Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a2766842
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a2766842
编写于
11月 10, 2016
作者:
H
Haonan
提交者:
GitHub
11月 10, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#429
from emailweixu/math_mul
'*' operator overload for LayerOutput
上级
8295eb91
36fa2517
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
294 addition
and
49 deletion
+294
-49
doc/ui/api/trainer_config_helpers/layers.rst
doc/ui/api/trainer_config_helpers/layers.rst
+6
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+1
-1
python/paddle/trainer_config_helpers/__init__.py
python/paddle/trainer_config_helpers/__init__.py
+3
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+106
-40
python/paddle/trainer_config_helpers/math.py
python/paddle/trainer_config_helpers/math.py
+38
-5
python/paddle/trainer_config_helpers/tests/configs/math_ops.py
...n/paddle/trainer_config_helpers/tests/configs/math_ops.py
+7
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr
...r_config_helpers/tests/configs/protostr/math_ops.protostr
+133
-2
未找到文件。
doc/ui/api/trainer_config_helpers/layers.rst
浏览文件 @
a2766842
...
...
@@ -254,6 +254,12 @@ expand_layer
:members: expand_layer
:noindex:
repeat_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: repeat_layer
:noindex:
Math Layers
===========
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
a2766842
...
...
@@ -3015,7 +3015,7 @@ def Layer(
layer_func
=
layers
.
get
(
type
)
config_assert
(
layer_func
,
"layer type '%s' not supported."
%
type
)
layer_func
(
name
,
**
xargs
)
return
layer_func
(
name
,
**
xargs
)
@
config_func
def
ParameterHook
(
...
...
python/paddle/trainer_config_helpers/__init__.py
浏览文件 @
a2766842
...
...
@@ -20,3 +20,6 @@ from layers import *
from
networks
import
*
from
optimizers
import
*
from
attrs
import
*
# This will enable operator overload for LayerOutput
import
math
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
a2766842
...
...
@@ -31,6 +31,7 @@ import copy
__all__
=
[
"full_matrix_projection"
,
"AggregateLevel"
,
"ExpandLevel"
,
"identity_projection"
,
"dotmul_projection"
,
"dotmul_operator"
,
"repeat_layer"
,
"table_projection"
,
"mixed_layer"
,
"data_layer"
,
"embedding_layer"
,
"fc_layer"
,
"grumemory"
,
"pooling_layer"
,
"lstmemory"
,
"last_seq"
,
"first_seq"
,
...
...
@@ -99,6 +100,7 @@ class LayerType(object):
SCALING_LAYER
=
'scaling'
TRANS_LAYER
=
'trans'
OUT_PROD_LAYER
=
'out_prod'
FEATURE_MAP_EXPAND_LAYER
=
'featmap_expand'
MEMORY
=
'memory'
MAXID_LAYER
=
'maxid'
...
...
@@ -181,6 +183,7 @@ class LayerOutput(object):
reverse
=
None
):
assert
isinstance
(
name
,
basestring
)
assert
isinstance
(
layer_type
,
basestring
)
assert
size
is
not
None
assert
LayerType
.
is_layer_type
(
layer_type
)
self
.
name
=
name
self
.
layer_type
=
layer_type
...
...
@@ -1209,6 +1212,48 @@ def expand_layer(input, expand_as,
parents
=
[
input
,
expand_as
])
@
wrap_name_default
()
@
layer_support
()
def
repeat_layer
(
input
,
num_repeats
,
name
=
None
,
layer_attr
=
None
):
"""
A layer for repeating the input for num_repeats times. This is equivalent
to apply concat_layer() with num_repeats same input.
.. math::
y = [x, x, \cdots, x]
The example usage is:
.. code-block:: python
expand = repeat_layer(layer, 4)
:param input: Input layer
:type input: LayerOutput
:param num_repeats: Repeat the input so many times
:type num_repeats: int
:param name: Layer name.
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
"""
l
=
Layer
(
inputs
=
[
input
.
name
],
name
=
name
,
num_filters
=
num_repeats
,
type
=
LayerType
.
FEATURE_MAP_EXPAND_LAYER
,
**
ExtraAttr
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
=
name
,
size
=
l
.
config
.
size
,
layer_type
=
LayerType
.
FEATURE_MAP_EXPAND_LAYER
,
parents
=
[
input
])
@
wrap_name_default
()
@
layer_support
()
def
interpolation_layer
(
input
,
weight
,
name
=
None
,
layer_attr
=
None
):
...
...
@@ -1296,7 +1341,7 @@ def bilinear_interp_layer(input,
assert
out_size_x
>
0
and
out_size_y
>
0
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
bilinear_interp
=
BilinearInterp
(
out_size_x
=
out_size_x
,
out_size_y
=
out_size_y
,
...
...
@@ -1304,7 +1349,7 @@ def bilinear_interp_layer(input,
type
=
LayerType
.
BILINEAR_INTERP_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
BILINEAR_INTERP_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
)
num_filters
=
num_channels
,
size
=
l
.
config
.
size
)
@
wrap_name_default
()
@
layer_support
()
...
...
@@ -1482,7 +1527,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
inputs
=
[
a
.
name
,
b
.
name
],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
COSINE_SIM
,
parents
=
[
a
,
b
])
return
LayerOutput
(
name
,
LayerType
.
COSINE_SIM
,
parents
=
[
a
,
b
]
,
size
=
size
)
@
wrap_name_default
()
...
...
@@ -1545,7 +1590,7 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None,
ipts_for_layer
.
append
(
label
.
name
)
parents
.
append
(
label
)
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
HSIGMOID
,
num_classes
=
num_classes
,
...
...
@@ -1553,7 +1598,8 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None,
inputs
=
ipts_for_layer
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
HSIGMOID
,
parents
=
parents
)
return
LayerOutput
(
name
,
LayerType
.
HSIGMOID
,
parents
=
parents
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"conv"
)
...
...
@@ -1671,7 +1717,7 @@ def img_conv_layer(input, filter_size, num_filters,
lt
=
LayerType
.
CONVTRANS_LAYER
if
trans
else
LayerType
.
CONV_LAYER
Layer
(
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
filter_size
=
filter_size
,
padding
=
padding
,
stride
=
stride
,
...
...
@@ -1687,7 +1733,8 @@ def img_conv_layer(input, filter_size, num_filters,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
lt
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
)
activation
=
act
,
num_filters
=
num_filters
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"pool"
)
...
...
@@ -1750,7 +1797,7 @@ def img_pool_layer(input, pool_size, name=None,
stride_y
=
stride
if
stride_y
is
None
else
stride_y
padding_y
=
padding
if
padding_y
is
None
else
padding_y
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
POOL_LAYER
,
inputs
=
[
Input
(
input
.
name
,
...
...
@@ -1769,7 +1816,7 @@ def img_pool_layer(input, pool_size, name=None,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
POOL_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
)
num_filters
=
num_channels
,
size
=
l
.
config
.
size
)
def
__img_norm_layer__
(
name
,
input
,
size
,
norm_type
,
scale
,
power
,
...
...
@@ -1778,7 +1825,7 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power,
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
NORM_LAYER
,
inputs
=
Input
(
input
.
name
,
norm
=
Norm
(
norm_type
=
norm_type
,
channels
=
num_channels
,
size
=
size
,
...
...
@@ -1788,7 +1835,8 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
layer_type
=
LayerType
.
NORM_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
,
img_norm_type
=
norm_type
)
num_filters
=
num_channels
,
img_norm_type
=
norm_type
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"crmnorm"
)
...
...
@@ -1913,7 +1961,7 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None,
num_channels
=
input
.
size
assert
(
batch_norm_type
is
None
)
or
(
batch_norm_type
==
"batch_norm"
)
or
\
(
batch_norm_type
==
"cudnn_batch_norm"
)
Layer
(
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
image
=
Image
(
channels
=
num_channels
),
...
...
@@ -1929,7 +1977,8 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None,
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
BATCH_NORM_LAYER
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_channels
)
num_filters
=
num_channels
,
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -2034,7 +2083,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None,
if
each_input
.
num_filters
is
not
None
:
num_filters
=
each_input
.
num_filters
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
ADDTO_LAYER
,
inputs
=
ipts_for_layer
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
active_type
=
act
.
name
,
...
...
@@ -2042,7 +2091,8 @@ def addto_layer(input, act=None, name=None, bias_attr=None,
)
return
LayerOutput
(
name
,
LayerType
.
ADDTO_LAYER
,
parents
=
input
,
activation
=
act
,
num_filters
=
num_filters
)
activation
=
act
,
num_filters
=
num_filters
,
size
=
l
.
config
.
size
)
@
wrap_act_default
(
act
=
IdentityActivation
())
...
...
@@ -2651,13 +2701,14 @@ def maxid_layer(input, name=None, layer_attr=None):
"""
assert
isinstance
(
input
,
LayerOutput
)
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
type
=
'maxid'
,
inputs
=
[
input
.
name
],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
MAXID_LAYER
,
parents
=
[
input
])
parents
=
[
input
],
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -2686,13 +2737,14 @@ def out_prod_layer(input1, input2, name=None, layer_attr=None):
assert
isinstance
(
input1
,
LayerOutput
)
assert
isinstance
(
input2
,
LayerOutput
)
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
OUT_PROD_LAYER
,
inputs
=
[
input1
.
name
,
input2
.
name
],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
OUT_PROD_LAYER
,
parents
=
[
input1
,
input2
])
parents
=
[
input1
,
input2
],
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -2721,13 +2773,14 @@ def eos_layer(input, eos_id, name=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
EOSID_LAYER
,
eos_id
=
eos_id
,
inputs
=
[
input
.
name
],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
EOSID_LAYER
,
parents
=
[
input
])
parents
=
[
input
],
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -2892,7 +2945,7 @@ def regression_cost(input, label, weight=None, name=None,
Layer
(
inputs
=
ipts
,
type
=
"square_error"
,
name
=
name
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
COST
,
parents
=
parents
)
return
LayerOutput
(
name
,
LayerType
.
COST
,
parents
=
parents
,
size
=
1
)
@
wrap_name_default
(
"cost"
)
...
...
@@ -2944,7 +2997,7 @@ def classification_cost(input, label, weight=None, name=None,
for
each_evaluator
in
evaluator
:
__add_evaluator__
(
each_evaluator
)
return
LayerOutput
(
name
,
LayerType
.
COST
,
parents
=
parents
)
return
LayerOutput
(
name
,
LayerType
.
COST
,
parents
=
parents
,
size
=
1
)
def
conv_operator
(
img
,
filter
,
filter_size
,
num_filters
,
...
...
@@ -3326,13 +3379,14 @@ def sampling_id_layer(input, name=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
SAMPLING_ID_LAYER
,
inputs
=
[
Input
(
input
.
name
)],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
SAMPLING_ID_LAYER
,
input
)
return
LayerOutput
(
name
,
LayerType
.
SAMPLING_ID_LAYER
,
input
,
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -3373,7 +3427,8 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0,
inputs
=
[
Input
(
input
.
name
)],
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
SLOPE_INTERCEPT_LAYER
,
input
)
return
LayerOutput
(
name
,
LayerType
.
SLOPE_INTERCEPT_LAYER
,
input
,
size
=
input
.
size
)
@
wrap_name_default
()
...
...
@@ -3512,7 +3567,7 @@ def block_expand_layer(input,
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
block_expand
=
BlockExpand
(
channels
=
num_channels
,
block_x
=
block_x
,
...
...
@@ -3525,7 +3580,8 @@ def block_expand_layer(input,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
BLOCK_EXPAND
,
parents
=
[
input
])
return
LayerOutput
(
name
,
LayerType
.
BLOCK_EXPAND
,
parents
=
[
input
],
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -3586,13 +3642,14 @@ def maxout_layer(input,
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
assert
num_channels
%
groups
==
0
Layer
(
name
=
name
,
l
=
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
maxout
=
MaxOut
(
channels
=
num_channels
,
groups
=
groups
)),
type
=
LayerType
.
MAXOUT
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
MAXOUT
,
parents
=
[
input
])
return
LayerOutput
(
name
,
LayerType
.
MAXOUT
,
parents
=
[
input
],
size
=
l
.
config
.
size
)
@
wrap_name_default
()
...
...
@@ -3718,7 +3775,10 @@ def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None,
parents
=
[
input
,
label
]
if
weight
is
not
None
:
parents
.
append
(
weight
)
return
LayerOutput
(
name
,
LayerType
.
CRF_LAYER
,
parents
,
size
=
size
)
# The size for LayerOutput means the dimension of the output.
# It's different from the meaning of crf layer, which is the number of
# classes.
return
LayerOutput
(
name
,
LayerType
.
CRF_LAYER
,
parents
,
size
=
1
)
@
wrap_name_default
()
...
...
@@ -3766,7 +3826,10 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None,
parents
=
[
input
]
if
label
is
not
None
:
parents
.
append
(
label
)
return
LayerOutput
(
name
,
LayerType
.
CRF_DECODING_LAYER
,
parents
,
size
=
size
)
# The size for LayerOutput means the dimension of the output.
# It's different from the meaning of crf layer, which is the number of
# classes.
return
LayerOutput
(
name
,
LayerType
.
CRF_DECODING_LAYER
,
parents
,
size
=
1
)
@
wrap_bias_attr_default
(
has_bias
=
True
)
@
wrap_name_default
()
...
...
@@ -3834,7 +3897,7 @@ def nce_layer(input, label, num_classes, weight=None,
ipts_for_layer
.
append
(
weight
.
name
)
parents
.
append
(
weight
)
Layer
(
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
NCE_LAYER
,
num_classes
=
num_classes
,
...
...
@@ -3844,7 +3907,8 @@ def nce_layer(input, label, num_classes, weight=None,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
NCE_LAYER
,
parents
=
parents
)
return
LayerOutput
(
name
,
LayerType
.
NCE_LAYER
,
parents
=
parents
,
size
=
l
.
config
.
size
)
"""
following are cost Layers.
...
...
@@ -3919,7 +3983,7 @@ def rank_cost(left, right, label, weight=None, name=None, coeff=1.0, layer_attr=
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
RANK_COST
,
parents
=
parents
)
return
LayerOutput
(
name
,
LayerType
.
RANK_COST
,
parents
=
parents
,
size
=
1
)
@
wrap_name_default
()
...
...
@@ -3971,7 +4035,8 @@ def lambda_cost(input, score, name, NDCG_num=5, max_sort_size=-1, layer_attr=Non
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
LAMBDA_COST
,
parents
=
[
input
,
score
])
return
LayerOutput
(
name
,
LayerType
.
LAMBDA_COST
,
parents
=
[
input
,
score
],
size
=
1
)
@
wrap_name_default
()
...
...
@@ -4006,7 +4071,8 @@ def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None):
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
CROSS_ENTROPY
,
parents
=
[
input
,
label
])
return
LayerOutput
(
name
,
LayerType
.
CROSS_ENTROPY
,
parents
=
[
input
,
label
],
size
=
1
)
@
wrap_name_default
()
...
...
@@ -4048,7 +4114,7 @@ def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0,
return
LayerOutput
(
name
,
LayerType
.
CROSS_ENTROPY_WITH_SELFNORM
,
parents
=
[
input
,
label
])
parents
=
[
input
,
label
]
,
size
=
1
)
@
wrap_name_default
()
...
...
@@ -4083,7 +4149,7 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
HUBER
,
parents
=
[
input
,
label
])
return
LayerOutput
(
name
,
LayerType
.
HUBER
,
parents
=
[
input
,
label
]
,
size
=
1
)
@
wrap_name_default
()
...
...
@@ -4126,4 +4192,4 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
MULTI_BIN_LABEL_CROSS_ENTROPY
,
parents
=
[
input
,
label
])
parents
=
[
input
,
label
]
,
size
=
1
)
python/paddle/trainer_config_helpers/math.py
浏览文件 @
a2766842
...
...
@@ -13,10 +13,11 @@
# limitations under the License.
from
.layers
import
LayerOutput
,
mixed_layer
,
identity_projection
,
\
slope_intercept_layer
slope_intercept_layer
,
scaling_layer
,
repeat_layer
from
.attrs
import
is_compatible_with
from
.default_decorators
import
*
import
activations
as
act
from
paddle.trainer.config_parser
import
logger
__all__
=
[]
...
...
@@ -40,7 +41,21 @@ register_unary_math_op('square', act.SquareActivation())
def
add
(
layeroutput
,
other
):
if
is_compatible_with
(
other
,
float
):
return
slope_intercept_layer
(
input
=
layeroutput
,
intercept
=
other
)
assert
isinstance
(
other
,
LayerOutput
)
if
not
isinstance
(
other
,
LayerOutput
):
logger
.
fatal
(
"LayerOutput can only be added with"
" another LayerOutput or a number"
)
if
layeroutput
.
size
==
other
.
size
:
return
mixed_layer
(
input
=
[
identity_projection
(
input
=
layeroutput
),
identity_projection
(
input
=
other
)])
if
other
.
size
!=
1
and
layeroutput
.
size
!=
1
:
logger
.
fatal
(
"Two LayerOutput can be added only if they have equal size"
" or one of their sizes is 1. sizes are %s and %s"
%
(
layeroutput
.
size
,
other
.
size
))
elif
layeroutput
.
size
==
1
:
tmp
=
layeroutput
layeroutput
=
other
other
=
tmp
other
=
repeat_layer
(
other
,
layeroutput
.
size
)
return
mixed_layer
(
input
=
[
identity_projection
(
input
=
layeroutput
),
identity_projection
(
input
=
other
)])
...
...
@@ -50,10 +65,11 @@ LayerOutput.__add__ = add
def
sub
(
layeroutput
,
other
):
if
is_compatible_with
(
other
,
float
):
return
slope_intercept_layer
(
input
=
layeroutput
,
intercept
=
other
)
assert
isinstance
(
other
,
LayerOutput
)
if
not
isinstance
(
other
,
LayerOutput
):
logger
.
fatal
(
"LayerOutput can only be subtracted with"
" another Layeroutput or a number"
)
neg
=
slope_intercept_layer
(
input
=
other
,
slope
=-
1.0
)
return
mixed_layer
(
input
=
[
identity_projection
(
input
=
layeroutput
),
identity_projection
(
input
=
neg
)])
return
add
(
layeroutput
,
neg
)
LayerOutput
.
__sub__
=
sub
...
...
@@ -62,3 +78,20 @@ def rsub(layeroutput, other):
return
add
(
neg
,
other
)
LayerOutput
.
__rsub__
=
rsub
def
mul
(
layeroutput
,
other
):
if
is_compatible_with
(
other
,
float
):
return
slope_intercept_layer
(
input
=
layeroutput
,
slope
=
other
)
if
not
isinstance
(
other
,
LayerOutput
):
logger
.
fatal
(
"LayerOutput can only be multiplied with"
" another Layeroutput or a number"
)
elif
layeroutput
.
size
==
1
:
return
scaling_layer
(
input
=
other
,
weight
=
layeroutput
)
elif
other
.
size
==
1
:
return
scaling_layer
(
input
=
layeroutput
,
weight
=
other
)
else
:
logger
.
fatal
(
"At least one of the operand of '*' must be a number"
" or a LayerOutput with size=1"
)
LayerOutput
.
__mul__
=
mul
LayerOutput
.
__rmul__
=
mul
python/paddle/trainer_config_helpers/tests/configs/math_ops.py
浏览文件 @
a2766842
...
...
@@ -19,6 +19,12 @@ y = x + y
y
=
y
-
x
y
=
y
-
2
y
=
2
-
y
y
=
2
*
y
y
=
y
*
3
z
=
data_layer
(
name
=
'data_2'
,
size
=
1
)
y
=
y
*
z
y
=
z
*
y
y
=
y
+
z
y
=
z
+
y
outputs
(
y
)
python/paddle/trainer_config_helpers/tests/configs/protostr/math_ops.protostr
浏览文件 @
a2766842
...
...
@@ -209,8 +209,129 @@ layers {
slope: 1.0
intercept: 2
}
layers {
name: "__slope_intercept_layer_6__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__slope_intercept_layer_5__"
}
slope: 2
intercept: 0.0
}
layers {
name: "__slope_intercept_layer_7__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "__slope_intercept_layer_6__"
}
slope: 3
intercept: 0.0
}
layers {
name: "data_2"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__scaling_layer_0__"
type: "scaling"
size: 100
active_type: ""
inputs {
input_layer_name: "data_2"
}
inputs {
input_layer_name: "__slope_intercept_layer_7__"
}
}
layers {
name: "__scaling_layer_1__"
type: "scaling"
size: 100
active_type: ""
inputs {
input_layer_name: "data_2"
}
inputs {
input_layer_name: "__scaling_layer_0__"
}
}
layers {
name: "__repeat_layer_0__"
type: "featmap_expand"
size: 100
active_type: ""
inputs {
input_layer_name: "data_2"
}
num_filters: 100
}
layers {
name: "__mixed_2__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__scaling_layer_1__"
proj_conf {
type: "identity"
name: "___mixed_2__.w0"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__repeat_layer_0__"
proj_conf {
type: "identity"
name: "___mixed_2__.w1"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__repeat_layer_1__"
type: "featmap_expand"
size: 100
active_type: ""
inputs {
input_layer_name: "data_2"
}
num_filters: 100
}
layers {
name: "__mixed_3__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_2__"
proj_conf {
type: "identity"
name: "___mixed_3__.w0"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__repeat_layer_1__"
proj_conf {
type: "identity"
name: "___mixed_3__.w1"
input_size: 100
output_size: 100
}
}
}
input_layer_names: "data_2"
input_layer_names: "data"
output_layer_names: "__
slope_intercept_layer_5
__"
output_layer_names: "__
mixed_3
__"
sub_models {
name: "root"
layer_names: "data"
...
...
@@ -228,8 +349,18 @@ sub_models {
layer_names: "__slope_intercept_layer_3__"
layer_names: "__slope_intercept_layer_4__"
layer_names: "__slope_intercept_layer_5__"
layer_names: "__slope_intercept_layer_6__"
layer_names: "__slope_intercept_layer_7__"
layer_names: "data_2"
layer_names: "__scaling_layer_0__"
layer_names: "__scaling_layer_1__"
layer_names: "__repeat_layer_0__"
layer_names: "__mixed_2__"
layer_names: "__repeat_layer_1__"
layer_names: "__mixed_3__"
input_layer_names: "data_2"
input_layer_names: "data"
output_layer_names: "__
slope_intercept_layer_5
__"
output_layer_names: "__
mixed_3
__"
is_recurrent_layer_group: false
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录