From a38d1835b5c3441822e47110c5b3f42ffdc40cec Mon Sep 17 00:00:00 2001 From: Aurelius84 Date: Wed, 9 Oct 2019 16:56:23 +0800 Subject: [PATCH] refine seq_pool/reshape/reverse test=develop, test=document_fix (#20233) * refine seq_pool/reshape/reverse test=develop, test=document_fix * modify api.spec test=develop, test=document_fix --- paddle/fluid/API.spec | 10 +- python/paddle/fluid/layers/nn.py | 261 ++++++++++++++++++++----------- 2 files changed, 177 insertions(+), 94 deletions(-) diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 56bb4201994..0c3b8f242c6 100755 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -142,7 +142,7 @@ paddle.fluid.layers.chunk_eval (ArgSpec(args=['input', 'label', 'chunk_scheme', paddle.fluid.layers.sequence_conv (ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'padding_start', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, True, None, None, None, None, None)), ('document', 'ebddcc5a1073ef065d22b4673e36b1d2')) paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None, 'NCHW')), ('document', 'b9be3712a46e196c7329eed52ed91d05')) paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name', 'data_format'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None, 'NCDHW')), ('document', 'a7e4573745c40b8b1d726709f209b6e4')) -paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', 'e90a93251c52dc4e6fb34fb3991b3f82')) +paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', '5a709f7ef3fdb8fc819d09dc4fbada9a')) paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'eaa9d0bbd3d4e017c8bc4ecdac483711')) paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '7ccaea1b93fe4f7387a6036692986c6b')) paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '630cae697d46b4b575b15d56cf8be25a')) @@ -167,8 +167,8 @@ paddle.fluid.layers.reduce_min (ArgSpec(args=['input', 'dim', 'keep_dim', 'name' paddle.fluid.layers.reduce_prod (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', 'b386471f0476c80c61d8c8672278063d')) paddle.fluid.layers.reduce_all (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', '8ab17ab51f68a6e76302b27f928cedf3')) paddle.fluid.layers.reduce_any (ArgSpec(args=['input', 'dim', 'keep_dim', 'name'], varargs=None, keywords=None, defaults=(None, False, None)), ('document', '0483ac3b7a99e879ccde583ae8d7a60d')) -paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', 'f2dfd65b859de9844e7261e7a4503f63')) -paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '1af2e3a887e4f914f9d6650406186ab6')) +paddle.fluid.layers.sequence_first_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '227a75392ae194de0504f5c6812dade9')) +paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None), ('document', '34372f58331247749e8b0a1663cf233b')) paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '39fbc5437be389f6c0c769f82fc1fba2')) paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '4fd396b6cf16bb4ef2a56d695d0ad941')) paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '78cf3a7323d1a7697658242e13f63759')) @@ -178,7 +178,7 @@ paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', '3720b4a386585094435993deb028b592')) paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3')) paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(0, False, None, None)), ('document', 'a5be881ada816e47ea7a6ee4396da357')) -paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'f568714a876425004aca4ea2d4a27701')) +paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'eeb1591cfc854c6ffdac77b376313c44')) paddle.fluid.layers.transpose (ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8e72db173d4c082e27cb11f31d8c9bfa')) paddle.fluid.layers.im2sequence (ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)), ('document', '33134416fc27dd65a767e5f15116ee16')) paddle.fluid.layers.nce (ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False)), ('document', '83d4ca6dfb957912807f535756e76992')) @@ -278,7 +278,7 @@ paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '169882eb87fb693198e0153629134c22')) paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b')) paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f85b263b7b6698d000977529a28f202b')) -paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51')) +paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5b32ed21ab89140a8e758002923a0da3')) paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '9f303c67538e468a36c5904a0a3aa110')) paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb')) paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3')) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 43406a551d9..c2428457961 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -2844,63 +2844,87 @@ def conv3d(input, def sequence_pool(input, pool_type, is_test=False, pad_value=0.0): """ - This function add the operator for sequence pooling. - It pools features of all time-steps of each instance, and is applied - on top of the input using pool_type mentioned in the parameters. + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ). - It supports four pool_type: + This operator only supports LoDTensor as input. It will apply specified pooling + operation on the input LoDTensor. It pools features of all time-steps of each + sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters, + such as sum, average, sqrt, etc. + + It supports six pool_type: - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}` - sum: :math:`Out[i] = \sum_jX_{ij}` - sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}` - max: :math:`Out[i] = max(X_i)` + - last: :math:`Out[i] = X_{N_i}` + - first: :math:`Out[i]` = X_0 + + where :math:`N_i` is the length of i-th input sequence. .. code-block:: text - x is a 1-level LoDTensor and **pad_value** = 0.0: - x.lod = [[2, 3, 2, 0]] - x.data = [1, 3, 2, 4, 6, 5, 1] - x.dims = [7, 1] + Case 1: + input is a 1-level LoDTensor and pad_value = 0.0: + input.lod = [[0, 2, 5, 7, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is LoDTensor: + out.shape = [4, 1] + with condition out.shape[0] == len(x.lod[-1]) == 4 - then output is a Tensor: - out.dim = [4, 1] - with condition len(x.lod[-1]) == out.dims[0] + for different pool_type: + average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2 + sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1. + sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2) + max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.) + last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) + first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) - for different pool_type: - average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2 - sum : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1 - sqrt : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2), - 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2) - max : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1) - last : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1) - first : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1) + and all above [0.0] at last of out.data is padding data. - and all above 0.0 = **pad_value**. + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + where out.shape[0] == len(x.lod[-1]) == 5 + sum: out.data = [[1.], [5.], [4.], [0.0], [12.]] + where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1. Args: - input (variable): The input variable which is a LoDTensor. - pool_type (string): The pooling type of sequence_pool. - It supports average, sum, sqrt and max. - is_test (bool): Used to distinguish training from scoring mode. Default False. - pad_value (float): Used to pad the pooling result for empty input sequence. + input (variable): LoDTensor with lod_level no more than 2. The data type should be float32. + pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first. + is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is + created to record the index information corresponding to the maximum value, which is used for backward + gradient calculation in the training phase. Default: False. + pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0 Returns: - The sequence pooling variable which is a Tensor. + Variable: LoDTensor after pooling with data type float32. Examples: .. code-block:: python - import paddle.fluid as fluid + import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[7, 1], - dtype='float32', lod_level=1) - avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') - sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') - sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') - max_x = fluid.layers.sequence_pool(input=x, pool_type='max') - last_x = fluid.layers.sequence_pool(input=x, pool_type='last') - first_x = fluid.layers.sequence_pool(input=x, pool_type='first') + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) + avg_x = fluid.layers.sequence_pool(input=x, pool_type='average') + sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum') + sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt') + max_x = fluid.layers.sequence_pool(input=x, pool_type='max') + last_x = fluid.layers.sequence_pool(input=x, pool_type='last') + first_x = fluid.layers.sequence_pool(input=x, pool_type='first') """ assert not in_dygraph_mode(), ( "sequence layer is not supported in dygraph mode yet.") @@ -2983,33 +3007,51 @@ def sequence_concat(input, name=None): def sequence_first_step(input): """ - This function gets the first step of sequence. + This operator only supports LoDTensor as input. Given the input LoDTensor, it will + select first time-step feature of each sequence as output. .. code-block:: text - x is a 1-level LoDTensor: - x.lod = [[2, 3, 2]] - x.data = [1, 3, 2, 4, 6, 5, 1] - x.dims = [7, 1] + Case 1: + input is 1-level LoDTensor: + input.lod = [[0, 2, 5, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is a LoDTensor: + out.shape = [3, 1] + out.shape[0] == len(x.lod[-1]) == 3 + out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) - then output is a Tensor: - out.dim = [3, 1] - with condition len(x.lod[-1]) == out.dims[0] - out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1) + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is a LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + out.shape[0] == len(x.lod[-1]) == 5 + out.data = [[1.], [3.], [4.], [0.0], [6.]] + where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.) Args: - input(variable): The input variable which is a LoDTensor. + input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. Returns: - The sequence's first step variable which is a Tensor. + Variable: LoDTensor consist of the sequence's first step vector. The data type is float32. Examples: .. code-block:: python import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[7, 1], - dtype='float32', lod_level=1) + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_first_step = fluid.layers.sequence_first_step(input=x) """ return sequence_pool(input=input, pool_type="first") @@ -3017,33 +3059,52 @@ def sequence_first_step(input): def sequence_last_step(input): """ - This function gets the last step of sequence. + This operator only supports LoDTensor as input. Given the input LoDTensor, it will + select last time-step feature of each sequence as output. .. code-block:: text - x is a 1-level LoDTensor: - x.lod = [[2, 3, 2]] - x.data = [1, 3, 2, 4, 6, 5, 1] - x.dims = [7, 1] + Case 1: + input is 1-level LoDTensor: + input.lod = [[0, 2, 5, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + output is a LoDTensor: + out.shape = [3, 1] + out.shape[0] == len(x.lod[-1]) == 3 + out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) + + Case 2: + input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], + where 0 means empty sequence. + The first sequence contains 2 subsequence with length info [1, 2]; + The last sequence contains 3 subsequence with length info [1, 0, 3]. + input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] + input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] + input.shape = [7, 1] + + It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 + output is a LoDTensor: + out.shape= [5, 1] + out.lod = [[0, 2, 2, 5]] + out.shape[0] == len(x.lod[-1]) == 5 + out.data = [[1.], [2.], [4.], [0.0], [1.]] + where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.) - then output is a Tensor: - out.dim = [3, 1] - with condition len(x.lod[-1]) == out.dims[0] - out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1) Args: - input(variable): The input variable which is a LoDTensor. + input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. Returns: - The sequence's last step variable which is a Tensor. + Variable: LoDTensor consist of the sequence's last step vector. The data type is float32. Examples: .. code-block:: python import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[7, 1], - dtype='float32', lod_level=1) + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_last_step = fluid.layers.sequence_last_step(input=x) """ return sequence_pool(input=input, pool_type="last") @@ -6721,51 +6782,47 @@ def warpctc(input, def sequence_reshape(input, new_dim): """ - **Sequence Reshape Layer** + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ). - This layer will rearrange the input sequences. The new dimension is set by - user. Length of each sequence is computed according to original length, - original dimension and new dimension. The following example will help to - illustrate the function of this layer: + This operator only supports LoDTensor as input. Given :attr:`new_dim` , + it will compute new shape according to original length of each sequence, + original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor + containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor. + Please make sure that (original length * original dimensions) can be divided + by the :attr:`new_dim` with no remainder for each sequence. .. code-block:: text - x is a LoDTensor: - x.lod = [[0, 2, 6]] - x.data = [[1, 2], [3, 4], - [5, 6], [7, 8], - [9, 10], [11, 12]] - x.dims = [6, 2] + input is a LoDTensor: + input.lod = [[0, 2, 6]] + input.data = [[1, 2], [3, 4], + [5, 6], [7, 8], + [9, 10], [11, 12]] + input.shape = [6, 2] set new_dim = 4 - - then out is a LoDTensor: - + out is a LoDTensor: out.lod = [[0, 1, 3]] - out.data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] - out.dims = [3, 4] + out.shape = [3, 4] - Currently, only 1-level LoDTensor is supported and please make sure - (original length * original dimension) can be divided by new dimension with - no remainder for each sequence. Args: - input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension. + input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should + be int32, int64, float32 or float64. new_dim (int): New dimension that the input LoDTensor is reshaped to. Returns: - - Variable: Reshaped LoDTensor according to new dimension. + Variable: Reshaped LoDTensor according to new dimension. The data type is same as input. Examples: .. code-block:: python import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1) + x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1) x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4) """ assert not in_dygraph_mode(), ( @@ -13421,20 +13478,46 @@ def space_to_depth(x, blocksize, name=None): @templatedoc() def sequence_reverse(x, name=None): """ - ${comment} + **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ). + + This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor. + Currently it only supports 1-level LoDTensor. This operator is very useful when building a + reverse :ref:`api_fluid_layers_DynamicRNN` network. + + .. code-block:: text + + input(x) is a LoDTensor: + x.lod = [[0, 2, 5]] + x.data = [[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13,14, 15, 16], + [17,18, 19, 20]] + x.shape = [5, 4] + + output LoDTensor with same shape and LoD info: + out.lod = [[0, 2, 5]] + out.data = [[5, 6, 7, 8], + [1, 2, 3, 4], + [17,18, 19, 20], + [13,14, 15, 16], + [9, 10, 11, 12]] + out.shape = [5, 4] Args: - x(${x_type}): ${x_comment} - name(basestring|None): Name of the output. + x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor. + The data type should be float32, float64, int8, int32 or int64. + name(str, optional): The default value is None. Normally there is no need for user to set this property. + For more information, please refer to :ref:`api_guide_Name` . Returns: - out(${y_type}): ${y_comment} + Variable: LoDTensor reversed from input. The data type is same with input. Examples: .. code-block:: python import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32') + x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_reversed = fluid.layers.sequence_reverse(x) """ assert not in_dygraph_mode(), ( -- GitLab