未验证 提交 a26a3a60 编写于 作者: B bukejiyu 提交者: GitHub

[Inference][Trt]fix bilinear_v2 (#56043)

* fix trt bilinear_interp_v2_op

* add trt 8.0 condition

* add trt 8.0 condition

test bilinear

add trt 8.0 condition

* code style
上级 989c5e87
...@@ -48,10 +48,21 @@ class BilinearInterpolateV2OpConverter : public OpConverter { ...@@ -48,10 +48,21 @@ class BilinearInterpolateV2OpConverter : public OpConverter {
auto out_w = PADDLE_GET_CONST(int, op_desc.GetAttr("out_w")); auto out_w = PADDLE_GET_CONST(int, op_desc.GetAttr("out_w"));
auto layer = TRT_ENGINE_ADD_LAYER(engine_, Resize, *input); auto layer = TRT_ENGINE_ADD_LAYER(engine_, Resize, *input);
if (align_mode == 0 && !align_corners) { if (align_mode == 0) {
layer->setResizeMode(nvinfer1::ResizeMode::kLINEAR); layer->setResizeMode(nvinfer1::ResizeMode::kLINEAR);
} }
#if IS_TRT_VERSION_GE(8000)
if (align_corners == true) {
layer->setCoordinateTransformation(
nvinfer1::ResizeCoordinateTransformation::kALIGN_CORNERS);
} else {
layer->setCoordinateTransformation(
nvinfer1::ResizeCoordinateTransformation::kHALF_PIXEL);
}
#endif
#if !IS_TRT_VERSION_GE(8000)
layer->setAlignCorners(align_corners);
#endif
auto in_dim = input->getDimensions(); auto in_dim = input->getDimensions();
float scale_h = -1.f; float scale_h = -1.f;
float scale_w = -1.f; float scale_w = -1.f;
...@@ -95,7 +106,7 @@ class BilinearInterpolateV2OpConverter : public OpConverter { ...@@ -95,7 +106,7 @@ class BilinearInterpolateV2OpConverter : public OpConverter {
} }
} }
if (out_h > 0 && out_w > 0) { if (out_h > 0 && out_w > 0 && !(scale_w > 0. && scale_h > 0.)) {
scale_h = scale_h =
static_cast<float>(out_h) / static_cast<float>(in_dim.d[h_axis]); static_cast<float>(out_h) / static_cast<float>(in_dim.d[h_axis]);
scale_w = scale_w =
......
...@@ -919,7 +919,6 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -919,7 +919,6 @@ struct SimpleOpTypeSetTeller : public Teller {
return false; return false;
} }
} }
if (resize_inputs.find("OutSize") != resize_inputs.end()) { if (resize_inputs.find("OutSize") != resize_inputs.end()) {
if (!with_dynamic_shape) { if (!with_dynamic_shape) {
VLOG(3) << "Static shape don't support the OutSize for op_type " VLOG(3) << "Static shape don't support the OutSize for op_type "
...@@ -944,18 +943,11 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -944,18 +943,11 @@ struct SimpleOpTypeSetTeller : public Teller {
return false; return false;
} }
auto align_corners =
PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
if (align_corners != false) {
VLOG(3)
<< "The bilinear_interp_v2 only supports align_corners with false.";
return false;
}
bool has_scale_input_size = bool has_scale_input_size =
(resize_inputs.find("Scale") != resize_inputs.end()); (resize_inputs.find("Scale") != resize_inputs.end());
if (has_scale_input_size && desc.Input("Scale").size() != 1) { if (!has_scale_input_size ||
(has_scale_input_size && desc.Input("Scale").size() != 1)) {
const std::vector<float> scale = const std::vector<float> scale =
PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale")); PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
if (scale.size() <= 1) { if (scale.size() <= 1) {
......
...@@ -38,7 +38,9 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest): ...@@ -38,7 +38,9 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
def sample_program_configs(self): def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]): def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 3, 64, 64]).astype(np.float32) return np.random.uniform(
low=0.0, high=1.0, size=[1, 3, 64, 64]
).astype(np.float32)
def generate_input2(attrs: List[Dict[str, Any]]): def generate_input2(attrs: List[Dict[str, Any]]):
return np.random.uniform(low=0.5, high=6.0, size=(2)).astype( return np.random.uniform(low=0.5, high=6.0, size=(2)).astype(
...@@ -46,20 +48,19 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest): ...@@ -46,20 +48,19 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
) )
for data_layout in ["NCHW", "NHWC"]: for data_layout in ["NCHW", "NHWC"]:
for align_corners in [False, True]:
for scale_y in [2.0, 1.0]: for scale_y in [2.0, 1.0]:
for scale_x in [2.0]: for scale_x in [2.0]:
scale = [scale_y, scale_x] scale = [scale_y, scale_x]
for out_h in [32, 128]:
for out_w in [64]:
dics = [ dics = [
{ {
"data_layout": data_layout, "data_layout": data_layout,
"interp_method": "bilinear", "interp_method": "bilinear",
"align_corners": False, "align_corners": align_corners,
"align_mode": 0, "align_mode": 0,
"scale": scale, "scale": scale,
"out_h": out_h, "out_h": -1,
"out_w": out_w, "out_w": -1,
} }
] ]
...@@ -71,9 +72,7 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest): ...@@ -71,9 +72,7 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
"Scale": ["input_scale"], "Scale": ["input_scale"],
}, },
"op_outputs": { "op_outputs": {
"Out": [ "Out": ["bilinear_interp_v2_output_data"]
"bilinear_interp_v2_output_data"
]
}, },
"op_attrs": dics[0], "op_attrs": dics[0],
} }
...@@ -136,9 +135,125 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest): ...@@ -136,9 +135,125 @@ class TrtConvertBilinearInterpV2Test(TrtLayerAutoScanTest):
program_config.set_input_type(np.float32) program_config.set_input_type(np.float32)
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True attrs, True
), (1e-5, 1e-5)
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-2
def test(self):
self.run_test()
class TrtConvertBilinearInterpV2Test1(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
ver = paddle_infer.get_trt_compile_version()
# here is consistent with op_teller.cc
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7100:
return False
return True
def sample_program_configs(self):
self.workspace_size = 1 << 32
def generate_input1(attrs: List[Dict[str, Any]]):
return np.random.uniform(
low=0.0, high=1.0, size=[1, 18, 144, 144]
).astype(np.float32)
for data_layout in ["NCHW", "NHWC"]:
for align_corners in [False, True]:
for out_h in [128, 288]:
for out_w in [288]:
dics = [
{
"data_layout": data_layout,
"interp_method": "bilinear",
"align_corners": align_corners,
"align_mode": 0,
"scale": [],
"out_h": out_h,
"out_w": out_w,
}
]
ops_config = [
{
"op_type": "bilinear_interp_v2",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {
"Out": ["bilinear_interp_v2_output_data"]
},
"op_attrs": dics[0],
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1, dics)
)
},
outputs=["bilinear_interp_v2_output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [1, 18, 144, 144]
}
self.dynamic_shape.max_input_shape = {
"input_data": [8, 18, 144, 144]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [4, 18, 144, 144]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5 ), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half self.trt_param.precision = paddle_infer.PrecisionType.Half
program_config.set_input_type(np.float16) program_config.set_input_type(np.float16)
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-2
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), (1e-5, 1e-5)
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num( yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True attrs, True
), 1e-2 ), 1e-2
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册