未验证 提交 a29006d1 编写于 作者: H huangxu96 提交者: GitHub

Optimizer trans momentum (#29597)

* merge amp related function in Momentum from paddle.fluid.contrib.optimizer into paddle.optimizer.

* Add unittest for 2.0  Momentum API.

* fix some bugs in weight_decay.
上级 0cc42e34
......@@ -122,11 +122,11 @@ def train(use_pure_fp16=True, use_nesterov=False):
# Test program
test_program = train_program.clone(for_test=True)
optimizer = fluid.contrib.optimizer.Momentum(
optimizer = paddle.optimizer.Momentum(
learning_rate=0.001,
momentum=0.9,
use_nesterov=use_nesterov,
regularization=fluid.regularizer.L2Decay(1e-4),
weight_decay=fluid.regularizer.L2Decay(1e-4),
multi_precision=use_pure_fp16,
rescale_grad=1.0 / BATCH_SIZE)
......
......@@ -17,8 +17,10 @@ from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
from ..fluid.layer_helper import LayerHelper
from ..fluid import unique_name
from ..fluid import layers
import paddle.fluid as fluid
from paddle.fluid.regularizer import L2DecayRegularizer
__all__ = ["Momentum"]
......@@ -62,6 +64,9 @@ class Momentum(Optimizer):
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
Often choose to be ``1.0/batch_size``.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to
:ref:`api_guide_Name` .
......@@ -92,20 +97,33 @@ class Momentum(Optimizer):
use_nesterov=False,
weight_decay=None,
grad_clip=None,
multi_precision=False,
rescale_grad=1.0,
name=None):
if learning_rate is None:
raise ValueError("learning_rate is not set")
if momentum is None:
raise ValueError("momentum is not set")
predicate = lambda regular: isinstance(regular, L2DecayRegularizer)
py_regular = None if predicate(weight_decay) else weight_decay
super(Momentum, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
weight_decay=py_regular,
grad_clip=grad_clip,
name=name)
self.type = "momentum"
self._momentum = momentum
self._use_nesterov = bool(use_nesterov)
self._regularization_method = ""
self._regularization_coeff = 0
if (isinstance(weight_decay, L2DecayRegularizer)):
self._regularization_method = "l2_decay"
self._regularization_coeff = weight_decay._regularization_coeff
self._multi_precision = multi_precision
self._rescale_grad = rescale_grad
self._master_weights = {}
if framework.in_dygraph_mode():
self.helper = LayerHelper(self.__class__.__name__)
for p in parameters:
......@@ -115,8 +133,62 @@ class Momentum(Optimizer):
).all_parameters()
self.helper = LayerHelper(self.__class__.__name__)
for p in all_parameters:
if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
master_p = self._create_master_weight(p)
self._add_accumulator(self._velocity_acc_str, master_p)
continue
if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
warnings.warn(
"Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
"Consider using multi_precision=True option of the Momentum optimizer."
)
self._add_accumulator(self._velocity_acc_str, p)
def _create_master_weight(self, param):
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_fp32_master"
var_name = unique_name.generate(var_name)
var = layers.create_global_var(
name=var_name,
shape=param.shape,
value=0,
dtype='float32',
persistable=True)
block = self.helper.startup_program.global_block()
block.append_op(
type="cast",
inputs={"X": [param]},
outputs={"Out": [var]},
attrs={
"in_dtype": param.dtype,
"out_dtype": core.VarDesc.VarType.FP32
})
self._master_weights[param.name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
target_param = self._master_weights[
param.name] if find_master else param
target_name = target_param.name
if (name not in self._accumulators or
target_name not in self._accumulators[name]):
raise Exception("Accumulator {} does not exist for parameter {}".
format(name, target_name))
return self._accumulators[name][target_name]
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
# create accumulator in init func, so no implementation here
......@@ -126,16 +198,30 @@ class Momentum(Optimizer):
velocity_acc = self._get_accumulator(self._velocity_acc_str,
param_and_grad[0])
find_master = self._multi_precision and param_and_grad[
0].dtype == core.VarDesc.VarType.FP16
master_weight = (self._master_weights[param_and_grad[0].name]
if find_master else None)
lr = self._create_param_lr(param_and_grad)
if framework.in_dygraph_mode():
_, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
velocity_acc, lr, param_and_grad[0],
velocity_acc, 'mu', self._momentum,
'use_nesterov', self._use_nesterov)
_, _ = core.ops.momentum(
param_and_grad[0], param_and_grad[1], velocity_acc, lr,
param_and_grad[0], velocity_acc, 'mu', self._momentum,
'use_nesterov', self._use_nesterov, 'regularization_method',
self._regularization_method, 'regularization_coeff',
self._regularization_coeff)
return None
attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
attrs = {
"mu": self._momentum,
"use_nesterov": self._use_nesterov,
"regularization_method": self._regularization_method,
"regularization_coeff": self._regularization_coeff,
"multi_precision": find_master,
"rescale_grad": self._rescale_grad
}
inputs = {
"Param": [param_and_grad[0]],
"Grad": [param_and_grad[1]],
......@@ -147,6 +233,11 @@ class Momentum(Optimizer):
"ParamOut": [param_and_grad[0]],
"VelocityOut": [velocity_acc]
}
if find_master:
inputs["MasterParam"] = master_weight
outputs["MasterParamOut"] = master_weight
# create the momentum optimize op
momentum_op = block.append_op(
type=self.type,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册