Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a3ac54b6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a3ac54b6
编写于
7月 20, 2018
作者:
C
chengduo
提交者:
GitHub
7月 20, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix Reduce functor (#12262)
* Fix Reduce and Gather * Fix unit test
上级
6c981e7d
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
89 addition
and
25 deletion
+89
-25
paddle/fluid/framework/details/reduce_and_gather.h
paddle/fluid/framework/details/reduce_and_gather.h
+6
-4
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+83
-21
未找到文件。
paddle/fluid/framework/details/reduce_and_gather.h
浏览文件 @
a3ac54b6
...
...
@@ -35,14 +35,16 @@ struct ReduceLoDTensor {
PADDLE_ENFORCE
(
!
src_tensors_
.
empty
());
auto
&
t0
=
*
src_tensors_
[
0
];
PADDLE_ENFORCE_NE
(
t0
.
numel
(),
0
);
dst_tensor_
.
Resize
(
t0
.
dims
());
T
*
dst
=
dst_tensor_
.
mutable_data
<
T
>
(
platform
::
CPUPlace
());
if
(
dst
!=
t0
.
data
<
T
>
())
{
std
::
copy
(
t0
.
data
<
T
>
(),
t0
.
data
<
T
>
()
+
t0
.
numel
(),
dst
);
}
for
(
size_t
i
=
1
;
i
<
src_tensors_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
src_tensors_
.
size
();
++
i
)
{
auto
&
t
=
*
src_tensors_
[
i
];
if
(
dst
==
t
.
data
<
T
>
())
{
continue
;
}
PADDLE_ENFORCE_EQ
(
t
.
dims
(),
t0
.
dims
());
PADDLE_ENFORCE_EQ
(
t
.
type
(),
t0
.
type
());
std
::
transform
(
t
.
data
<
T
>
(),
t
.
data
<
T
>
()
+
t
.
numel
(),
dst
,
dst
,
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
a3ac54b6
...
...
@@ -102,6 +102,16 @@ class TestMNIST(TestParallelExecutorBase):
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
MNIST_RECORDIO_FILE
,
reader
,
feeder
)
def
_init_data
(
self
,
random
=
True
):
np
.
random
.
seed
(
5
)
if
random
:
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
else
:
img
=
np
.
ones
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
# simple_fc
def
check_simple_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -109,8 +119,8 @@ class TestMNIST(TestParallelExecutorBase):
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
img
,
label
=
self
.
_init_data
(
)
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
...
...
@@ -118,6 +128,37 @@ class TestMNIST(TestParallelExecutorBase):
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
def
check_simple_fc_convergence_with_Reduce
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
use_reduce
=
True
)
self
.
check_network_convergence
(
simple_fc_net
,
use_cuda
=
use_cuda
,
allow_op_delay
=
True
,
use_reduce
=
True
)
img
,
label
=
self
.
_init_data
()
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
False
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
True
)
for
loss
in
zip
(
all_reduce_first_loss
,
reduce_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
def
test_simple_fc
(
self
):
# use_cuda
self
.
check_simple_fc_convergence
(
True
)
...
...
@@ -125,14 +166,15 @@ class TestMNIST(TestParallelExecutorBase):
def
test_simple_fc_with_new_strategy
(
self
):
# use_cuda, use_reduce
self
.
check_simple_fc_convergence
(
True
,
True
)
self
.
check_simple_fc_convergence
(
False
,
Tru
e
)
self
.
check_simple_fc_convergence
_with_Reduce
(
True
)
self
.
check_simple_fc_convergence
_with_Reduce
(
Fals
e
)
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
,
use_reduce
=
False
):
def
check_simple_fc_parallel_accuracy
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
img
,
label
=
self
.
_init_data
(
random
=
False
)
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
seed
=
1000
,
...
...
@@ -146,8 +188,7 @@ class TestMNIST(TestParallelExecutorBase):
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_parallel_executor
=
True
,
use_reduce
=
use_reduce
)
use_parallel_executor
=
True
)
for
p_f
in
parallel_first_loss
:
self
.
assertAlmostEquals
(
p_f
,
single_first_loss
[
0
],
delta
=
1e-6
)
...
...
@@ -158,32 +199,53 @@ class TestMNIST(TestParallelExecutorBase):
self
.
check_simple_fc_parallel_accuracy
(
True
)
self
.
check_simple_fc_parallel_accuracy
(
False
)
def
test_simple_fc_parallel_accuracy_with_new_strategy
(
self
):
# use_cuda, use_reduce
self
.
check_simple_fc_parallel_accuracy
(
True
,
True
)
self
.
check_simple_fc_parallel_accuracy
(
False
,
True
)
def
check_batchnorm_fc_convergence
(
self
,
use_cuda
,
use_reduce
=
False
):
def
check_batchnorm_fc_convergence
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
fc_with_batchnorm
,
use_cuda
=
use_cuda
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
img
,
label
=
self
.
_init_data
()
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
)
def
check_batchnorm_fc_convergence_use_reduce
(
self
,
use_cuda
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
self
.
check_network_convergence
(
fc_with_batchnorm
,
use_cuda
=
use_cuda
,
use_reduce
=
True
)
img
,
label
=
self
.
_init_data
()
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
use_reduce
)
use_reduce
=
False
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
use_reduce
=
True
)
for
loss
in
zip
(
all_reduce_first_loss
,
reduce_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-4
)
def
test_batchnorm_fc
(
self
):
self
.
check_batchnorm_fc_convergence
(
True
)
self
.
check_batchnorm_fc_convergence
(
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
# use_cuda, use_reduce
self
.
check_batchnorm_fc_convergence
(
True
,
True
)
self
.
check_batchnorm_fc_convergence
(
False
,
True
)
self
.
check_batchnorm_fc_convergence_use_reduce
(
True
)
self
.
check_batchnorm_fc_convergence_use_reduce
(
False
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录