Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a281e101
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a281e101
编写于
6月 07, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make cc_test of beam_search_op and beam_searc_decode_op run correctly
上级
741046e8
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
50 addition
and
336 deletion
+50
-336
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-2
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+0
-4
paddle/fluid/operators/beam_search_decode_op.h
paddle/fluid/operators/beam_search_decode_op.h
+7
-177
paddle/fluid/operators/beam_search_decode_op_test.cc
paddle/fluid/operators/beam_search_decode_op_test.cc
+28
-120
paddle/fluid/operators/beam_search_op.cc
paddle/fluid/operators/beam_search_op.cc
+1
-20
paddle/fluid/operators/beam_search_op.h
paddle/fluid/operators/beam_search_op.h
+2
-8
paddle/fluid/operators/beam_search_op_test.cc
paddle/fluid/operators/beam_search_op_test.cc
+10
-5
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
a281e101
...
@@ -288,8 +288,8 @@ set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
...
@@ -288,8 +288,8 @@ set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
#
cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor)
cc_test
(
beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor
)
#
cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op)
cc_test
(
beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op
)
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
a281e101
...
@@ -87,13 +87,9 @@ void BeamSearchDecodeFunctor::operator()() const {
...
@@ -87,13 +87,9 @@ void BeamSearchDecodeFunctor::operator()() const {
BeamSearchDecoder
<
T
>
beam_search_decoder
(
beam_size_
,
end_id_
);
BeamSearchDecoder
<
T
>
beam_search_decoder
(
beam_size_
,
end_id_
);
// Check if the tensor is on GPU. If so, use the CPU copy instead
// Check if the tensor is on GPU. If so, use the CPU copy instead
if
(
tensor_on_gpu_
)
{
if
(
tensor_on_gpu_
)
{
// beam_search_decoder.PackAllSteps(step_ids_, step_scores_, id_tensor_,
// score_tensor_);
beam_search_decoder
.
Backtrace
(
step_ids_
,
step_scores_
,
id_tensor_
,
beam_search_decoder
.
Backtrace
(
step_ids_
,
step_scores_
,
id_tensor_
,
score_tensor_
);
score_tensor_
);
}
else
{
}
else
{
// beam_search_decoder.PackAllSteps(step_ids_origin_, step_scores_origin_,
// id_tensor_, score_tensor_);
beam_search_decoder
.
Backtrace
(
step_ids_origin_
,
step_scores_origin_
,
beam_search_decoder
.
Backtrace
(
step_ids_origin_
,
step_scores_origin_
,
id_tensor_
,
score_tensor_
);
id_tensor_
,
score_tensor_
);
}
}
...
...
paddle/fluid/operators/beam_search_decode_op.h
浏览文件 @
a281e101
...
@@ -28,41 +28,11 @@ using LoDTensorArray = framework::LoDTensorArray;
...
@@ -28,41 +28,11 @@ using LoDTensorArray = framework::LoDTensorArray;
// all the lod have 2 levels.
// all the lod have 2 levels.
// The First is source level, the second is sentence level.
// The First is source level, the second is sentence level.
// source level describe how many
candidate words for this source.
// source level describe how many
prefixes (branchs) for each source sentece
//
sentence level describe these candidates belong to which prefix
//
(beam). sentence level describe how these candidates belong to the prefixes.
const
size_t
kSourceLevel
=
0
;
const
size_t
kSourceLevel
=
0
;
const
size_t
kSentenceLevel
=
1
;
const
size_t
kSentenceLevel
=
1
;
template
<
typename
T
>
struct
BeamNode
{
BeamNode
(
int64_t
word_id
,
T
score
)
:
word_id_
(
word_id
),
score_
(
score
)
{}
~
BeamNode
()
{
if
(
parent_
)
{
parent_
->
DropKid
(
this
);
if
(
parent_
->
kids_
.
size
()
==
0UL
)
{
delete
parent_
;
}
}
VLOG
(
3
)
<<
"Delete BeamNode root with word_id:"
<<
this
->
word_id_
;
}
void
AppendTo
(
BeamNode
*
parent
)
{
parent_
=
parent
;
parent
->
kids_
.
insert
(
this
);
}
void
DropKid
(
BeamNode
*
kid
)
{
kids_
.
erase
(
kid
);
}
BeamNode
*
parent_
=
nullptr
;
std
::
unordered_set
<
BeamNode
*>
kids_
;
int64_t
word_id_
;
T
score_
;
};
template
<
typename
T
>
using
BeamNodeVector
=
std
::
vector
<
std
::
unique_ptr
<
BeamNode
<
T
>>>
;
template
<
typename
T
>
template
<
typename
T
>
struct
Sentence
{
struct
Sentence
{
std
::
vector
<
int64_t
>
word_ids
;
std
::
vector
<
int64_t
>
word_ids
;
...
@@ -77,25 +47,6 @@ struct BeamSearchDecoder {
...
@@ -77,25 +47,6 @@ struct BeamSearchDecoder {
BeamSearchDecoder
(
size_t
beam_size
,
int
end_id
)
BeamSearchDecoder
(
size_t
beam_size
,
int
end_id
)
:
beam_size_
(
beam_size
),
end_id_
(
end_id
)
{}
:
beam_size_
(
beam_size
),
end_id_
(
end_id
)
{}
/**
* make a BeamNode and all it's related prefix BeanNode into a Sentence.
*/
Sentence
<
T
>
MakeSentence
(
const
BeamNode
<
T
>*
node
)
const
;
/**
* Param:
* cur_ids: LoDTensor of One step for word ID
* cur_scores: LoDTensor of One Step for word score
* prefixes_list: prefixes for each source sentence.
* sentence_vector_list: result sentence_vector for each source sentence.
* Return:
* a new prefixes list for each source of current step
*/
std
::
vector
<
BeamNodeVector
<
T
>>
PackTwoSteps
(
const
LoDTensor
&
cur_ids
,
const
LoDTensor
&
cur_scores
,
std
::
vector
<
BeamNodeVector
<
T
>>*
prefixes_list
,
std
::
vector
<
SentenceVector
<
T
>>*
sentence_vector_list
)
const
;
/**
/**
* convert the result sentence_vector for each source sentence into two
* convert the result sentence_vector for each source sentence into two
* LodTensor.
* LodTensor.
...
@@ -105,29 +56,18 @@ struct BeamSearchDecoder {
...
@@ -105,29 +56,18 @@ struct BeamSearchDecoder {
* sentence_vector_list: sentence_vector for each source sentence.
* sentence_vector_list: sentence_vector for each source sentence.
* id_tensor: result LoDTensor for sentences of id.
* id_tensor: result LoDTensor for sentences of id.
* score_tensor: result LoDTensor for sentences of score.
* score_tensor: result LoDTensor for sentences of score.
* reverse: whether ids of sentence in sentence_vector_list is reversed
* sort_by_score: whether to sort hypotheses of each sentence by scores.
*/
*/
void
ConvertSentenceVectorToLodTensor
(
void
ConvertSentenceVectorToLodTensor
(
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
,
bool
reverse
=
fals
e
,
LoDTensor
*
score_tensor
,
bool
reverse
=
tru
e
,
bool
sort_by_score
=
true
)
const
;
bool
sort_by_score
=
true
)
const
;
/**
/**
* Pack all steps of id/score LodTensor into sentence LoDTensor
* Gather the hypotheses for each source sentence by backtrace though the
* it's main logic is:
* LoDTensorArray step_ids whose lods reserve the path in the tree.
* ```python
* prefix
* result_sentence
* result_lod_tensor
*
* for (step in steps):
* prefix = PackTwoSteps(prefix, step, &result_sentence)
* ConvertSentenceVector<T>ToLodTensor(result_sentence, &result_lod_tensor)
* ```
*/
*/
void
PackAllSteps
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
;
void
Backtrace
(
const
LoDTensorArray
&
step_ids
,
void
Backtrace
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
;
LoDTensor
*
score_tensor
)
const
;
...
@@ -136,80 +76,6 @@ struct BeamSearchDecoder {
...
@@ -136,80 +76,6 @@ struct BeamSearchDecoder {
int
end_id_
;
int
end_id_
;
};
};
template
<
typename
T
>
Sentence
<
T
>
BeamSearchDecoder
<
T
>::
MakeSentence
(
const
BeamNode
<
T
>*
node
)
const
{
Sentence
<
T
>
sentence
;
while
(
node
!=
nullptr
)
{
sentence
.
word_ids
.
emplace_back
(
node
->
word_id_
);
sentence
.
scores
.
emplace_back
(
node
->
score_
);
node
=
node
->
parent_
;
}
std
::
reverse
(
std
::
begin
(
sentence
.
word_ids
),
std
::
end
(
sentence
.
word_ids
));
std
::
reverse
(
std
::
begin
(
sentence
.
scores
),
std
::
end
(
sentence
.
scores
));
return
sentence
;
}
template
<
typename
T
>
std
::
vector
<
BeamNodeVector
<
T
>>
BeamSearchDecoder
<
T
>::
PackTwoSteps
(
const
LoDTensor
&
cur_ids
,
const
LoDTensor
&
cur_scores
,
std
::
vector
<
BeamNodeVector
<
T
>>*
prefixes_list
,
std
::
vector
<
SentenceVector
<
T
>>*
sentence_vector_list
)
const
{
std
::
vector
<
BeamNodeVector
<
T
>>
result
;
for
(
size_t
src_idx
=
0
;
src_idx
<
cur_ids
.
lod
()[
kSourceLevel
].
size
()
-
1
;
++
src_idx
)
{
size_t
src_start
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
];
size_t
src_end
=
cur_ids
.
lod
().
at
(
kSourceLevel
)[
src_idx
+
1
];
BeamNodeVector
<
T
>
beam_nodes
;
// if prefixes size is 0, it means this is the first step. In this step,
// all candidate id is the start of candidate sentences.
if
(
prefixes_list
->
empty
())
{
PADDLE_ENFORCE_EQ
(
cur_ids
.
lod
().
at
(
kSourceLevel
).
back
(),
cur_ids
.
lod
().
at
(
kSentenceLevel
).
back
(),
"in the first step"
);
for
(
size_t
id_idx
=
src_start
;
id_idx
<
src_end
;
++
id_idx
)
{
beam_nodes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
T
>>
(
new
BeamNode
<
T
>
(
cur_ids
.
data
<
int64_t
>
()[
id_idx
],
cur_scores
.
data
<
T
>
()[
id_idx
])));
}
}
else
{
BeamNodeVector
<
T
>&
prefixes
=
prefixes_list
->
at
(
src_idx
);
SentenceVector
<
T
>&
sentence_vector
=
(
*
sentence_vector_list
)[
src_idx
];
PADDLE_ENFORCE_EQ
(
src_end
-
src_start
,
prefixes
.
size
(),
"prefix and candidate set number should be the same"
);
auto
candidate_offset
=
cur_ids
.
lod
()[
kSentenceLevel
];
for
(
size_t
prefix_idx
=
0
;
prefix_idx
<
prefixes
.
size
();
++
prefix_idx
)
{
std
::
unique_ptr
<
BeamNode
<
T
>>&
prefix
=
prefixes
[
prefix_idx
];
size_t
candidate_start
=
candidate_offset
[
src_start
+
prefix_idx
];
size_t
candidate_end
=
candidate_offset
[
src_start
+
prefix_idx
+
1
];
if
(
candidate_start
==
candidate_end
)
{
VLOG
(
3
)
<<
"this sentence has no more candidate, "
"add to result sentence and rm it from beam tree"
;
sentence_vector
.
push_back
(
MakeSentence
(
prefix
.
get
()));
prefix
.
reset
();
}
else
{
for
(
size_t
candidate_idx
=
candidate_start
;
candidate_idx
<
candidate_end
;
++
candidate_idx
)
{
auto
*
candidate
=
new
BeamNode
<
T
>
(
cur_ids
.
data
<
int64_t
>
()[
candidate_idx
],
cur_scores
.
data
<
T
>
()[
candidate_idx
]);
candidate
->
AppendTo
(
prefix
.
get
());
beam_nodes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
T
>>
(
candidate
));
}
prefix
.
release
();
}
}
}
result
.
push_back
(
std
::
move
(
beam_nodes
));
}
return
result
;
}
template
<
typename
T
>
template
<
typename
T
>
void
BeamSearchDecoder
<
T
>::
ConvertSentenceVectorToLodTensor
(
void
BeamSearchDecoder
<
T
>::
ConvertSentenceVectorToLodTensor
(
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
,
LoDTensor
*
id_tensor
,
...
@@ -273,42 +139,6 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
...
@@ -273,42 +139,6 @@ void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
framework
::
TensorFromVector
<
T
>
(
score_data
,
cpu_ctx
,
score_tensor
);
framework
::
TensorFromVector
<
T
>
(
score_data
,
cpu_ctx
,
score_tensor
);
}
}
template
<
typename
T
>
void
BeamSearchDecoder
<
T
>::
PackAllSteps
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
LoDTensor
*
id_tensor
,
LoDTensor
*
score_tensor
)
const
{
PADDLE_ENFORCE
(
!
step_ids
.
empty
(),
"step num should be larger than 0"
);
PADDLE_ENFORCE_EQ
(
step_ids
.
size
(),
step_scores
.
size
(),
"step_ids and step_scores should be the same"
);
const
size_t
step_num
=
step_ids
.
size
();
const
size_t
src_num
=
step_ids
.
at
(
0
).
lod
().
at
(
kSourceLevel
).
size
()
-
1
;
PADDLE_ENFORCE_GT
(
src_num
,
0UL
,
"source num should be larger than 0"
);
// previous prefixes for each step,
// the init length is 0, means this is the first step.
std
::
vector
<
BeamNodeVector
<
T
>>
beamnode_vector_list
(
0
);
std
::
vector
<
SentenceVector
<
T
>>
sentence_vector_list
(
src_num
);
// pack all steps for one batch first, then another batch
for
(
size_t
step_id
=
0
;
step_id
<
step_num
;
++
step_id
)
{
beamnode_vector_list
=
PackTwoSteps
(
step_ids
.
at
(
step_id
),
step_scores
.
at
(
step_id
),
&
beamnode_vector_list
,
&
sentence_vector_list
);
}
// append last beam_node to result
for
(
size_t
src_idx
=
0
;
src_idx
<
src_num
;
++
src_idx
)
{
for
(
auto
&
beam_node
:
beamnode_vector_list
.
at
(
src_idx
))
{
sentence_vector_list
[
src_idx
].
push_back
(
MakeSentence
(
beam_node
.
get
()));
beam_node
.
reset
();
}
}
ConvertSentenceVectorToLodTensor
(
sentence_vector_list
,
id_tensor
,
score_tensor
);
}
template
<
typename
T
>
template
<
typename
T
>
void
BeamSearchDecoder
<
T
>::
Backtrace
(
const
LoDTensorArray
&
step_ids
,
void
BeamSearchDecoder
<
T
>::
Backtrace
(
const
LoDTensorArray
&
step_ids
,
const
LoDTensorArray
&
step_scores
,
const
LoDTensorArray
&
step_scores
,
...
...
paddle/fluid/operators/beam_search_decode_op_test.cc
浏览文件 @
a281e101
...
@@ -20,15 +20,11 @@ using LoD = paddle::framework::LoD;
...
@@ -20,15 +20,11 @@ using LoD = paddle::framework::LoD;
using
LoDTensor
=
paddle
::
framework
::
LoDTensor
;
using
LoDTensor
=
paddle
::
framework
::
LoDTensor
;
using
LoDTensorArray
=
paddle
::
framework
::
LoDTensorArray
;
using
LoDTensorArray
=
paddle
::
framework
::
LoDTensorArray
;
template
<
typename
T
>
using
BeamNode
=
paddle
::
operators
::
BeamNode
<
T
>
;
template
<
typename
T
>
template
<
typename
T
>
using
BeamSearchDecoder
=
paddle
::
operators
::
BeamSearchDecoder
<
T
>
;
using
BeamSearchDecoder
=
paddle
::
operators
::
BeamSearchDecoder
<
T
>
;
template
<
typename
T
>
template
<
typename
T
>
using
Sentence
=
paddle
::
operators
::
Sentence
<
T
>
;
using
Sentence
=
paddle
::
operators
::
Sentence
<
T
>
;
template
<
typename
T
>
template
<
typename
T
>
using
BeamNodeVector
=
paddle
::
operators
::
BeamNodeVector
<
T
>
;
template
<
typename
T
>
using
SentenceVector
=
paddle
::
operators
::
SentenceVector
<
T
>
;
using
SentenceVector
=
paddle
::
operators
::
SentenceVector
<
T
>
;
namespace
paddle
{
namespace
paddle
{
...
@@ -77,138 +73,50 @@ void GenerateExample(const std::vector<size_t>& level_0,
...
@@ -77,138 +73,50 @@ void GenerateExample(const std::vector<size_t>& level_0,
}
// namespace test
}
// namespace test
}
// namespace paddle
}
// namespace paddle
TEST
(
BeamSearchDecodeOp
,
DeleteBeamNode
)
{
TEST
(
BeamSearchDecodeOp
,
Backtrace
)
{
auto
*
root
=
new
BeamNode
<
float
>
(
0
,
0
);
auto
*
b1
=
new
BeamNode
<
float
>
(
1
,
1
);
auto
*
b2
=
new
BeamNode
<
float
>
(
2
,
2
);
auto
*
b3
=
new
BeamNode
<
float
>
(
3
,
3
);
b1
->
AppendTo
(
root
);
b2
->
AppendTo
(
root
);
b3
->
AppendTo
(
b1
);
delete
b3
;
delete
b2
;
}
TEST
(
BeamSearchDecodeOp
,
MakeSentence
)
{
auto
*
root
=
new
BeamNode
<
float
>
(
0
,
0
);
auto
*
b1
=
new
BeamNode
<
float
>
(
1
,
1
);
auto
*
end
=
new
BeamNode
<
float
>
(
2
,
2
);
b1
->
AppendTo
(
root
);
end
->
AppendTo
(
b1
);
BeamSearchDecoder
<
float
>
helper
;
Sentence
<
float
>
sentence
=
helper
.
MakeSentence
(
end
);
delete
end
;
std
::
vector
<
int64_t
>
expect_ids
=
{
0
,
1
,
2
};
ASSERT_EQ
(
sentence
.
word_ids
,
expect_ids
);
std
::
vector
<
float
>
expect_scores
=
{
0
,
1
,
2
};
ASSERT_EQ
(
sentence
.
scores
,
expect_scores
);
}
TEST
(
BeamSearchDecodeOp
,
PackTwoStepsFistStep
)
{
CPUPlace
place
;
LoDTensorArray
ids
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
,
5
,
6
},
std
::
vector
<
int
>
{
1
,
2
,
3
,
4
,
5
,
6
},
&
ids
,
&
scores
);
std
::
vector
<
BeamNodeVector
<
float
>>
beamnode_vector_list
;
std
::
vector
<
SentenceVector
<
float
>>
sentence_vector_list
(
2
,
SentenceVector
<
float
>
());
BeamSearchDecoder
<
float
>
helper
;
beamnode_vector_list
=
helper
.
PackTwoSteps
(
ids
[
0
],
scores
[
0
],
&
beamnode_vector_list
,
&
sentence_vector_list
);
ASSERT_EQ
(
beamnode_vector_list
.
size
(),
2UL
);
ASSERT_EQ
(
beamnode_vector_list
[
0
].
size
(),
2UL
);
ASSERT_EQ
(
beamnode_vector_list
[
1
].
size
(),
4UL
);
}
TEST
(
BeamSearchDecodeOp
,
PackTwoSteps
)
{
CPUPlace
place
;
// first source has three prefix
BeamNodeVector
<
float
>
source0_prefixes
;
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
1
,
1
)));
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
0
,
0
)));
source0_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
3
,
3
)));
// second source has two prefix
BeamNodeVector
<
float
>
source1_prefixes
;
source1_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
4
,
4
)));
source1_prefixes
.
push_back
(
std
::
unique_ptr
<
BeamNode
<
float
>>
(
new
BeamNode
<
float
>
(
5
,
5
)));
std
::
vector
<
BeamNodeVector
<
float
>>
beamnode_vector_list
;
std
::
vector
<
SentenceVector
<
float
>>
sentence_vector_list
(
2
,
SentenceVector
<
float
>
());
beamnode_vector_list
.
push_back
(
std
::
move
(
source0_prefixes
));
beamnode_vector_list
.
push_back
(
std
::
move
(
source1_prefixes
));
// generate data for one step
LoDTensorArray
ids
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
5
},
std
::
vector
<
size_t
>
{
0
,
1
,
1
,
3
,
4
,
5
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
&
ids
,
&
scores
);
BeamSearchDecoder
<
float
>
helper1
;
beamnode_vector_list
=
helper1
.
PackTwoSteps
(
ids
[
0
],
scores
[
0
],
&
beamnode_vector_list
,
&
sentence_vector_list
);
ASSERT_EQ
(
sentence_vector_list
[
0
].
size
(),
1UL
);
ASSERT_EQ
(
sentence_vector_list
[
1
].
size
(),
0UL
);
ASSERT_EQ
(
beamnode_vector_list
[
0
].
size
(),
3UL
);
ASSERT_EQ
(
beamnode_vector_list
[
1
].
size
(),
2UL
);
}
TEST
(
BeamSearchDecodeOp
,
PackAllSteps
)
{
CPUPlace
place
;
CPUPlace
place
;
// we will constuct a sample data with 3 steps and 2 source sentences
// we will constuct a sample data with 4 steps and 2 source sentences
// beam_size = 2, start_id = 0, end_id = 1
LoDTensorArray
ids
;
LoDTensorArray
ids
;
LoDTensorArray
scores
;
LoDTensorArray
scores
;
paddle
::
test
::
GenerateExample
(
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
,
5
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
int
>
{
1
,
2
,
3
,
4
,
5
,
6
},
&
ids
,
&
scores
);
std
::
vector
<
int
>
{
0
,
0
},
&
ids
,
&
scores
);
// start with start_id
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
1
,
2
},
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
int
>
{
2
,
3
,
4
,
5
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
size_t
>
{
0
,
2
,
2
,
4
,
4
},
std
::
vector
<
int
>
{
3
,
1
,
5
,
4
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
size_t
>
{
0
,
1
,
2
,
3
,
4
},
std
::
vector
<
int
>
{
1
,
1
,
3
,
5
},
&
ids
,
&
scores
);
paddle
::
test
::
GenerateExample
(
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
std
::
vector
<
size_t
>
{
0
,
1
,
1
,
3
,
5
,
5
,
6
},
std
::
vector
<
size_t
>
{
0
,
2
,
4
},
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
,
5
},
&
ids
,
&
scores
);
std
::
vector
<
size_t
>
{
0
,
0
,
0
,
2
,
paddle
::
test
::
GenerateExample
(
std
::
vector
<
size_t
>
{
0
,
3
,
6
},
2
},
// the branchs of the first source sentence
std
::
vector
<
size_t
>
{
0
,
0
,
1
,
2
,
3
,
4
,
5
},
// are pruned since finished
std
::
vector
<
int
>
{
0
,
1
,
2
,
3
,
4
},
&
ids
,
&
scores
);
std
::
vector
<
int
>
{
5
,
1
},
&
ids
,
&
scores
);
ASSERT_EQ
(
ids
.
size
(),
3
UL
);
ASSERT_EQ
(
ids
.
size
(),
5
UL
);
ASSERT_EQ
(
scores
.
size
(),
3
UL
);
ASSERT_EQ
(
scores
.
size
(),
5
UL
);
BeamSearchDecoder
<
float
>
helper
;
BeamSearchDecoder
<
float
>
helper
(
2
,
1
);
// beam_size = 2, end_id = 1
LoDTensor
id_tensor
;
LoDTensor
id_tensor
;
LoDTensor
score_tensor
;
LoDTensor
score_tensor
;
helper
.
PackAllSteps
(
ids
,
scores
,
&
id_tensor
,
&
score_tensor
);
helper
.
Backtrace
(
ids
,
scores
,
&
id_tensor
,
&
score_tensor
);
LoD
lod
=
id_tensor
.
lod
();
LoD
lod
=
id_tensor
.
lod
();
std
::
vector
<
size_t
>
expect_source_lod
=
{
0
,
4
,
8
};
std
::
vector
<
size_t
>
expect_source_lod
=
{
0
,
2
,
4
};
EXPECT_EQ
(
lod
[
0
],
expect_source_lod
);
EXPECT_EQ
(
lod
[
0
],
expect_source_lod
);
std
::
vector
<
size_t
>
expect_sentence_lod
=
{
0
,
1
,
3
,
6
,
9
,
10
,
13
,
16
,
19
};
std
::
vector
<
size_t
>
expect_sentence_lod
=
{
0
,
4
,
7
,
12
,
17
};
EXPECT_EQ
(
lod
[
1
],
expect_sentence_lod
);
EXPECT_EQ
(
lod
[
1
],
expect_sentence_lod
);
// 2| 1, 0| 3, 1, 0| 3, 2, 1| 5| 4, 3, 2| 4, 4, 3| 6, 5, 4
std
::
vector
<
int
>
expect_data
=
{
0
,
2
,
3
,
1
,
0
,
2
,
1
,
0
,
4
,
std
::
vector
<
int
>
expect_data
=
{
2
,
1
,
0
,
3
,
1
,
0
,
3
,
2
,
1
,
5
,
5
,
3
,
5
,
0
,
4
,
5
,
3
,
1
};
4
,
3
,
2
,
4
,
4
,
3
,
6
,
5
,
4
};
ASSERT_EQ
(
id_tensor
.
dims
()[
0
],
static_cast
<
int64_t
>
(
expect_data
.
size
()));
ASSERT_EQ
(
id_tensor
.
dims
()[
0
],
static_cast
<
int64_t
>
(
expect_data
.
size
()));
for
(
size_t
i
=
0
;
i
<
expect_data
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
expect_data
.
size
();
++
i
)
{
ASSERT_EQ
(
id_tensor
.
data
<
int64_t
>
()[
i
],
ASSERT_EQ
(
id_tensor
.
data
<
int64_t
>
()[
i
],
...
...
paddle/fluid/operators/beam_search_op.cc
浏览文件 @
a281e101
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include <algorithm>
#include <limits>
#include <map>
#include <map>
#include <string>
#include <string>
#include <vector>
#include <vector>
...
@@ -110,23 +109,6 @@ void BeamSearch::PruneEndBeams(const framework::LoDTensor &pre_ids,
...
@@ -110,23 +109,6 @@ void BeamSearch::PruneEndBeams(const framework::LoDTensor &pre_ids,
}
}
}
}
int
BeamSearch
::
PruneEndidCandidates
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>
*
items
)
{
auto
*
pre_ids_data
=
pre_ids
.
data
<
int64_t
>
();
int
res
=
0
;
for
(
size_t
offset
=
0
;
offset
<
items
->
size
();
offset
++
)
{
auto
prefix_id
=
pre_ids_data
[
offset
];
if
(
prefix_id
==
end_id_
)
{
items
->
at
(
offset
).
clear
();
}
else
{
res
++
;
}
}
return
res
;
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
ToMap
(
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>
&
items
,
size_t
element_num
)
{
const
std
::
vector
<
std
::
vector
<
Item
>>
&
items
,
size_t
element_num
)
{
std
::
vector
<
std
::
vector
<
Item
>>
result
;
std
::
vector
<
std
::
vector
<
Item
>>
result
;
...
@@ -201,8 +183,7 @@ bool BeamSearch::NextItemSet(const framework::LoDTensor &pre_ids,
...
@@ -201,8 +183,7 @@ bool BeamSearch::NextItemSet(const framework::LoDTensor &pre_ids,
auto
pre_score
=
pre_scores_data
[
offset
];
auto
pre_score
=
pre_scores_data
[
offset
];
if
(
pre_id
==
end_id_
)
{
if
(
pre_id
==
end_id_
)
{
// Allocate all probability mass to eos_id for finished branchs and the
// Allocate all probability mass to eos_id for finished branchs and the
// other
// other candidate ids can be ignored.
// candidate ids can be ignored.
items
->
emplace_back
(
offset
,
end_id_
,
pre_score
);
items
->
emplace_back
(
offset
,
end_id_
,
pre_score
);
}
else
{
}
else
{
for
(
size_t
d
=
0
;
d
<
instance_dim
;
d
++
)
{
for
(
size_t
d
=
0
;
d
<
instance_dim
;
d
++
)
{
...
...
paddle/fluid/operators/beam_search_op.h
浏览文件 @
a281e101
...
@@ -155,17 +155,11 @@ class BeamSearch {
...
@@ -155,17 +155,11 @@ class BeamSearch {
protected:
protected:
/*
/*
* Prune the source sentences all branchs finished, and it is optional.
* Prune the source sentences all branchs finished, and it is optional.
* Pruning must one step later than finishing, since the end tokens
* Pruning must one step later than finishing (thus pre_ids is needed here),
* must be writed out. Also the finished branchs with top 1 score can
* since the end tokens must be writed out.
* be pruned.
*/
*/
void
PruneEndBeams
(
const
framework
::
LoDTensor
&
pre_ids
,
void
PruneEndBeams
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
/*
* Delete all the records that follows the end token.
*/
int
PruneEndidCandidates
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
/*
/*
* Transform the items into a map whose key is offset, value is the items.
* Transform the items into a map whose key is offset, value is the items.
...
...
paddle/fluid/operators/beam_search_op_test.cc
浏览文件 @
a281e101
...
@@ -30,7 +30,7 @@ using std::endl;
...
@@ -30,7 +30,7 @@ using std::endl;
void
CreateInput
(
LoDTensor
*
ids
,
LoDTensor
*
scores
)
{
void
CreateInput
(
LoDTensor
*
ids
,
LoDTensor
*
scores
)
{
LoD
lod
;
LoD
lod
;
vector
<
size_t
>
level0
({
0
,
1
,
4
});
vector
<
size_t
>
level0
({
0
,
2
,
4
});
vector
<
size_t
>
level1
({
0
,
1
,
2
,
3
,
4
});
vector
<
size_t
>
level1
({
0
,
1
,
2
,
3
,
4
});
lod
.
push_back
(
level0
);
lod
.
push_back
(
level0
);
lod
.
push_back
(
level1
);
lod
.
push_back
(
level1
);
...
@@ -64,17 +64,22 @@ TEST(beam_search_op, run) {
...
@@ -64,17 +64,22 @@ TEST(beam_search_op, run) {
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
pre_ids
.
mutable_data
<
int64_t
>
(
place
)[
i
]
=
i
+
1
;
pre_ids
.
mutable_data
<
int64_t
>
(
place
)[
i
]
=
i
+
1
;
}
}
LoDTensor
pre_scores
;
pre_scores
.
Resize
(
framework
::
make_ddim
(
vector
<
int64_t
>
(
4
,
1
)));
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
pre_scores
.
mutable_data
<
float
>
(
place
)[
i
]
=
0.1
;
}
BeamSearch
beamsearch
(
ids
,
scores
,
(
int64_t
)
0
,
(
int64
_t
)
2
,
0
);
BeamSearch
beamsearch
(
ids
,
scores
,
(
size_t
)
0
,
(
size
_t
)
2
,
0
);
LoDTensor
sids
,
sscores
;
LoDTensor
sids
,
sscores
;
beamsearch
(
pre_ids
,
&
sids
,
&
sscores
);
beamsearch
(
pre_ids
,
pre_scores
,
&
sids
,
&
sscores
);
LOG
(
INFO
)
<<
"score: "
<<
sscores
<<
endl
;
LOG
(
INFO
)
<<
"score: "
<<
sscores
<<
endl
;
ASSERT_EQ
(
sids
.
lod
(),
sscores
.
lod
());
ASSERT_EQ
(
sids
.
lod
(),
sscores
.
lod
());
vector
<
int
>
tids
({
2
,
4
,
3
,
8
});
vector
<
int
>
tids
({
4
,
2
,
3
,
8
});
vector
<
float
>
tscores
({
0.
3
,
0.5
,
0.9
,
0.7
});
vector
<
float
>
tscores
({
0.
5
,
0.6
,
0.9
,
0.7
});
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
ASSERT_EQ
(
tids
[
i
],
sids
.
data
<
int64_t
>
()[
i
]);
ASSERT_EQ
(
tids
[
i
],
sids
.
data
<
int64_t
>
()[
i
]);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录