OptimizerType
type
);
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
GetOptPrePostfix
(
OptimizerType
type
);
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_strategy.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/ipu_strategy.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_strategy.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/sessionoptions.hpp>
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
using
VirtualGraphMode
=
popart
::
VirtualGraphMode
;
struct
IpuStrategy
{
int
num_ipus
=
1
;
int
batches_per_step
=
1
;
int
batch_size
=
1
;
bool
is_training
=
true
;
bool
save_init_onnx
=
false
;
bool
save_last_onnx
=
true
;
popart
::
SessionOptions
popart_options_
;
bool
need_avg_shard
=
false
;
bool
enable_fp16
=
false
;
};
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_utils.cc
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/ipu/ipu_utils.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
void
*
PaddleIArray
::
data
()
{
return
tensor_
->
data
<
void
>
();
}
popart
::
DataType
PaddleIArray
::
dataType
()
const
{
return
VarType2PopartType
(
tensor_
->
type
());
}
std
::
size_t
PaddleIArray
::
rank
()
const
{
return
tensor_
->
dims
().
size
();
}
int64_t
PaddleIArray
::
dim
(
size_t
index
)
const
{
return
tensor_
->
dims
().
at
(
index
);
}
std
::
size_t
PaddleIArray
::
nelms
()
const
{
return
std
::
accumulate
(
shape_
.
begin
(),
shape_
.
end
(),
static_cast
<
int64_t
>
(
1
),
std
::
multiplies
<
int64_t
>
());
}
const
popart
::
Shape
PaddleIArray
::
shape
()
const
{
return
shape_
;
}
popart
::
DataType
VarType2PopartType
(
const
framework
::
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
framework
::
proto
::
VarType
::
UINT8
:
return
popart
::
DataType
::
UINT8
;
case
framework
::
proto
::
VarType
::
INT8
:
return
popart
::
DataType
::
INT8
;
case
framework
::
proto
::
VarType
::
INT16
:
return
popart
::
DataType
::
INT16
;
case
framework
::
proto
::
VarType
::
INT32
:
return
popart
::
DataType
::
INT32
;
case
framework
::
proto
::
VarType
::
INT64
:
return
popart
::
DataType
::
INT64
;
case
framework
::
proto
::
VarType
::
BOOL
:
return
popart
::
DataType
::
BOOL
;
case
framework
::
proto
::
VarType
::
FP64
:
return
popart
::
DataType
::
DOUBLE
;
case
framework
::
proto
::
VarType
::
FP32
:
return
popart
::
DataType
::
FLOAT
;
case
framework
::
proto
::
VarType
::
FP16
:
return
popart
::
DataType
::
FLOAT16
;
case
framework
::
proto
::
VarType
::
BF16
:
return
popart
::
DataType
::
BFLOAT16
;
case
framework
::
proto
::
VarType
::
COMPLEX64
:
return
popart
::
DataType
::
COMPLEX64
;
case
framework
::
proto
::
VarType
::
COMPLEX128
:
return
popart
::
DataType
::
COMPLEX128
;
default:
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Unavailable
(
"Unsupported Paddle var type."
));
}
}
framework
::
proto
::
VarType
::
Type
PopartType2VarType
(
const
popart
::
DataType
type
)
{
switch
(
type
)
{
case
popart
::
DataType
::
UINT8
:
return
framework
::
proto
::
VarType
::
UINT8
;
case
popart
::
DataType
::
INT8
:
return
framework
::
proto
::
VarType
::
INT8
;
case
popart
::
DataType
::
INT16
:
return
framework
::
proto
::
VarType
::
INT16
;
case
popart
::
DataType
::
INT32
:
return
framework
::
proto
::
VarType
::
INT32
;
case
popart
::
DataType
::
INT64
:
return
framework
::
proto
::
VarType
::
INT64
;
case
popart
::
DataType
::
BOOL
:
return
framework
::
proto
::
VarType
::
BOOL
;
case
popart
::
DataType
::
DOUBLE
:
return
framework
::
proto
::
VarType
::
FP64
;
case
popart
::
DataType
::
FLOAT
:
return
framework
::
proto
::
VarType
::
FP32
;
case
popart
::
DataType
::
FLOAT16
:
return
framework
::
proto
::
VarType
::
FP16
;
case
popart
::
DataType
::
BFLOAT16
:
return
framework
::
proto
::
VarType
::
BF16
;
case
popart
::
DataType
::
COMPLEX64
:
return
framework
::
proto
::
VarType
::
COMPLEX64
;
case
popart
::
DataType
::
COMPLEX128
:
return
framework
::
proto
::
VarType
::
COMPLEX128
;
default:
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Unavailable
(
"Unsupported Paddle var type."
));
}
}
popart
::
DataType
OnnxDtype2PopartType
(
const
int
type
)
{
auto
dtype
=
static_cast
<
ONNXDataType
>
(
type
);
switch
(
dtype
)
{
case
ONNXDataType
::
BOOL
:
return
popart
::
DataType
::
BOOL
;
case
ONNXDataType
::
INT16
:
return
popart
::
DataType
::
INT16
;
case
ONNXDataType
::
INT32
:
return
popart
::
DataType
::
INT32
;
case
ONNXDataType
::
INT64
:
return
popart
::
DataType
::
INT64
;
case
ONNXDataType
::
FLOAT16
:
return
popart
::
DataType
::
FLOAT16
;
case
ONNXDataType
::
FLOAT
:
return
popart
::
DataType
::
FLOAT
;
case
ONNXDataType
::
DOUBLE
:
return
popart
::
DataType
::
DOUBLE
;
case
ONNXDataType
::
UINT8
:
return
popart
::
DataType
::
UINT8
;
case
ONNXDataType
::
INT8
:
return
popart
::
DataType
::
INT8
;
case
ONNXDataType
::
BFLOAT16
:
return
popart
::
DataType
::
BFLOAT16
;
case
ONNXDataType
::
COMPLEX64
:
return
popart
::
DataType
::
COMPLEX64
;
case
ONNXDataType
::
COMPLEX128
:
return
popart
::
DataType
::
COMPLEX128
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unsupported ONNX data type: %d."
,
dtype
));
}
}
// count num should > 0
bool
GetBoolEnv
(
std
::
string
str
)
{
char
*
str_val
=
getenv
(
str
.
c_str
());
if
(
str_val
==
NULL
)
{
return
false
;
}
else
{
bool
val
=
false
;
if
(
strcmp
(
str_val
,
"1"
)
==
0
||
strcmp
(
str_val
,
"true"
)
==
0
||
strcmp
(
str_val
,
"True"
)
==
0
||
strcmp
(
str_val
,
"TRUE"
)
==
0
)
val
=
true
;
return
val
;
}
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/ipu_utils.h
0 → 100644
浏览文件 @
a3b3ec68
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <popart/ndarraywrapper.hpp>
#include <popart/tensordata.hpp>
#include <popart/tensorinfo.hpp>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
namespace
paddle
{
namespace
platform
{
namespace
ipu
{
// onnx dtype
// https://github.com/onnx/onnx/blob/master/onnx/onnx-ml.proto3
enum
ONNXDataType
:
int
{
UNDEFINED
=
0
,
FLOAT
=
1
,
UINT8
=
2
,
INT8
=
3
,
UINT16
=
4
,
INT16
=
5
,
INT32
=
6
,
INT64
=
7
,
STRING
=
8
,
BOOL
=
9
,
FLOAT16
=
10
,
DOUBLE
=
11
,
UINT32
=
12
,
UINT64
=
13
,
COMPLEX64
=
14
,
COMPLEX128
=
15
,
BFLOAT16
=
16
};
class
PaddleIArray
final
:
public
popart
::
IArray
{
public:
explicit
PaddleIArray
(
framework
::
Tensor
*
tensor
)
:
tensor_
(
tensor
)
{
for
(
int
i
=
0
;
i
<
tensor
->
dims
().
size
();
++
i
)
{
shape_
.
push_back
(
tensor
->
dims
().
at
(
i
));
}
}
public:
void
*
data
();
popart
::
DataType
dataType
()
const
;
std
::
size_t
rank
()
const
;
int64_t
dim
(
size_t
index
)
const
;
std
::
size_t
nelms
()
const
;
const
popart
::
Shape
shape
()
const
;
private:
framework
::
Tensor
*
tensor_
;
std
::
vector
<
int64_t
>
shape_
;
};
popart
::
DataType
VarType2PopartType
(
const
framework
::
proto
::
VarType
::
Type
type
);
framework
::
proto
::
VarType
::
Type
PopartType2VarType
(
const
popart
::
DataType
type
);
popart
::
DataType
OnnxDtype2PopartType
(
const
int
type
);
bool
GetBoolEnv
(
std
::
string
str
);
template
<
typename
T
>
std
::
unique_ptr
<
popart
::
NDArrayWrapper
<
T
>>
Tensor2IArray
(
const
framework
::
Tensor
&
tensor
)
{
auto
dtype
=
VarType2PopartType
(
tensor
.
type
());
auto
shape
=
std
::
vector
<
int64_t
>
();
for
(
size_t
i
=
0
;
i
<
tensor
.
dims
().
size
();
++
i
)
{
shape
.
push_back
(
tensor
.
dims
().
at
(
i
));
}
popart
::
TensorInfo
tensor_info
(
dtype
,
shape
);
return
std
::
make_unique
<
popart
::
NDArrayWrapper
<
T
>>
(
reinterpret_cast
<
T
*>
(
tensor
.
data
<
void
>
()),
tensor_info
);
}
template
<
typename
T
>
std
::
unique_ptr
<
popart
::
NDArrayWrapper
<
T
>>
LoDTensor2IArray
(
framework
::
LoDTensor
const
&
lod_tensor
)
{
PADDLE_ENFORCE_EQ
(
lod_tensor
.
lod
().
size
(),
0UL
,
platform
::
errors
::
InvalidArgument
(
"LoDTensor2IArray is Unimplemented"
));
return
Tensor2IArray
<
T
>
(
lod_tensor
);
}
}
// namespace ipu
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device/ipu/supported_ops_autogen.h
0 → 100644
浏览文件 @
a3b3ec68
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// clang-format off
#pragma once
// Ops from AiGraphcoreOpset1
OP_DECL
(
popart_groupnormalization_v2
,
aiGraphcoreOpset
.
groupnormalization
,
ARG
(
INT
,
num_groups
)
ARG
(
FLOAT
,
epsilon
)
)
// NOLINT
OP_DECL
(
popart_subsample_v2
,
aiGraphcoreOpset
.
subsample
,
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_nop_v2
,
aiGraphcoreOpset
.
nop
,
NONE
)
// NOLINT
OP_DECL
(
popart_scale_v2
,
aiGraphcoreOpset
.
scale
,
ARG
(
FLOAT
,
scale
)
)
// NOLINT
OP_DECL
(
popart_scaledadd_v2
,
aiGraphcoreOpset
.
scaledadd
,
ARG
(
FLOAT
,
scale0
)
ARG
(
FLOAT
,
scale1
)
)
// NOLINT
OP_DECL
(
popart_gelu_v2
,
aiGraphcoreOpset
.
gelu
,
NONE
)
// NOLINT
OP_DECL
(
popart_detach_v2
,
aiGraphcoreOpset
.
detach
,
NONE
)
// NOLINT
OP_DECL
(
popart_depthtospace_v2
,
aiGraphcoreOpset
.
depthtospace
,
ARG
(
INT
,
blocksize
)
ARG
(
STRING
,
mode
)
)
// NOLINT
OP_DECL
(
popart_round_v2
,
aiGraphcoreOpset
.
round
,
NONE
)
// NOLINT
OP_DECL
(
popart_dynamicslice_v2
,
aiGraphcoreOpset
.
dynamicslice
,
ARG
(
INT_VEC
,
axes
)
ARG
(
INT_VEC
,
sizes
)
ARG
(
INT
,
noOverlap
)
)
// NOLINT
OP_DECL
(
popart_dynamicupdate_v2
,
aiGraphcoreOpset
.
dynamicupdate
,
ARG
(
INT_VEC
,
axes
)
ARG
(
INT_VEC
,
sizes
)
ARG
(
INT
,
noOverlap
)
)
// NOLINT
OP_DECL
(
popart_dynamiczero_v2
,
aiGraphcoreOpset
.
dynamiczero
,
ARG
(
INT_VEC
,
axes
)
ARG
(
INT_VEC
,
sizes
)
)
// NOLINT
OP_DECL
(
popart_dynamicadd_v2
,
aiGraphcoreOpset
.
dynamicadd
,
ARG
(
INT_VEC
,
axes
)
ARG
(
INT_VEC
,
sizes
)
)
// NOLINT
OP_DECL
(
popart_sequenceslice_v2
,
aiGraphcoreOpset
.
sequenceslice
,
ARG
(
INT
,
zeroUnused
)
)
// NOLINT
OP_DECL
(
popart_replicatedallreduce_v2
,
aiGraphcoreOpset
.
replicatedallreduce
,
OPT_ARG
(
INT_VEC
,
commGroup
)
)
// NOLINT
OP_DECL
(
popart_ctcbeamsearchdecoder_v2
,
aiGraphcoreOpset
.
ctcbeamsearchdecoder
,
ARG
(
INT
,
blank
)
ARG
(
INT
,
beamWidth
)
ARG
(
INT
,
topPaths
)
)
// NOLINT
OP_DECL
(
popart_shapeddropout_v2
,
aiGraphcoreOpset
.
shapeddropout
,
ARG
(
INT_VEC
,
shape
)
ARG
(
FLOAT
,
ratio
)
)
// NOLINT
OP_DECL
(
popart_atan2_v2
,
aiGraphcoreOpset
.
atan2
,
NONE
)
// NOLINT
OP_DECL
(
popart_expm1_v2
,
aiGraphcoreOpset
.
expm1
,
NONE
)
// NOLINT
OP_DECL
(
popart_log1p_v2
,
aiGraphcoreOpset
.
log1p
,
NONE
)
// NOLINT
OP_DECL
(
popart_fmod_v2
,
aiGraphcoreOpset
.
fmod
,
NONE
)
// NOLINT
OP_DECL
(
popart_remainder_v2
,
aiGraphcoreOpset
.
remainder
,
NONE
)
// NOLINT
OP_DECL
(
popart_reverse_v2
,
aiGraphcoreOpset
.
reverse
,
ARG
(
INT_VEC
,
dimensions
)
)
// NOLINT
OP_DECL
(
popart_bitwisenot_v2
,
aiGraphcoreOpset
.
bitwisenot
,
NONE
)
// NOLINT
OP_DECL
(
popart_bitwiseand_v2
,
aiGraphcoreOpset
.
bitwiseand
,
NONE
)
// NOLINT
OP_DECL
(
popart_bitwiseor_v2
,
aiGraphcoreOpset
.
bitwiseor
,
NONE
)
// NOLINT
OP_DECL
(
popart_bitwisexor_v2
,
aiGraphcoreOpset
.
bitwisexor
,
NONE
)
// NOLINT
OP_DECL
(
popart_bitwisexnor_v2
,
aiGraphcoreOpset
.
bitwisexnor
,
NONE
)
// NOLINT
OP_DECL
(
popart_reducemedian_v2
,
aiGraphcoreOpset
.
reducemedian
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
// Ops from AiOnnxOpset11
OP_DECL
(
popart_argmax
,
aiOnnxOpset
.
argmax
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_argmin
,
aiOnnxOpset
.
argmin
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_averagepool
,
aiOnnxOpset
.
averagepool
,
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT
,
ceil_mode
)
ARG
(
INT
,
count_include_pad
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_bitshift
,
aiOnnxOpset
.
bitshift
,
ARG
(
STRING
,
direction
)
)
// NOLINT
OP_DECL
(
popart_clip
,
aiOnnxOpset
.
clip
,
NONE
)
// NOLINT
OP_DECL
(
popart_compress
,
aiOnnxOpset
.
compress
,
OPT_ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_concat
,
aiOnnxOpset
.
concat
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_concatfromsequence
,
aiOnnxOpset
.
concatfromsequence
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
new_axis
)
)
// NOLINT
OP_DECL
(
popart_conv
,
aiOnnxOpset
.
conv
,
ARG
(
INT_VEC
,
dilations
)
ARG
(
INT
,
group
)
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_convtranspose
,
aiOnnxOpset
.
convtranspose
,
ARG
(
INT_VEC
,
dilations
)
ARG
(
INT
,
group
)
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT_VEC
,
output_padding
)
ARG
(
INT_VEC
,
output_shape
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_cumsum
,
aiOnnxOpset
.
cumsum
,
ARG
(
INT
,
exclusive
)
ARG
(
INT
,
reverse
)
)
// NOLINT
OP_DECL
(
popart_depthtospace
,
aiOnnxOpset
.
depthtospace
,
ARG
(
INT
,
blocksize
)
ARG
(
STRING
,
mode
)
)
// NOLINT
OP_DECL
(
popart_det
,
aiOnnxOpset
.
det
,
NONE
)
// NOLINT
OP_DECL
(
popart_dynamicquantizelinear
,
aiOnnxOpset
.
dynamicquantizelinear
,
NONE
)
// NOLINT
OP_DECL
(
popart_equal
,
aiOnnxOpset
.
equal
,
NONE
)
// NOLINT
OP_DECL
(
popart_flatten
,
aiOnnxOpset
.
flatten
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_gather
,
aiOnnxOpset
.
gather
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_gatherelements
,
aiOnnxOpset
.
gatherelements
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_gathernd
,
aiOnnxOpset
.
gathernd
,
NONE
)
// NOLINT
OP_DECL
(
popart_gemm
,
aiOnnxOpset
.
gemm
,
ARG
(
FLOAT
,
alpha
)
ARG
(
FLOAT
,
beta
)
ARG
(
INT
,
transA
)
ARG
(
INT
,
transB
)
)
// NOLINT
OP_DECL
(
popart_hardmax
,
aiOnnxOpset
.
hardmax
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_logsoftmax
,
aiOnnxOpset
.
logsoftmax
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_lppool
,
aiOnnxOpset
.
lppool
,
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT
,
p
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_maxpool
,
aiOnnxOpset
.
maxpool
,
ARG
(
INT
,
num_outputs
)
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT
,
ceil_mode
)
ARG
(
INT_VEC
,
dilations
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT
,
storage_order
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_maxunpool
,
aiOnnxOpset
.
maxunpool
,
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_nonmaxsuppression
,
aiOnnxOpset
.
nonmaxsuppression
,
ARG
(
INT
,
center_point_box
)
)
// NOLINT
OP_DECL
(
popart_onehot
,
aiOnnxOpset
.
onehot
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_pad
,
aiOnnxOpset
.
pad
,
ARG
(
STRING
,
mode
)
)
// NOLINT
OP_DECL
(
popart_range
,
aiOnnxOpset
.
range
,
NONE
)
// NOLINT
OP_DECL
(
popart_reducel1
,
aiOnnxOpset
.
reducel1
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducel2
,
aiOnnxOpset
.
reducel2
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducelogsum
,
aiOnnxOpset
.
reducelogsum
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducelogsumexp
,
aiOnnxOpset
.
reducelogsumexp
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducemax
,
aiOnnxOpset
.
reducemax
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducemean
,
aiOnnxOpset
.
reducemean
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducemin
,
aiOnnxOpset
.
reducemin
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reduceprod
,
aiOnnxOpset
.
reduceprod
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducesum
,
aiOnnxOpset
.
reducesum
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_reducesumsquare
,
aiOnnxOpset
.
reducesumsquare
,
OPT_ARG
(
INT_VEC
,
axes
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_resize
,
aiOnnxOpset
.
resize
,
ARG
(
STRING
,
coordinate_transformation_mode
)
ARG
(
FLOAT
,
cubic_coeff_a
)
ARG
(
INT
,
exclude_outside
)
ARG
(
FLOAT
,
extrapolation_value
)
ARG
(
STRING
,
mode
)
ARG
(
STRING
,
nearest_mode
)
)
// NOLINT
OP_DECL
(
popart_round
,
aiOnnxOpset
.
round
,
NONE
)
// NOLINT
OP_DECL
(
popart_scatter
,
aiOnnxOpset
.
scatter
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_scatterelements
,
aiOnnxOpset
.
scatterelements
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_scatternd
,
aiOnnxOpset
.
scatternd
,
NONE
)
// NOLINT
OP_DECL
(
popart_sequenceat
,
aiOnnxOpset
.
sequenceat
,
NONE
)
// NOLINT
OP_DECL
(
popart_sequenceconstruct
,
aiOnnxOpset
.
sequenceconstruct
,
NONE
)
// NOLINT
OP_DECL
(
popart_sequenceerase
,
aiOnnxOpset
.
sequenceerase
,
NONE
)
// NOLINT
OP_DECL
(
popart_sequenceinsert
,
aiOnnxOpset
.
sequenceinsert
,
NONE
)
// NOLINT
OP_DECL
(
popart_sequencelength
,
aiOnnxOpset
.
sequencelength
,
NONE
)
// NOLINT
OP_DECL
(
popart_slice
,
aiOnnxOpset
.
slice
,
NONE
)
// NOLINT
OP_DECL
(
popart_softmax
,
aiOnnxOpset
.
softmax
,
ARG
(
INT
,
axis
)
)
// NOLINT
OP_DECL
(
popart_split
,
aiOnnxOpset
.
split
,
ARG
(
INT
,
num_outputs
)
ARG
(
INT
,
axis
)
ARG
(
INT_VEC
,
split
)
)
// NOLINT
OP_DECL
(
popart_splittosequence
,
aiOnnxOpset
.
splittosequence
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
keepdims
)
)
// NOLINT
OP_DECL
(
popart_squeeze
,
aiOnnxOpset
.
squeeze
,
ARG
(
INT_VEC
,
axes
)
)
// NOLINT
OP_DECL
(
popart_topk
,
aiOnnxOpset
.
topk
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
largest
)
ARG
(
INT
,
sorted
)
)
// NOLINT
OP_DECL
(
popart_unique
,
aiOnnxOpset
.
unique
,
ARG
(
INT
,
num_outputs
)
OPT_ARG
(
INT
,
axis
)
ARG
(
INT
,
sorted
)
)
// NOLINT
OP_DECL
(
popart_unsqueeze
,
aiOnnxOpset
.
unsqueeze
,
ARG
(
INT_VEC
,
axes
)
)
// NOLINT
// Ops from AiOnnxOpset10
OP_DECL
(
popart_convinteger
,
aiOnnxOpset
.
convinteger
,
ARG
(
INT_VEC
,
dilations
)
ARG
(
INT
,
group
)
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_dequantizelinear
,
aiOnnxOpset
.
dequantizelinear
,
NONE
)
// NOLINT
OP_DECL
(
popart_dropout
,
aiOnnxOpset
.
dropout
,
ARG
(
INT
,
num_outputs
)
ARG
(
FLOAT
,
ratio
)
)
// NOLINT
OP_DECL
(
popart_isinf
,
aiOnnxOpset
.
isinf
,
ARG
(
INT
,
detect_negative
)
ARG
(
INT
,
detect_positive
)
)
// NOLINT
OP_DECL
(
popart_matmulinteger
,
aiOnnxOpset
.
matmulinteger
,
NONE
)
// NOLINT
OP_DECL
(
popart_mod
,
aiOnnxOpset
.
mod
,
ARG
(
INT
,
fmod
)
)
// NOLINT
OP_DECL
(
popart_qlinearconv
,
aiOnnxOpset
.
qlinearconv
,
ARG
(
INT_VEC
,
dilations
)
ARG
(
INT
,
group
)
ARG
(
INT_VEC
,
kernel_shape
)
ARG
(
INT_VEC
,
pads
)
ARG
(
INT_VEC
,
strides
)
)
// NOLINT
OP_DECL
(
popart_qlinearmatmul
,
aiOnnxOpset
.
qlinearmatmul
,
NONE
)
// NOLINT
OP_DECL
(
popart_quantizelinear
,
aiOnnxOpset
.
quantizelinear
,
NONE
)
// NOLINT
OP_DECL
(
popart_reversesequence
,
aiOnnxOpset
.
reversesequence
,
ARG
(
INT
,
batch_axis
)
ARG
(
INT
,
time_axis
)
)
// NOLINT
OP_DECL
(
popart_roialign
,
aiOnnxOpset
.
roialign
,
ARG
(
STRING
,
mode
)
ARG
(
INT
,
output_height
)
ARG
(
INT
,
output_width
)
ARG
(
INT
,
sampling_ratio
)
ARG
(
FLOAT
,
spatial_scale
)
)
// NOLINT
OP_DECL
(
popart_thresholdedrelu
,
aiOnnxOpset
.
thresholdedrelu
,
ARG
(
FLOAT
,
alpha
)
)
// NOLINT
OP_DECL
(
popart_upsample
,
aiOnnxOpset
.
upsample
,
ARG
(
STRING
,
mode
)
)
// NOLINT
// Ops from AiOnnxOpset9
OP_DECL
(
popart_acosh
,
aiOnnxOpset
.
acosh
,
NONE
)
// NOLINT
OP_DECL
(
popart_asinh
,
aiOnnxOpset
.
asinh
,
NONE
)
// NOLINT
OP_DECL
(
popart_atanh
,
aiOnnxOpset
.
atanh
,
NONE
)
// NOLINT
OP_DECL
(
popart_batchnormalization
,
aiOnnxOpset
.
batchnormalization
,
ARG
(
INT
,
num_outputs
)
ARG
(
FLOAT
,
epsilon
)
ARG
(
FLOAT
,
momentum
)
)
// NOLINT
OP_DECL
(
popart_cast
,
aiOnnxOpset
.
cast
,
ARG
(
STRING
,
to
)
)
// NOLINT
OP_DECL
(
popart_cosh
,
aiOnnxOpset
.
cosh
,
NONE
)
// NOLINT
OP_DECL
(
popart_erf
,
aiOnnxOpset
.
erf
,
NONE
)
// NOLINT
OP_DECL
(
popart_eyelike
,
aiOnnxOpset
.
eyelike
,
OPT_ARG
(
INT
,
dtype
)
ARG
(
INT
,
k
)
)
// NOLINT
OP_DECL
(
popart_greater
,
aiOnnxOpset
.
greater
,
NONE
)
// NOLINT
OP_DECL
(
popart_isnan
,
aiOnnxOpset
.
isnan
,
NONE
)
// NOLINT
OP_DECL
(
popart_less
,
aiOnnxOpset
.
less
,
NONE
)
// NOLINT
OP_DECL
(
popart_matmul
,
aiOnnxOpset
.
matmul
,
NONE
)
// NOLINT
OP_DECL
(
popart_meanvariancenormalization
,
aiOnnxOpset
.
meanvariancenormalization
,
ARG
(
INT_VEC
,
axes
)
)
// NOLINT
OP_DECL
(
popart_nonzero
,
aiOnnxOpset
.
nonzero
,
NONE
)
// NOLINT
OP_DECL
(
popart_prelu
,
aiOnnxOpset
.
prelu
,
NONE
)
// NOLINT
OP_DECL
(
popart_shrink
,
aiOnnxOpset
.
shrink
,
ARG
(
FLOAT
,
bias
)
ARG
(
FLOAT
,
lambd
)
)
// NOLINT
OP_DECL
(
popart_sign
,
aiOnnxOpset
.
sign
,
NONE
)
// NOLINT
OP_DECL
(
popart_sinh
,
aiOnnxOpset
.
sinh
,
NONE
)
// NOLINT
OP_DECL
(
popart_where
,
aiOnnxOpset
.
where
,
NONE
)
// NOLINT
// Ops from AiOnnxOpset8
OP_DECL
(
popart_expand
,
aiOnnxOpset
.
expand
,
NONE
)
// NOLINT
OP_DECL
(
popart_max
,
aiOnnxOpset
.
max
,
NONE
)
// NOLINT
OP_DECL
(
popart_mean
,
aiOnnxOpset
.
mean
,
NONE
)
// NOLINT
OP_DECL
(
popart_min
,
aiOnnxOpset
.
min
,
NONE
)
// NOLINT
OP_DECL
(
popart_sum
,
aiOnnxOpset
.
sum
,
NONE
)
// NOLINT
// Ops from AiOnnxOpset7
OP_DECL
(
popart_acos
,
aiOnnxOpset
.
acos
,
NONE
)
// NOLINT
OP_DECL
(
popart_add
,
aiOnnxOpset
.
add
,
NONE
)
// NOLINT
OP_DECL
(
popart_logical_and
,
aiOnnxOpset
.
logical_and
,
NONE
)
// NOLINT
OP_DECL
(
popart_asin
,
aiOnnxOpset
.
asin
,
NONE
)
// NOLINT
OP_DECL
(
popart_atan
,
aiOnnxOpset
.
atan
,
NONE
)
// NOLINT
OP_DECL
(
popart_cos
,
aiOnnxOpset
.
cos
,
NONE
)
// NOLINT
OP_DECL
(
popart_div
,
aiOnnxOpset
.
div
,
NONE
)
// NOLINT
OP_DECL
(
popart_mul
,
aiOnnxOpset
.
mul
,
NONE
)
// NOLINT
OP_DECL
(
popart_multinomial
,
aiOnnxOpset
.
multinomial
,
ARG
(
INT
,
dtype
)
ARG
(
INT
,
sample_size
)
OPT_ARG
(
FLOAT
,
seed
)
)
// NOLINT
OP_DECL
(
popart_logical_or
,
aiOnnxOpset
.
logical_or
,
NONE
)
// NOLINT
OP_DECL
(
popart_pow
,
aiOnnxOpset
.
pow
,
NONE
)
// NOLINT
OP_DECL
(
popart_sin
,
aiOnnxOpset
.
sin
,
NONE
)
// NOLINT
OP_DECL
(
popart_sub
,
aiOnnxOpset
.
sub
,
NONE
)
// NOLINT
OP_DECL
(
popart_tan
,
aiOnnxOpset
.
tan
,
NONE
)
// NOLINT
OP_DECL
(
popart_logical_xor
,
aiOnnxOpset
.
logical_xor
,
NONE
)
// NOLINT
// Ops from AiOnnxOpset6
OP_DECL
(
popart_abs
,
aiOnnxOpset
.
abs
,
NONE
)
// NOLINT
OP_DECL
(
popart_ceil
,
aiOnnxOpset
.
ceil
,
NONE
)
// NOLINT
OP_DECL
(
popart_elu
,
aiOnnxOpset
.
elu
,
ARG
(
FLOAT
,
alpha
)
)
// NOLINT
OP_DECL
(
popart_exp
,
aiOnnxOpset
.
exp
,
NONE
)
// NOLINT
OP_DECL
(
popart_floor
,
aiOnnxOpset
.
floor
,
NONE
)
// NOLINT
OP_DECL
(
popart_globalaveragepool
,
aiOnnxOpset
.
globalaveragepool
,
NONE
)
// NOLINT
OP_DECL
(
popart_globallppool
,
aiOnnxOpset
.
globallppool
,
ARG
(
INT
,
p
)
)
// NOLINT
OP_DECL
(
popart_globalmaxpool
,
aiOnnxOpset
.
globalmaxpool
,
NONE
)
// NOLINT
OP_DECL
(
popart_hardsigmoid
,
aiOnnxOpset
.
hardsigmoid
,
ARG
(
FLOAT
,
alpha
)
ARG
(
FLOAT
,
beta
)
)
// NOLINT
OP_DECL
(
popart_identity
,
aiOnnxOpset
.
identity
,
NONE
)
// NOLINT
OP_DECL
(
popart_instancenormalization
,
aiOnnxOpset
.
instancenormalization
,
ARG
(
FLOAT
,
epsilon
)
)
// NOLINT
OP_DECL
(
popart_lrn
,
aiOnnxOpset
.
lrn
,
ARG
(
INT
,
size
)
ARG
(
FLOAT
,
alpha
)
ARG
(
FLOAT
,
beta
)
ARG
(
FLOAT
,
bias
)
)
// NOLINT
OP_DECL
(
popart_leakyrelu
,
aiOnnxOpset
.
leakyrelu
,
ARG
(
FLOAT
,
alpha
)
)
// NOLINT
OP_DECL
(
popart_log
,
aiOnnxOpset
.
log
,
NONE
)
// NOLINT
OP_DECL
(
popart_lpnormalization
,
aiOnnxOpset
.
lpnormalization
,
ARG
(
INT
,
axis
)
ARG
(
INT
,
p
)
)
// NOLINT
OP_DECL
(
popart_maxroipool
,
aiOnnxOpset
.
maxroipool
,
ARG
(
INT_VEC
,
pooled_shape
)
ARG
(
FLOAT
,
spatial_scale
)
)
// NOLINT
OP_DECL
(
popart_neg
,
aiOnnxOpset
.
neg
,
NONE
)
// NOLINT
OP_DECL
(
popart_logical_not
,
aiOnnxOpset
.
logical_not
,
NONE
)
// NOLINT
OP_DECL
(
popart_randomnormallike
,
aiOnnxOpset
.
randomnormallike
,
OPT_ARG
(
INT
,
dtype
)
ARG
(
FLOAT
,
mean
)
ARG
(
FLOAT
,
scale
)
OPT_ARG
(
FLOAT
,
seed
)
)
// NOLINT
OP_DECL
(
popart_randomuniformlike
,
aiOnnxOpset
.
randomuniformlike
,
OPT_ARG
(
INT
,
dtype
)
ARG
(
FLOAT
,
high
)
ARG
(
FLOAT
,
low
)
OPT_ARG
(
FLOAT
,
seed
)
)
// NOLINT
OP_DECL
(
popart_reciprocal
,
aiOnnxOpset
.
reciprocal
,
NONE
)
// NOLINT
OP_DECL
(
popart_relu
,
aiOnnxOpset
.
relu
,
NONE
)
// NOLINT
OP_DECL
(
popart_reshape
,
aiOnnxOpset
.
reshape
,
NONE
)
// NOLINT
OP_DECL
(
popart_selu
,
aiOnnxOpset
.
selu
,
ARG
(
FLOAT
,
alpha
)
ARG
(
FLOAT
,
gamma
)
)
// NOLINT
OP_DECL
(
popart_shape
,
aiOnnxOpset
.
shape
,
NONE
)
// NOLINT
OP_DECL
(
popart_sigmoid
,
aiOnnxOpset
.
sigmoid
,
NONE
)
// NOLINT
OP_DECL
(
popart_size
,
aiOnnxOpset
.
size
,
NONE
)
// NOLINT
OP_DECL
(
popart_softplus
,
aiOnnxOpset
.
softplus
,
NONE
)
// NOLINT
OP_DECL
(
popart_softsign
,
aiOnnxOpset
.
softsign
,
NONE
)
// NOLINT
OP_DECL
(
popart_spacetodepth
,
aiOnnxOpset
.
spacetodepth
,
ARG
(
INT
,
blocksize
)
)
// NOLINT
OP_DECL
(
popart_sqrt
,
aiOnnxOpset
.
sqrt
,
NONE
)
// NOLINT
OP_DECL
(
popart_tanh
,
aiOnnxOpset
.
tanh
,
NONE
)
// NOLINT
OP_DECL
(
popart_tile
,
aiOnnxOpset
.
tile
,
NONE
)
// NOLINT
OP_DECL
(
popart_transpose
,
aiOnnxOpset
.
transpose
,
ARG
(
INT_VEC
,
perm
)
)
// NOLINT
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录