From a1d200a5dea60dfe23c26f50f09cfa7c02f5ac4b Mon Sep 17 00:00:00 2001 From: nhzlx Date: Wed, 20 Mar 2019 12:51:55 +0000 Subject: [PATCH] cherry-pick from feature/anakin-engine: Anakin support facebox #16111 --- paddle/fluid/framework/ir/CMakeLists.txt | 5 + .../framework/ir/graph_pattern_detector.cc | 130 ++++++++++ .../framework/ir/graph_pattern_detector.h | 15 ++ .../simplify_anakin_detection_pattern_pass.cc | 233 ++++++++++++++++++ .../simplify_anakin_detection_pattern_pass.h | 41 +++ .../inference/anakin/convert/CMakeLists.txt | 5 +- .../inference/anakin/convert/batch_norm.cc | 2 +- .../fluid/inference/anakin/convert/concat.cc | 4 +- .../anakin/convert/density_prior_box.cc | 79 ++++++ .../anakin/convert/density_prior_box.h | 37 +++ .../inference/anakin/convert/detection_out.cc | 72 ++++++ .../inference/anakin/convert/detection_out.h | 37 +++ .../fluid/inference/anakin/convert/flatten.cc | 15 +- .../inference/anakin/convert/op_converter.h | 4 + .../anakin/convert/test_concat_op.cc | 23 ++ .../anakin/convert/test_flatten_op.cc | 6 +- .../anakin/convert/test_reshape_op.cc | 21 ++ .../anakin/convert/test_softmax_op.cc | 5 +- .../anakin/convert/test_transpose_op.cc | 22 ++ .../inference/anakin/convert/transpose.cc | 5 + .../inference/anakin/convert/ut_helper.h | 3 + paddle/fluid/inference/anakin/op_teller.cc | 11 +- .../ir_passes/anakin_subgraph_pass.cc | 2 +- paddle/fluid/inference/api/CMakeLists.txt | 5 + .../fluid/inference/api/analysis_predictor.cc | 11 +- 25 files changed, 765 insertions(+), 28 deletions(-) create mode 100644 paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc create mode 100644 paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h create mode 100644 paddle/fluid/inference/anakin/convert/density_prior_box.cc create mode 100644 paddle/fluid/inference/anakin/convert/density_prior_box.h create mode 100644 paddle/fluid/inference/anakin/convert/detection_out.cc create mode 100644 paddle/fluid/inference/anakin/convert/detection_out.h diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index a79a53867d8..36024d4a7d5 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -71,6 +71,7 @@ pass_library(transpose_flatten_concat_fuse_pass inference) pass_library(identity_scale_op_clean_pass base) pass_library(sync_batch_norm_pass base) pass_library(runtime_context_cache_pass base) +pass_library(simplify_anakin_detection_pattern_pass inference) # There may be many transpose-flatten structures in a model, and the output of # these structures will be used as inputs to the concat Op. This pattern will @@ -81,6 +82,10 @@ foreach (index RANGE 3 6) file(APPEND ${pass_file} "USE_PASS(transpose_flatten${index}_concat_fuse_pass);\n") endforeach() +foreach (index RANGE 3 6) + file(APPEND ${pass_file} "USE_PASS(simplify_anakin_detection_pattern_pass${index});\n") +endforeach() + if(WITH_MKLDNN) pass_library(mkldnn_placement_pass base mkldnn) pass_library(depthwise_conv_mkldnn_pass base mkldnn) diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.cc b/paddle/fluid/framework/ir/graph_pattern_detector.cc index b653e5a521e..f5d240f2c62 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.cc +++ b/paddle/fluid/framework/ir/graph_pattern_detector.cc @@ -1454,6 +1454,136 @@ PDNode *patterns::TransposeFlattenConcat::operator()( return concat_out; } +PDNode *patterns::AnakinDetectionPattern::operator()( + std::vector conv_in, int times) { + // The times represents the repeat times of the + // {prior_box, prior_box_loc_out, flatten, prior_box_var_out, reshape} + const int kNumFields = 7; + const int kPriorBoxLocOffset = 1; + const int kReshape1Offset = 2; + const int kReshape1OutOffset = 3; + const int kPriorBoxVarOffset = 4; + const int kReshape2Offset = 5; + const int kReshape2OutOffset = 6; + + const int kBoxCoderThirdInputOffset = times; + const int kMultiClassSecondInputNmsOffset = times + 1; + + std::vector nodes; + + for (int i = 0; i < times; i++) { + nodes.push_back( + pattern->NewNode(GetNodeName("prior_box" + std::to_string(i))) + ->assert_is_op("density_prior_box")); + nodes.push_back(pattern->NewNode(GetNodeName("box_out" + std::to_string(i))) + ->assert_is_op_output("density_prior_box", "Boxes") + ->assert_is_op_input("reshape2", "X") + ->AsIntermediate()); + nodes.push_back( + pattern->NewNode(GetNodeName("reshape1" + std::to_string(i))) + ->assert_is_op("reshape2")); + + nodes.push_back( + pattern->NewNode(GetNodeName("reshape1_out" + std::to_string(i))) + ->assert_is_op_output("reshape2") + ->assert_is_op_nth_input("concat", "X", i) + ->AsIntermediate()); + + nodes.push_back( + pattern->NewNode(GetNodeName("box_var_out" + std::to_string(i))) + ->assert_is_op_output("density_prior_box", "Variances") + ->assert_is_op_input("reshape2", "X") + ->AsIntermediate()); + nodes.push_back( + pattern->NewNode(GetNodeName("reshape2" + std::to_string(i))) + ->assert_is_op("reshape2")); + + nodes.push_back( + pattern->NewNode(GetNodeName("reshape2_out" + std::to_string(i))) + ->assert_is_op_output("reshape2") + ->assert_is_op_nth_input("concat", "X", i) + ->AsIntermediate()); + } + + auto concat_op1 = pattern->NewNode(GetNodeName("concat1")) + ->assert_is_op("concat") + ->assert_op_has_n_inputs("concat", times); + auto concat_out1 = pattern->NewNode(GetNodeName("concat1_out")) + ->assert_is_op_output("concat") + ->AsIntermediate(); + + auto concat_op2 = pattern->NewNode(GetNodeName("concat2")) + ->assert_is_op("concat") + ->assert_op_has_n_inputs("concat", times); + auto concat_out2 = pattern->NewNode(GetNodeName("concat2_out")) + ->assert_is_op_output("concat") + ->AsIntermediate(); + + auto box_coder_op = pattern->NewNode(GetNodeName("box_coder")) + ->assert_is_op("box_coder") + ->assert_op_has_n_inputs("box_coder", 3); + + auto box_coder_out = pattern->NewNode(GetNodeName("box_coder_out")) + ->assert_is_op_output("box_coder") + ->AsIntermediate(); + + auto multiclass_nms_op = pattern->NewNode(GetNodeName("multiclass_nms")) + ->assert_is_op("multiclass_nms") + ->assert_op_has_n_inputs("multiclass_nms", 2); + + auto multiclass_nms_out = pattern->NewNode(GetNodeName("multiclass_nms_out")) + ->assert_is_op_output("multiclass_nms") + ->AsOutput(); + + std::vector reshape1_outs; + std::vector reshape2_outs; + + for (int i = 0; i < times; i++) { + conv_in[i]->AsInput(); + // prior_box + nodes[i * kNumFields]->LinksFrom({conv_in[i]}); + // prior_box box out + nodes[i * kNumFields + kPriorBoxLocOffset]->LinksFrom( + {nodes[i * kNumFields]}); + // reshape + nodes[i * kNumFields + kReshape1Offset]->LinksFrom( + {nodes[i * kNumFields + kPriorBoxLocOffset]}); + // reshape_out + nodes[i * kNumFields + kReshape1OutOffset]->LinksFrom( + {nodes[i * kNumFields + kReshape1Offset]}); + + nodes[i * kNumFields + kPriorBoxVarOffset]->LinksFrom( + {nodes[i * kNumFields]}); + // reshape + nodes[i * kNumFields + kReshape2Offset]->LinksFrom( + {nodes[i * kNumFields + kPriorBoxVarOffset]}); + // reshape_out + nodes[i * kNumFields + kReshape2OutOffset]->LinksFrom( + {nodes[i * kNumFields + kReshape2Offset]}); + + reshape1_outs.push_back(nodes[i * kNumFields + kReshape1OutOffset]); + reshape2_outs.push_back(nodes[i * kNumFields + kReshape2OutOffset]); + } + + concat_op1->LinksFrom(reshape1_outs); + concat_op2->LinksFrom(reshape2_outs); + concat_out1->LinksFrom({concat_op1}); + concat_out2->LinksFrom({concat_op2}); + + conv_in[kBoxCoderThirdInputOffset]->AsInput(); + conv_in[kMultiClassSecondInputNmsOffset]->AsInput(); + + box_coder_op->LinksFrom( + {concat_out1, concat_out2, conv_in[kBoxCoderThirdInputOffset]}); + box_coder_out->LinksFrom({box_coder_op}); + + multiclass_nms_op + ->LinksFrom({box_coder_out, conv_in[kMultiClassSecondInputNmsOffset]}) + .LinksTo({multiclass_nms_out}); + + return multiclass_nms_out; +} + } // namespace ir } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.h b/paddle/fluid/framework/ir/graph_pattern_detector.h index fc30b5b21c5..080b2f96444 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.h +++ b/paddle/fluid/framework/ir/graph_pattern_detector.h @@ -841,6 +841,21 @@ struct TransposeFlattenConcat : public PatternBase { } }; +struct AnakinDetectionPattern : public PatternBase { + AnakinDetectionPattern(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "anakin_detect_pattern") {} + + PDNode* operator()(std::vector conv_inputs, int times); + + std::string GetNodeName(const std::string& op_type) { + return PDNodeName(name_scope_, repr_, id_, op_type); + } + + PDNode* GetPDNode(const std::string& op_type) { + return pattern->RetrieveNode(GetNodeName(op_type)); + } +}; + } // namespace patterns // Link two ir::Nodes from each other. diff --git a/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc b/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc new file mode 100644 index 00000000000..462f077eb7a --- /dev/null +++ b/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc @@ -0,0 +1,233 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include + +#include "paddle/fluid/framework/ir/graph_viz_pass.h" +#include "paddle/fluid/framework/ir/node.h" +#include "paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h" + +namespace paddle { +namespace framework { +namespace ir { + +template +std::unique_ptr SimplifyAnakinDetectionPatternPass::ApplyImpl( + std::unique_ptr graph) const { + const std::string pattern_name = + "simplify_anakin_detection_pattern_pass" + std::to_string(times); + FusePassBase::Init(pattern_name, graph.get()); + + GraphPatternDetector gpd; + std::vector input_nodes; + for (int i = 0; i < times; i++) { + input_nodes.push_back(gpd.mutable_pattern() + ->NewNode("x" + std::to_string(i)) + ->assert_is_op_input("density_prior_box", "Input") + ->AsInput()); + } + input_nodes.push_back(gpd.mutable_pattern() + ->NewNode("x" + std::to_string(times)) + ->assert_is_op_input("box_coder", "TargetBox") + ->AsInput()); + + input_nodes.push_back(gpd.mutable_pattern() + ->NewNode("x" + std::to_string(times + 1)) + ->assert_is_op_input("multiclass_nms", "Scores") + ->AsInput()); + + patterns::AnakinDetectionPattern pattern(gpd.mutable_pattern(), pattern_name); + pattern(input_nodes, times); + + auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph, + Graph *g) { + const int kNumFields = 7; + const int kPriorBoxLocOffset = 1; + const int kReshape1Offset = 2; + const int kReshape1OutOffset = 3; + const int kPriorBoxVarOffset = 4; + const int kReshape2Offset = 5; + const int kReshape2OutOffset = 6; + std::vector nodes; + + for (int i = 0; i < times; i++) { + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("prior_box" + std::to_string(i)))); + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("box_out" + std::to_string(i)))); + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("reshape1" + std::to_string(i)))); + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("reshape1_out" + std::to_string(i)))); + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("reshape2" + std::to_string(i)))); + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("reshape2_out" + std::to_string(i)))); + + PADDLE_ENFORCE( + subgraph.at(pattern.GetPDNode("box_var_out" + std::to_string(i)))); + + nodes.push_back( + subgraph.at(pattern.GetPDNode("prior_box" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("box_out" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("reshape1" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("reshape1_out" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("box_var_out" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("reshape2" + std::to_string(i)))); + nodes.push_back( + subgraph.at(pattern.GetPDNode("reshape2_out" + std::to_string(i)))); + } + + Node *concat_op1 = subgraph.at(pattern.GetPDNode("concat1")); + Node *concat_out1 = subgraph.at(pattern.GetPDNode("concat1_out")); + + Node *concat_op2 = subgraph.at(pattern.GetPDNode("concat2")); + Node *concat_out2 = subgraph.at(pattern.GetPDNode("concat2_out")); + + Node *box_coder_third_input = subgraph.at(input_nodes[times]); + Node *box_coder_op = subgraph.at(pattern.GetPDNode("box_coder")); + Node *box_coder_out = subgraph.at(pattern.GetPDNode("box_coder_out")); + + Node *multiclass_nms_second_input = subgraph.at(input_nodes[times + 1]); + Node *multiclass_nms = subgraph.at(pattern.GetPDNode("multiclass_nms")); + Node *multiclass_nms_out = + subgraph.at(pattern.GetPDNode("multiclass_nms_out")); + + std::string code_type = + boost::get(box_coder_op->Op()->GetAttr("code_type")); + bool box_normalized = + boost::get(box_coder_op->Op()->GetAttr("box_normalized")); + // auto variance = + // boost::get>(box_coder_op->Op()->GetAttr("variance")); + int background_label = + boost::get(multiclass_nms->Op()->GetAttr("background_label")); + float score_threshold = + boost::get(multiclass_nms->Op()->GetAttr("score_threshold")); + int nms_top_k = boost::get(multiclass_nms->Op()->GetAttr("nms_top_k")); + float nms_threshold = + boost::get(multiclass_nms->Op()->GetAttr("nms_threshold")); + float nms_eta = boost::get(multiclass_nms->Op()->GetAttr("nms_eta")); + int keep_top_k = + boost::get(multiclass_nms->Op()->GetAttr("keep_top_k")); + + std::vector concat1_input_names; + for (int i = 0; i < times; i++) { + concat1_input_names.push_back( + nodes[i * kNumFields + kPriorBoxLocOffset]->Name()); + } + + int axis = boost::get(concat_op1->Op()->GetAttr("axis")); + framework::OpDesc concat1_desc; + concat1_desc.SetType("concat"); + concat1_desc.SetInput("X", concat1_input_names); + concat1_desc.SetAttr("axis", axis); + concat1_desc.SetOutput("Out", {concat_out1->Name()}); + + auto *new_add_concat_op = graph->CreateOpNode(&concat1_desc); + + for (int i = 0; i < times; i++) { + nodes[i * kNumFields + kPriorBoxLocOffset]->outputs.push_back( + new_add_concat_op); + new_add_concat_op->inputs.push_back( + nodes[i * kNumFields + kPriorBoxLocOffset]); + } + + framework::OpDesc new_op_desc; + new_op_desc.SetType("detection_out"); + new_op_desc.SetInput("PriorBox", {concat_out1->Name()}); + new_op_desc.SetInput("TargetBox", {box_coder_third_input->Name()}); + new_op_desc.SetInput("Scores", {multiclass_nms_second_input->Name()}); + new_op_desc.SetAttr("code_type", code_type); + new_op_desc.SetAttr("box_normalized", box_normalized); + new_op_desc.SetAttr("background_label", background_label); + new_op_desc.SetAttr("score_threshold", score_threshold); + new_op_desc.SetAttr("nms_top_k", nms_top_k); + new_op_desc.SetAttr("nms_threshold", nms_threshold); + new_op_desc.SetAttr("nms_eta", nms_eta); + new_op_desc.SetAttr("keep_top_k", keep_top_k); + new_op_desc.SetOutput("Out", {multiclass_nms_out->Name()}); + new_op_desc.Flush(); + + // Create a new node for the fused op. + auto *detection_out_op = graph->CreateOpNode(&new_op_desc); + + std::unordered_set delete_nodes; + + for (int i = 0; i < times; i++) { + nodes[i * kNumFields + kPriorBoxLocOffset]->outputs.push_back(concat_op1); + delete_nodes.insert(nodes[i * kNumFields + kReshape1Offset]); + delete_nodes.insert(nodes[i * kNumFields + kReshape1OutOffset]); + delete_nodes.insert(nodes[i * kNumFields + kPriorBoxVarOffset]); + delete_nodes.insert(nodes[i * kNumFields + kReshape2Offset]); + delete_nodes.insert(nodes[i * kNumFields + kReshape2OutOffset]); + } + + delete_nodes.insert(concat_op1); + delete_nodes.insert(concat_op2); + delete_nodes.insert(concat_out2); + delete_nodes.insert(box_coder_op); + delete_nodes.insert(box_coder_out); + delete_nodes.insert(multiclass_nms); + + new_add_concat_op->outputs.push_back(concat_out1); + concat_out1->inputs.push_back(new_add_concat_op); + + detection_out_op->inputs.push_back(concat_out1); + detection_out_op->inputs.push_back(box_coder_third_input); + detection_out_op->inputs.push_back(multiclass_nms_second_input); + detection_out_op->outputs.push_back(multiclass_nms_out); + + concat_out1->outputs.push_back(detection_out_op); + box_coder_third_input->outputs.push_back(detection_out_op); + multiclass_nms_second_input->outputs.push_back(detection_out_op); + multiclass_nms_out->inputs.push_back(detection_out_op); + + // Delete the unneeded nodes. + GraphSafeRemoveNodes(graph.get(), delete_nodes); + }; + + gpd(graph.get(), handler); + return graph; +} + +template class SimplifyAnakinDetectionPatternPass<1>; +template class SimplifyAnakinDetectionPatternPass<3>; +template class SimplifyAnakinDetectionPatternPass<4>; +template class SimplifyAnakinDetectionPatternPass<5>; +template class SimplifyAnakinDetectionPatternPass<6>; + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(simplify_anakin_detection_pattern_pass, + paddle::framework::ir::SimplifyAnakinDetectionPatternPass<1>); + +REGISTER_PASS(simplify_anakin_detection_pattern_pass3, + paddle::framework::ir::SimplifyAnakinDetectionPatternPass<3>); + +REGISTER_PASS(simplify_anakin_detection_pattern_pass4, + paddle::framework::ir::SimplifyAnakinDetectionPatternPass<4>); + +REGISTER_PASS(simplify_anakin_detection_pattern_pass5, + paddle::framework::ir::SimplifyAnakinDetectionPatternPass<5>); + +REGISTER_PASS(simplify_anakin_detection_pattern_pass6, + paddle::framework::ir::SimplifyAnakinDetectionPatternPass<6>); diff --git a/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h b/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h new file mode 100644 index 00000000000..2338e4c38b2 --- /dev/null +++ b/paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h @@ -0,0 +1,41 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include +#include +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/framework/ir/graph_pattern_detector.h" + +namespace paddle { +namespace framework { +namespace ir { + +// There may be many transpose-flatten structures in a model, and the output of +// these structures will be used as inputs to the concat Op. This pattern will +// be detected by our pass. The times here represents the repeat times of this +// structure. +template +class SimplifyAnakinDetectionPatternPass : public FusePassBase { + public: + virtual ~SimplifyAnakinDetectionPatternPass() {} + + protected: + std::unique_ptr ApplyImpl( + std::unique_ptr graph) const override; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/CMakeLists.txt b/paddle/fluid/inference/anakin/convert/CMakeLists.txt index 33f69958da0..7b08375a7a3 100644 --- a/paddle/fluid/inference/anakin/convert/CMakeLists.txt +++ b/paddle/fluid/inference/anakin/convert/CMakeLists.txt @@ -1,13 +1,12 @@ cc_library(anakin_op_converter SRCS fc.cc conv2d.cc conv2d_fusion.cc -elementwise.cc activation.cc pool2d.cc concat.cc split.cc relu.cc softmax.cc batch_norm.cc reshape.cc flatten.cc transpose.cc DEPS anakin_engine framework_proto scope op_registry) +elementwise.cc activation.cc pool2d.cc concat.cc split.cc relu.cc softmax.cc batch_norm.cc reshape.cc flatten.cc transpose.cc density_prior_box.cc detection_out.cc DEPS anakin_engine framework_proto scope op_registry) cc_test(test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op) cc_test(test_anakin_conv2d SRCS test_conv2d_op.cc DEPS anakin_op_converter conv_op im2col vol2col depthwise_conv) cc_test(test_anakin_activation SRCS test_activation_op.cc DEPS activation_op anakin_op_converter) cc_test(test_anakin_pool2d SRCS test_pool2d_op.cc DEPS anakin_op_converter pool_op pooling) cc_test(test_anakin_concat SRCS test_concat_op.cc DEPS anakin_op_converter concat_op concat_and_split) cc_test(test_anakin_split SRCS test_split_op.cc DEPS anakin_op_converter split_op concat_and_split) -cc_test(test_anakin_elementwise SRCS test_elementwise_op.cc DEPS -anakin_op_converter elementwise_add_op) +cc_test(test_anakin_elementwise SRCS test_elementwise_op.cc DEPS anakin_op_converter elementwise_add_op) cc_test(test_anakin_relu SRCS test_relu_op.cc DEPS activation_op anakin_op_converter SERIAL) cc_test(test_anakin_softmax SRCS test_softmax_op.cc DEPS anakin_op_converter softmax_op softmax) cc_test(test_anakin_reshape SRCS test_reshape_op.cc DEPS anakin_op_converter reshape_op) diff --git a/paddle/fluid/inference/anakin/convert/batch_norm.cc b/paddle/fluid/inference/anakin/convert/batch_norm.cc index bb5d406f981..ebe81dabcbc 100644 --- a/paddle/fluid/inference/anakin/convert/batch_norm.cc +++ b/paddle/fluid/inference/anakin/convert/batch_norm.cc @@ -14,6 +14,7 @@ #include "paddle/fluid/inference/anakin/convert/batch_norm.h" #include +#include #include #include #include @@ -41,7 +42,6 @@ void BatchNormOpConverter::operator()(const framework::proto::OpDesc &op, auto output = op_desc.Output("Y").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Y").front(); - bool is_test = boost::get(op_desc.GetAttr("is_test")); auto epsilon = boost::get(op_desc.GetAttr("epsilon")); auto bn_op_name = op_name + ":bn"; diff --git a/paddle/fluid/inference/anakin/convert/concat.cc b/paddle/fluid/inference/anakin/convert/concat.cc index 42253071373..e2d1111acbb 100644 --- a/paddle/fluid/inference/anakin/convert/concat.cc +++ b/paddle/fluid/inference/anakin/convert/concat.cc @@ -34,8 +34,8 @@ void ConcatOpConverter::operator()(const framework::proto::OpDesc &op, framework::OpDesc op_desc(op, nullptr); int axis = boost::get(op_desc.GetAttr("axis")); auto input_names = op_desc.Input("X"); - PADDLE_ENFORCE(axis > 0, - "The axis attr of Concat op should be large than 0 for trt"); + // PADDLE_ENFORCE(axis > 0, + // "The axis attr of Concat op should be large than 0 for trt"); auto y_name = op_desc.Output("Out").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); diff --git a/paddle/fluid/inference/anakin/convert/density_prior_box.cc b/paddle/fluid/inference/anakin/convert/density_prior_box.cc new file mode 100644 index 00000000000..565a95f17b1 --- /dev/null +++ b/paddle/fluid/inference/anakin/convert/density_prior_box.cc @@ -0,0 +1,79 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/anakin/convert/density_prior_box.h" +#include +#include +#include + +using anakin::graph::GraphGlobalMem; +using anakin::AK_FLOAT; +using anakin::saber::NV; +using anakin::saber::Shape; +using anakin::PTuple; + +namespace paddle { +namespace inference { +namespace anakin { + +void DensityPriorBoxOpConverter::operator()(const framework::proto::OpDesc &op, + const framework::Scope &scope, + bool test_mode) { + framework::OpDesc op_desc(op, nullptr); + auto input_name = op_desc.Input("Input").front(); + auto image_name = op_desc.Input("Image").front(); + auto output_name = op_desc.Output("Boxes").front(); + + auto op_name = op_desc.Type() + ":" + op_desc.Output("Boxes").front(); + + auto fixed_sizes = + boost::get>(op_desc.GetAttr("fixed_sizes")); + auto fixed_ratios = + boost::get>(op_desc.GetAttr("fixed_ratios")); + auto densities = boost::get>(op_desc.GetAttr("densities")); + + // lack flip + auto clip = boost::get(op_desc.GetAttr("clip")); + auto variances = boost::get>(op_desc.GetAttr("variances")); + + // lack img_h, img_w + auto step_h = boost::get(op_desc.GetAttr("step_h")); + auto step_w = boost::get(op_desc.GetAttr("step_w")); + auto offset = boost::get(op_desc.GetAttr("offset")); + std::vector order = {"MIN", "COM", "MAX"}; + std::vector temp_v = {}; + + engine_->AddOp(op_name, "PriorBox", {input_name, image_name}, {output_name}); + engine_->AddOpAttr>(op_name, "min_size", temp_v); + engine_->AddOpAttr>(op_name, "max_size", temp_v); + engine_->AddOpAttr>(op_name, "aspect_ratio", temp_v); + engine_->AddOpAttr>(op_name, "fixed_sizes", fixed_sizes); + engine_->AddOpAttr>(op_name, "fixed_ratios", fixed_ratios); + engine_->AddOpAttr>(op_name, "density", densities); + engine_->AddOpAttr(op_name, "is_flip", false); + engine_->AddOpAttr(op_name, "is_clip", clip); + engine_->AddOpAttr>(op_name, "variance", variances); + engine_->AddOpAttr(op_name, "img_h", static_cast(0)); + engine_->AddOpAttr(op_name, "img_w", static_cast(0)); + engine_->AddOpAttr(op_name, "step_h", step_h); + engine_->AddOpAttr(op_name, "step_w", step_w); + engine_->AddOpAttr(op_name, "offset", offset); + engine_->AddOpAttr>(op_name, "order", order); +} + +} // namespace anakin +} // namespace inference +} // namespace paddle + +REGISTER_ANAKIN_OP_CONVERTER(density_prior_box, DensityPriorBoxOpConverter); diff --git a/paddle/fluid/inference/anakin/convert/density_prior_box.h b/paddle/fluid/inference/anakin/convert/density_prior_box.h new file mode 100644 index 00000000000..44265cbf2e9 --- /dev/null +++ b/paddle/fluid/inference/anakin/convert/density_prior_box.h @@ -0,0 +1,37 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include "paddle/fluid/inference/anakin/convert/op_converter.h" + +namespace paddle { +namespace inference { +namespace anakin { + +class DensityPriorBoxOpConverter : public AnakinOpConverter { + public: + DensityPriorBoxOpConverter() = default; + + virtual void operator()(const framework::proto::OpDesc &op, + const framework::Scope &scope, + bool test_mode) override; + virtual ~DensityPriorBoxOpConverter() {} +}; + +} // namespace anakin +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/detection_out.cc b/paddle/fluid/inference/anakin/convert/detection_out.cc new file mode 100644 index 00000000000..67636651017 --- /dev/null +++ b/paddle/fluid/inference/anakin/convert/detection_out.cc @@ -0,0 +1,72 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/anakin/convert/detection_out.h" +#include +#include + +using anakin::graph::GraphGlobalMem; +using anakin::AK_FLOAT; +using anakin::saber::NV; +using anakin::saber::Shape; + +namespace paddle { +namespace inference { +namespace anakin { + +void DetectionOutOpConverter::operator()(const framework::proto::OpDesc &op, + const framework::Scope &scope, + bool test_mode) { + framework::OpDesc op_desc(op, nullptr); + auto target_name = op_desc.Input("TargetBox").front(); + auto prior_box_name = op_desc.Input("PriorBox").front(); + auto scores_name = op_desc.Input("Scores").front(); + auto output_name = op_desc.Output("Out").front(); + + auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); + + auto code_type = boost::get(op_desc.GetAttr("code_type")); + auto background_label = boost::get(op_desc.GetAttr("background_label")); + auto score_threshold = boost::get(op_desc.GetAttr("score_threshold")); + auto nms_top_k = boost::get(op_desc.GetAttr("nms_top_k")); + auto nms_threshold = boost::get(op_desc.GetAttr("nms_threshold")); + auto nms_eta = boost::get(op_desc.GetAttr("nms_eta")); + auto keep_top_k = boost::get(op_desc.GetAttr("keep_top_k")); + std::string anakin_code_type; + if (code_type == "decode_center_size") { + anakin_code_type = "CENTER_SIZE"; + } else if (code_type == "encode_center_size") { + PADDLE_THROW( + "Not support encode_center_size code_type in DetectionOut of anakin"); + } + + engine_->AddOp(op_name, "DetectionOutput", + {target_name, scores_name, prior_box_name}, {output_name}); + engine_->AddOpAttr(op_name, "share_location", true); + engine_->AddOpAttr(op_name, "variance_encode_in_target", false); + engine_->AddOpAttr(op_name, "class_num", static_cast(0)); + engine_->AddOpAttr(op_name, "background_id", background_label); + engine_->AddOpAttr(op_name, "keep_top_k", keep_top_k); + engine_->AddOpAttr(op_name, "code_type", anakin_code_type); + engine_->AddOpAttr(op_name, "conf_thresh", score_threshold); + engine_->AddOpAttr(op_name, "nms_top_k", nms_top_k); + engine_->AddOpAttr(op_name, "nms_thresh", nms_threshold); + engine_->AddOpAttr(op_name, "nms_eta", nms_eta); +} + +} // namespace anakin +} // namespace inference +} // namespace paddle + +REGISTER_ANAKIN_OP_CONVERTER(detection_out, DetectionOutOpConverter); diff --git a/paddle/fluid/inference/anakin/convert/detection_out.h b/paddle/fluid/inference/anakin/convert/detection_out.h new file mode 100644 index 00000000000..5bf1c3ecbc8 --- /dev/null +++ b/paddle/fluid/inference/anakin/convert/detection_out.h @@ -0,0 +1,37 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include "paddle/fluid/inference/anakin/convert/op_converter.h" + +namespace paddle { +namespace inference { +namespace anakin { + +class DetectionOutOpConverter : public AnakinOpConverter { + public: + DetectionOutOpConverter() = default; + + virtual void operator()(const framework::proto::OpDesc &op, + const framework::Scope &scope, + bool test_mode) override; + virtual ~DetectionOutOpConverter() {} +}; + +} // namespace anakin +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/flatten.cc b/paddle/fluid/inference/anakin/convert/flatten.cc index 8314a72129c..c6c372bbef8 100644 --- a/paddle/fluid/inference/anakin/convert/flatten.cc +++ b/paddle/fluid/inference/anakin/convert/flatten.cc @@ -34,20 +34,11 @@ void FlattenOpConverter::operator()(const framework::proto::OpDesc &op, auto input = op_desc.Input("X").front(); auto output = op_desc.Output("Out").front(); - auto in_dims = scope.FindVar(input)->Get().dims(); int axis = boost::get(op_desc.GetAttr("axis")); + PADDLE_ENFORCE(axis == 1, + "the anakin flatten op converter now only support aixs == 1."); - int inner = 1; - int outer = 1; - for (int i = 0; i < in_dims.size(); i++) { - if (i < axis) { - outer *= in_dims[i]; - } else { - inner *= in_dims[i]; - } - } - - std::vector out_dims = {1, outer, inner, 1}; + std::vector out_dims = {0, -1, 1, 1}; auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); engine_->AddOp(op_name, "Reshape", {input}, {output}); engine_->AddOpAttr>(op_name, "dims", out_dims); diff --git a/paddle/fluid/inference/anakin/convert/op_converter.h b/paddle/fluid/inference/anakin/convert/op_converter.h index 0d214d82eb8..eb75f1f62ab 100644 --- a/paddle/fluid/inference/anakin/convert/op_converter.h +++ b/paddle/fluid/inference/anakin/convert/op_converter.h @@ -47,6 +47,10 @@ class AnakinOpConverter { std::string op_type = op_desc.Type(); AnakinOpConverter *it = nullptr; + if (op_type == "reshape2") op_type = "reshape"; + if (op_type == "transpose2") op_type = "transpose"; + if (op_type == "flatten2") op_type = "flatten"; + if (!it) { it = Registry::Global().Lookup(op_type); } diff --git a/paddle/fluid/inference/anakin/convert/test_concat_op.cc b/paddle/fluid/inference/anakin/convert/test_concat_op.cc index 0944e8dbdc9..8c6949cb291 100644 --- a/paddle/fluid/inference/anakin/convert/test_concat_op.cc +++ b/paddle/fluid/inference/anakin/convert/test_concat_op.cc @@ -44,6 +44,29 @@ TEST(concat_op, test) { validator.Execute(1); } +TEST(concat_op, test2) { + std::unordered_set parameters({""}); + framework::Scope scope; + AnakinConvertValidation validator(parameters, scope); + validator.DeclInputVar("concat_x1", {1, 4}); + validator.DeclInputVar("concat_x2", {3, 4}); + validator.DeclInputVar("concat_x3", {2, 4}); + validator.DeclOutputVar("concat_out", {6, 4}); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("concat"); + desc.SetInput("X", {"concat_x1", "concat_x2", "concat_x3"}); + desc.SetOutput("Out", {"concat_out"}); + + int axis = 0; + desc.SetAttr("axis", axis); + + validator.SetOp(*desc.Proto()); + + validator.Execute(1); +} + } // namespace anakin } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/test_flatten_op.cc b/paddle/fluid/inference/anakin/convert/test_flatten_op.cc index 61f03819407..381fab78650 100644 --- a/paddle/fluid/inference/anakin/convert/test_flatten_op.cc +++ b/paddle/fluid/inference/anakin/convert/test_flatten_op.cc @@ -27,13 +27,13 @@ TEST(flatten_op, test) { std::unordered_set parameters; framework::Scope scope; AnakinConvertValidation validator(parameters, scope); - validator.DeclInputVar("flatten-X", {3, 100, 100, 4}); - validator.DeclOutputVar("flatten-Out", {1, 300, 400, 1}); + validator.DeclInputVar("flatten-X", {3, 10, 10, 4}); + validator.DeclOutputVar("flatten-Out", {3, 400, 1, 1}); framework::OpDesc desc; desc.SetType("flatten"); desc.SetInput("X", {"flatten-X"}); desc.SetOutput("Out", {"flatten-Out"}); - desc.SetAttr("axis", 2); + desc.SetAttr("axis", 1); LOG(INFO) << "set OP"; validator.SetOp(*desc.Proto()); diff --git a/paddle/fluid/inference/anakin/convert/test_reshape_op.cc b/paddle/fluid/inference/anakin/convert/test_reshape_op.cc index 2c26cdc525f..a60544e6507 100644 --- a/paddle/fluid/inference/anakin/convert/test_reshape_op.cc +++ b/paddle/fluid/inference/anakin/convert/test_reshape_op.cc @@ -45,6 +45,27 @@ TEST(reshape, test) { validator.Execute(1); } +TEST(reshape, test2) { + framework::Scope scope; + std::unordered_set parameters; + AnakinConvertValidation validator(parameters, scope); + + validator.DeclInputVar("reshape-X", {1, 2, 4}); + validator.DeclOutputVar("reshape-Out", {1, 4, 2}); + + framework::OpDesc desc; + desc.SetType("reshape"); + desc.SetInput("X", {"reshape-X"}); + desc.SetOutput("Out", {"reshape-Out"}); + // desc.SetAttr("shape", std::vector({3, 2, 1, 3})); + desc.SetAttr("shape", std::vector({0, -1, 2})); + + LOG(INFO) << "set OP"; + validator.SetOp(*desc.Proto()); + LOG(INFO) << "execute"; + validator.Execute(1); +} + } // namespace anakin } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/test_softmax_op.cc b/paddle/fluid/inference/anakin/convert/test_softmax_op.cc index 40186915886..933e3eb2b24 100644 --- a/paddle/fluid/inference/anakin/convert/test_softmax_op.cc +++ b/paddle/fluid/inference/anakin/convert/test_softmax_op.cc @@ -27,9 +27,8 @@ TEST(softmax, test) { std::unordered_set parameters; AnakinConvertValidation validator(parameters, scope); - std::vector tensor_shape{8, 10}; - validator.DeclInputVar("softmax-X", {1, 10, 1, 1}); - validator.DeclOutputVar("softmax-Out", {1, 10, 1, 1}); + validator.DeclInputVar("softmax-X", {1, 10}); + validator.DeclOutputVar("softmax-Out", {1, 10}); framework::OpDesc desc; desc.SetType("softmax"); diff --git a/paddle/fluid/inference/anakin/convert/test_transpose_op.cc b/paddle/fluid/inference/anakin/convert/test_transpose_op.cc index 20ef00b5aa2..67c9c23f1fd 100644 --- a/paddle/fluid/inference/anakin/convert/test_transpose_op.cc +++ b/paddle/fluid/inference/anakin/convert/test_transpose_op.cc @@ -43,6 +43,28 @@ TEST(transpose_op, test) { validator.Execute(3); } +// test input shape's dims < 4 +TEST(transpose_op, test2) { + std::unordered_set parameters; + framework::Scope scope; + AnakinConvertValidation validator(parameters, scope); + validator.DeclInputVar("transpose-X", {3, 4, 5}); + validator.DeclOutputVar("transpose-Out", {3, 5, 4}); + + // Prepare Op description + framework::OpDesc desc; + desc.SetType("transpose"); + desc.SetInput("X", {"transpose-X"}); + desc.SetOutput("Out", {"transpose-Out"}); + desc.SetAttr("axis", std::vector({0, 2, 1})); + + LOG(INFO) << "set OP"; + validator.SetOp(*desc.Proto()); + LOG(INFO) << "execute"; + + validator.Execute(1); +} + } // namespace anakin } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/anakin/convert/transpose.cc b/paddle/fluid/inference/anakin/convert/transpose.cc index 6333f5ef06a..6a887401034 100644 --- a/paddle/fluid/inference/anakin/convert/transpose.cc +++ b/paddle/fluid/inference/anakin/convert/transpose.cc @@ -40,6 +40,11 @@ void TransposeOpConverter::operator()(const framework::proto::OpDesc &op, engine_->AddOp(op_name, "Permute", {input}, {output}); auto axis = boost::get>(op_desc.GetAttr("axis")); + size_t axis_size = axis.size(); + while (axis.size() < 4) { + axis.push_back(axis_size); + axis_size += 1; + } engine_->AddOpAttr>(op_name, "dims", axis); } diff --git a/paddle/fluid/inference/anakin/convert/ut_helper.h b/paddle/fluid/inference/anakin/convert/ut_helper.h index 6b52b7607ac..815a88fb489 100644 --- a/paddle/fluid/inference/anakin/convert/ut_helper.h +++ b/paddle/fluid/inference/anakin/convert/ut_helper.h @@ -127,6 +127,9 @@ class AnakinConvertValidation { auto& t = inference::analysis::GetFromScope(scope_, input); auto t_shape = framework::vectorize2int(t.dims()); + while (t_shape.size() < 4) { + t_shape.push_back(1); + } engine_->SetInputShape(input, t_shape); } engine_->Optimize(); diff --git a/paddle/fluid/inference/anakin/op_teller.cc b/paddle/fluid/inference/anakin/op_teller.cc index 015bcc066e1..3166f68b67a 100644 --- a/paddle/fluid/inference/anakin/op_teller.cc +++ b/paddle/fluid/inference/anakin/op_teller.cc @@ -21,7 +21,7 @@ namespace anakin { // Just tell by the op_types. struct SimpleOpTypeSetTeller : public Teller { SimpleOpTypeSetTeller() { - // teller_set.insert("mul"); + teller_set.insert("mul"); teller_set.insert("fc"); teller_set.insert("conv2d_fusion"); teller_set.insert("split"); @@ -30,7 +30,14 @@ struct SimpleOpTypeSetTeller : public Teller { teller_set.insert("elementwise_add"); teller_set.insert("concat"); teller_set.insert("tanh"); - // teller_set.insert("conv2d"); + teller_set.insert("conv2d"); + teller_set.insert("batch_norm"); + teller_set.insert("softmax"); + teller_set.insert("flatten2"); + teller_set.insert("reshape2"); + teller_set.insert("transpose2"); + teller_set.insert("density_prior_box"); + teller_set.insert("detection_out"); } bool operator()(const std::string& op_type, diff --git a/paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc b/paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc index f57b89baab7..1a4c24e800b 100644 --- a/paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc +++ b/paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc @@ -45,7 +45,7 @@ std::unique_ptr analysis::AnakinSubgraphPass::ApplyImpl( return anakin::OpTeller::Global().Tell(node->Op()->Type(), *node->Op()); }; - SubGraphFuser fuser(graph.get(), teller, 0); + SubGraphFuser fuser(graph.get(), teller, 3 /* min_subgraph_size */); fuser(); for (auto *node : graph->Nodes()) { diff --git a/paddle/fluid/inference/api/CMakeLists.txt b/paddle/fluid/inference/api/CMakeLists.txt index 38313754ea9..29d21dc171c 100644 --- a/paddle/fluid/inference/api/CMakeLists.txt +++ b/paddle/fluid/inference/api/CMakeLists.txt @@ -64,3 +64,8 @@ if (WITH_ANAKIN AND WITH_MKL) # only needed in CI anakin_target(inference_anakin_api) anakin_target(inference_anakin_api_shared) endif() +if (WITH_ANAKIN_SUBGRAPH) + inference_analysis_test(test_anakin_model SRCS mobilenet_test.cc EXTRA_DEPS paddle_fluid) + inference_analysis_test(anakin_conv_model SRCS conv_anakin_test.cc EXTRA_DEPS paddle_fluid) + inference_analysis_test(life_feature_test SRCS life_feature_test.cc EXTRA_DEPS paddle_fluid) +endif() diff --git a/paddle/fluid/inference/api/analysis_predictor.cc b/paddle/fluid/inference/api/analysis_predictor.cc index aee1d951a1e..e2bb446d00c 100644 --- a/paddle/fluid/inference/api/analysis_predictor.cc +++ b/paddle/fluid/inference/api/analysis_predictor.cc @@ -808,13 +808,22 @@ USE_TRT_CONVERTER(conv2d_transpose); USE_TRT_CONVERTER(leaky_relu); #endif +USE_ANAKIN_CONVERTER(mul); USE_ANAKIN_CONVERTER(fc); USE_ANAKIN_CONVERTER(conv2d); +USE_ANAKIN_CONVERTER(conv2d_fusion); USE_ANAKIN_CONVERTER(concat); USE_ANAKIN_CONVERTER(split); USE_ANAKIN_CONVERTER(relu); USE_ANAKIN_CONVERTER(sigmoid); USE_ANAKIN_CONVERTER(tanh); USE_ANAKIN_CONVERTER(pool2d); -USE_ANAKIN_CONVERTER(conv2d_fusion); USE_ANAKIN_CONVERTER(elementwise_add); +USE_ANAKIN_CONVERTER(batch_norm); +USE_ANAKIN_CONVERTER(flatten); +USE_ANAKIN_CONVERTER(reshape); +USE_ANAKIN_CONVERTER(transpose); +USE_ANAKIN_CONVERTER(softmax); + +USE_ANAKIN_CONVERTER(detection_out); +USE_ANAKIN_CONVERTER(density_prior_box); -- GitLab