Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a0f4ac54
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a0f4ac54
编写于
5月 03, 2021
作者:
L
lilong12
提交者:
GitHub
5月 03, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the bug in pipeline for dygraph mode (#32716)
* update, test=develop
上级
f4a3f85b
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
231 addition
and
155 deletion
+231
-155
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
...tributed/fleet/meta_parallel/parallel_layers/pp_layers.py
+0
-1
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+201
-141
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
.../paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
+30
-13
未找到文件。
python/paddle/distributed/fleet/meta_parallel/parallel_layers/pp_layers.py
浏览文件 @
a0f4ac54
...
...
@@ -108,7 +108,6 @@ class PipelineLayer(Layer):
# construct layer
self
.
run_function
=
[]
self
.
_build_layer
()
self
.
to
(
paddle
.
CUDAPlace
(
self
.
device_id
))
def
_segment_network
(
self
,
seg_method
):
logger
.
info
(
"start segment network.."
)
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
a0f4ac54
...
...
@@ -22,15 +22,11 @@ from numpy import prod
import
paddle
import
paddle.fluid
as
fluid
from
.meta_parallel_base
import
MetaParallelBase
from
.pp_utils.utils
import
get_tensor_bytes
from
.pp_utils.utils
import
get_tensor_bytes
,
is_float_tensor
from
.pp_utils
import
utils
from
.parallel_layers.pp_layers
import
PipelineLayer
FLOAT_TYPES
=
[
paddle
.
float16
,
paddle
.
float32
,
paddle
.
float64
,
]
from
..utils.hybrid_parallel_util
import
*
from
..utils.log_util
import
logger
class
PipelineParallel
(
MetaParallelBase
):
...
...
@@ -46,20 +42,18 @@ class PipelineParallel(MetaParallelBase):
'inputs'
:
[],
'labels'
:
[],
'outputs'
:
[],
'backward_tensors'
:
[],
}
self
.
recv_cache
=
None
self
.
grad_tensors
=
None
self
.
meta_buffer
=
None
self
.
send_meta
=
True
self
.
first_gradient_send
=
True
self
.
current_loss
=
paddle
.
to_tensor
(
0.0
)
self
.
total_loss
=
None
def
_prepare_for_model
(
self
):
self
.
use_amp
=
self
.
_strategy
.
amp
self
.
init_loss_scaling
=
self
.
_strategy
.
amp_configs
[
'init_loss_scaling'
]
self
.
micro_batch_size
=
self
.
_strategy
.
pipeline_configs
[
'micro_batch_size'
]
self
.
accumulate_steps
=
self
.
_strategy
.
pipeline_configs
[
...
...
@@ -69,9 +63,17 @@ class PipelineParallel(MetaParallelBase):
self
.
stage_id
=
self
.
_hcg
.
get_stage_id
()
self
.
prev_stage_id
=
self
.
stage_id
-
1
self
.
next_stage_id
=
self
.
stage_id
+
1
self
.
_layers
=
PipelineLayer
(
layers
=
self
.
_layers
,
num_stages
=
self
.
num_stages
)
#TODO: init process group
self
.
pp_group
=
self
.
_hcg
.
get_pipe_parallel_group
()
logger
.
info
(
"Pipeline Info -- num_stages: {}, stage_id: {}"
.
format
(
self
.
num_stages
,
self
.
stage_id
))
if
self
.
use_model_parallel
:
logger
.
info
(
"start broadcast mp parameters"
)
broadcast_mp_parameters
(
self
.
_layers
,
self
.
_hcg
)
if
self
.
use_data_parallel
:
logger
.
info
(
"start broadcast mp parameters"
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
def
_allocate_caches
(
self
,
num_caches
):
if
self
.
num_caches
>=
num_caches
:
...
...
@@ -82,19 +84,19 @@ class PipelineParallel(MetaParallelBase):
for
key
in
self
.
caches
:
self
.
caches
[
key
].
extend
([
None
]
*
num
)
def
train_batch
(
self
,
data
_iter
,
optimizer
):
def
train_batch
(
self
,
data
,
optimizer
):
self
.
optimizer
=
optimizer
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
if
self
.
stage_id
==
0
or
self
.
stage_id
==
self
.
num_stages
-
1
:
assert
data
_iter
,
(
assert
data
,
(
"For the first and the last stage, the data_iter must be set."
)
else
:
assert
data
_iter
is
None
,
(
assert
data
is
None
,
(
"For pipe stages other than the first and the last one, "
"the data_iter must be None."
)
self
.
data
_iter
=
data_iter
self
.
data
=
data
self
.
_layers
.
train
()
self
.
total_loss
=
None
...
...
@@ -104,39 +106,24 @@ class PipelineParallel(MetaParallelBase):
return
self
.
total_loss
def
_train
(
self
,
minibatch_cmds
):
self
.
_allocate_caches
(
self
.
num_stages
)
for
microbatch_cmds
in
minibatch_cmds
:
for
cmd
in
microbatch_cmds
:
if
type
(
cmd
)
not
in
self
.
_COMMAND_MAP
:
#FIXME:
continue
self
.
_allocate_caches
(
self
.
accumulate_steps
)
for
micro_cmds
in
minibatch_cmds
:
for
cmd
in
micro_cmds
:
assert
type
(
cmd
)
in
self
.
_COMMAND_MAP
,
"unknow cmd: {}"
.
format
(
type
(
cmd
))
self
.
_apply_cmd
=
MethodType
(
self
.
_COMMAND_MAP
[
type
(
cmd
)],
self
)
self
.
_apply_cmd
(
**
cmd
.
kwargs
)
def
_allreduce_grads
(
self
):
self
.
_modifying_grad
=
True
assert
self
.
use_data_parallel
<=
1
,
(
"Do not support data parallel "
"with pipeline parallel now."
)
self
.
_modifying_grad
=
False
def
_get_data
(
self
):
if
self
.
use_model_parallel
:
mp_rank
=
self
.
_hcg
.
get_model_parallel_rank
()
else
:
mp_rank
=
0
data
=
None
# mp rank 0 loads the data and broadcat it to others.
if
mp_rank
==
0
:
data
=
next
(
self
.
data_iter
)
if
self
.
use_model_parallel
:
data
=
paddle
.
distributed
.
broadcast
(
data
,
group
=
self
.
_hcg
.
get_model_parallel_group
())
return
data
if
not
self
.
use_data_parallel
:
return
fused_allreduce_gradients
(
list
(
self
.
_layers
.
parameters
()),
self
.
_hcg
)
def
_forward
(
self
,
cache_id
):
# load data
self
.
_load_micro_batch
(
cache_id
)
if
self
.
stage_id
!=
0
:
self
.
_recv_activations
(
cache_id
)
if
isinstance
(
self
.
caches
[
'inputs'
][
cache_id
],
tuple
):
inputs
=
tuple
(
t
.
clone
()
for
t
in
self
.
caches
[
'inputs'
][
cache_id
])
else
:
...
...
@@ -144,9 +131,13 @@ class PipelineParallel(MetaParallelBase):
self
.
_clear_grads
(
inputs
)
outputs
=
self
.
_layers
.
forward
(
inputs
)
self
.
caches
[
'outputs'
][
cache_id
]
=
outputs
if
self
.
stage_id
==
self
.
num_stages
-
1
:
if
self
.
_layers
.
_loss_fn
is
not
None
:
labels
=
self
.
caches
[
'labels'
][
cache_id
]
outputs
=
self
.
_layers
.
_loss_fn
(
outputs
,
labels
)
if
self
.
stage_id
==
self
.
num_stages
-
1
:
self
.
current_loss
=
outputs
if
isinstance
(
self
.
current_loss
,
paddle
.
Tensor
):
...
...
@@ -160,18 +151,28 @@ class PipelineParallel(MetaParallelBase):
]
for
idx
,
v
in
enumerate
(
self
.
current_loss
):
self
.
total_loss
[
idx
]
+=
v
.
detach
()
if
self
.
use_data_parallel
:
self
.
current_loss
=
self
.
current_loss
/
self
.
_hcg
.
get_data_parallel_world_size
(
)
if
self
.
accumulate_steps
>
1
:
self
.
current_loss
=
self
.
current_loss
/
self
.
accumulate_steps
self
.
caches
[
'outputs'
][
cache_id
]
=
self
.
current_loss
.
clone
()
else
:
self
.
_send_activations
(
cache_id
)
def
_backward
(
self
,
cache_id
):
assert
self
.
optimizer
is
not
None
if
self
.
stage_id
==
self
.
num_stages
-
1
:
paddle
.
autograd
.
backward
(
self
.
current_loss
)
paddle
.
autograd
.
backward
(
self
.
caches
[
'outputs'
][
cache_id
])
self
.
_send_gradients
(
cache_id
)
return
self
.
_recv_gradients
(
cache_id
)
outputs
=
self
.
caches
[
'outputs'
][
cache_id
]
grad_tensors
=
self
.
grad_tensors
if
isinstance
(
outputs
,
tuple
):
out_tensors
=
[
t
for
t
in
outputs
if
t
.
dtype
in
FLOAT_TYPES
]
out_tensors
=
[
t
for
t
in
outputs
if
is_float_tensor
(
t
)
]
assert
len
(
out_tensors
)
==
len
(
grad_tensors
)
paddle
.
autograd
.
backward
(
tensors
=
out_tensors
,
grad_tensors
=
grad_tensors
)
...
...
@@ -179,41 +180,76 @@ class PipelineParallel(MetaParallelBase):
paddle
.
autograd
.
backward
(
tensors
=
[
outputs
],
grad_tensors
=
[
grad_tensors
])
self
.
caches
[
'outputs'
][
cache_id
]
=
None
grad_tensors
=
None
if
self
.
stage_id
!=
0
:
self
.
_send_gradients
(
cache_id
)
self
.
caches
[
'outputs'
][
cache_id
]
=
None
#self.caches['backward_tensors'][cache_id] = None
def
_get_data
(
self
):
if
self
.
use_model_parallel
:
mp_rank
=
self
.
_hcg
.
get_model_parallel_rank
()
else
:
mp_rank
=
0
# mp rank 0 loads the data and broadcat it to others.
data
=
self
.
data
if
self
.
use_model_parallel
and
(
self
.
stage_id
==
0
or
self
.
stage_id
==
self
.
num_stages
-
1
):
assert
isinstance
(
data
,
(
tuple
,
paddle
.
Tensor
))
if
isinstance
(
data
,
paddle
.
Tensor
):
paddle
.
distributed
.
broadcast
(
data
,
src
=
self
.
_hcg
.
get_model_parallel_group_src_rank
(),
group
=
self
.
_hcg
.
get_model_parallel_group
())
else
:
data
=
[]
for
d
in
self
.
data
:
assert
isinstance
(
d
,
paddle
.
Tensor
)
paddle
.
distributed
.
broadcast
(
d
,
src
=
self
.
_hcg
.
get_model_parallel_group_src_rank
(),
group
=
self
.
_hcg
.
get_model_parallel_group
())
data
.
append
(
d
)
data
=
tuple
(
data
)
return
data
def
_load_micro_batch
(
self
,
cache_id
):
inputs
=
self
.
_get_data
()
if
self
.
stage_id
==
0
:
data
=
None
if
isinstance
(
inputs
[
0
],
paddle
.
Tensor
):
#if isinstance(inputs[0], paddle.Tensor):
if
len
(
inputs
)
==
1
:
assert
isinstance
(
inputs
[
0
],
paddle
.
Tensor
)
data
=
inputs
[
0
].
clone
().
detach
()
data
.
stop_gradient
=
data
.
dtype
==
paddle
.
float32
#data.stop_gradient = not is_float_tensor(data)
data
.
stop_gradient
=
True
else
:
assert
isinstance
(
inputs
[
0
],
tuple
)
# Assume list or tuple
assert
isinstance
(
inputs
,
tuple
)
data
=
[]
for
d
in
inputs
[
0
]
:
for
d
in
inputs
:
assert
isinstance
(
d
,
paddle
.
Tensor
)
d
=
d
.
clone
().
detach
()
d
.
stop_gradient
=
d
.
dtype
==
paddle
.
float32
loaded
.
append
(
d
)
i
=
d
.
clone
().
detach
()
#i.stop_gradient = not is_float_tensor(i)
i
.
stop_gradient
=
True
data
.
append
(
i
)
data
=
tuple
(
data
)
self
.
caches
[
'inputs'
][
cache_id
]
=
data
if
self
.
stage_id
==
self
.
num_stages
-
1
:
label
=
None
if
isinstance
(
inputs
[
1
],
paddle
.
Tensor
):
label
=
inputs
[
1
]
elif
isinstance
(
data
[
1
],
tuple
):
label
=
[]
for
l
in
inputs
[
1
]:
assert
isinstance
(
l
,
paddle
.
Tensor
)
l
=
l
.
detach
()
label
.
append
(
l
)
label
=
tuple
(
label
)
self
.
caches
[
'labels'
][
cache_id
]
=
label
labels
=
None
#if isinstance(inputs[1], paddle.Tensor):
if
len
(
inputs
)
==
1
:
assert
isinstance
(
inputs
[
0
],
paddle
.
Tensor
)
labels
=
inputs
[
0
]
elif
isinstance
(
inputs
,
tuple
):
labels
=
[]
for
label
in
inputs
:
assert
isinstance
(
label
,
paddle
.
Tensor
)
label
=
label
.
detach
()
labels
.
append
(
label
)
labels
=
tuple
(
labels
)
self
.
caches
[
'labels'
][
cache_id
]
=
labels
def
_send_meta
(
self
,
data
,
peer
):
"""
...
...
@@ -225,54 +261,67 @@ class PipelineParallel(MetaParallelBase):
"""
if
isinstance
(
data
,
paddle
.
Tensor
):
tensor_type
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
send
(
tensor_type
,
peer
)
paddle
.
distributed
.
send
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
dims
=
paddle
.
to_tensor
(
len
(
data
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
)
paddle
.
distributed
.
send
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
shape
=
paddle
.
to_tensor
(
data
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
)
paddle
.
distributed
.
send
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
elif
isinstance
(
data
,
tuple
):
tensor_type
=
paddle
.
to_tensor
([
1
])
paddle
.
distributed
.
send
(
tensor_type
,
peer
)
paddle
.
distributed
.
send
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
nums
=
paddle
.
to_tensor
(
len
(
data
))
paddle
.
distributed
.
send
(
nums
,
peer
)
paddle
.
distributed
.
send
(
nums
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
for
idx
,
d
in
enumerate
(
data
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
dims
=
paddle
.
to_tensor
(
len
(
d
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
)
paddle
.
distributed
.
send
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
shape
=
paddle
.
to_tensor
(
d
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
)
paddle
.
distributed
.
send
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
def
_recv_meta
(
self
,
peer
):
tensor_type
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
tensor_type
,
peer
)
paddle
.
distributed
.
recv
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
tensor_type
=
tensor_type
.
numpy
()[
0
]
if
tensor_type
==
0
:
dims
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dims
,
peer
)
paddle
.
distributed
.
recv
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
dims
=
dims
.
numpy
()[
0
]
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
paddle
.
distributed
.
recv
(
shape
,
peer
)
paddle
.
distributed
.
recv
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
shape
=
shape
.
numpy
().
tolist
()
return
self
.
_allocate_buffer
(
shape
,
dtype
=
"float32"
,
num_caches
=
1
)[
0
]
elif
tensor_type
==
1
:
num
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
num
,
peer
)
paddle
.
distributed
.
recv
(
num
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
num
=
num
.
numpy
()[
0
]
shapes
=
[]
for
i
in
range
(
num
):
dims
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dims
,
peer
)
paddle
.
distributed
.
recv
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
dims
=
dims
.
numpy
()[
0
]
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
paddle
.
distributed
.
recv
(
shape
,
peer
)
paddle
.
distributed
.
recv
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
shapes
.
append
(
shape
.
numpy
().
tolist
())
dtypes
=
[
"float32"
]
*
len
(
shapes
)
caches
=
self
.
_allocate_buffers
(
shapes
,
dtypes
,
num_
buffer
s
=
1
)[
0
]
buffers
=
tuple
(
buffer
s
)
return
buffer
s
caches
=
self
.
_allocate_buffers
(
shapes
,
dtypes
,
num_
cache
s
=
1
)[
0
]
caches
=
tuple
(
cache
s
)
return
cache
s
def
_send_activations
(
self
,
cache_id
):
outputs
=
self
.
caches
[
'outputs'
][
cache_id
]
...
...
@@ -282,10 +331,18 @@ class PipelineParallel(MetaParallelBase):
self
.
_send_meta
(
outputs
,
self
.
next_stage_id
)
if
isinstance
(
outputs
,
paddle
.
Tensor
):
paddle
.
distributed
.
send
(
outputs
,
self
.
next_stage_id
)
paddle
.
distributed
.
send
(
outputs
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
elif
isinstance
(
outputs
,
tuple
):
for
output
in
outputs
:
paddle
.
distributed
.
send
(
output
,
self
.
next_stage_id
)
paddle
.
distributed
.
send
(
output
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
def
_send_gradients
(
self
,
cache_id
):
inputs
=
self
.
caches
[
'inputs'
][
cache_id
]
...
...
@@ -293,15 +350,22 @@ class PipelineParallel(MetaParallelBase):
if
isinstance
(
inputs
,
paddle
.
Tensor
):
assert
inputs
.
grad
is
not
None
paddle
.
distributed
.
send
(
paddle
.
to_tensor
(
inputs
.
grad
),
self
.
prev_stage_id
)
paddle
.
to_tensor
(
inputs
.
grad
),
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
else
:
for
idx
,
d
in
enumerate
(
inputs
):
# Skip tensors that will not produce a grad
if
not
d
.
dtype
in
FLOAT_TYPES
:
if
not
is_float_tensor
(
d
)
:
assert
d
.
grad
is
None
continue
assert
d
.
grad
is
not
None
paddle
.
distributed
.
send
(
d
.
grad
,
self
.
prev_stage_id
)
paddle
.
distributed
.
send
(
d
.
grad
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
self
.
caches
[
'inputs'
][
cache_id
]
=
None
def
_recv_activations
(
self
,
cache_id
):
...
...
@@ -312,22 +376,30 @@ class PipelineParallel(MetaParallelBase):
self
.
recv_cache
=
self
.
_recv_meta
(
self
.
prev_stage_id
)
if
isinstance
(
self
.
recv_cache
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
recv_cache
,
self
.
prev_stage_id
)
paddle
.
distributed
.
recv
(
self
.
recv_cache
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
inputs
=
self
.
recv_cache
.
clone
().
detach
()
inputs
.
stop_gradient
=
inputs
.
dtype
not
in
FLOAT_TYPES
inputs
.
stop_gradient
=
not
is_float_tensor
(
inputs
)
else
:
assert
isinstance
(
self
.
recv_cache
,
tuple
)
inputs
=
[
None
]
*
len
(
self
.
recv_cache
)
for
idx
,
d
in
enumerate
(
self
.
recv_cache
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
paddle
.
distributed
.
recv
(
d
,
self
.
prev_stage_id
)
paddle
.
distributed
.
recv
(
d
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
inputs
[
idx
]
=
d
.
clone
().
detach
()
inputs
=
tuple
(
inputs
)
for
d
in
inputs
:
d
.
stop_gradient
=
d
.
dtype
not
in
FLOAT_TYPES
d
.
stop_gradient
=
not
is_float_tensor
(
d
)
self
.
caches
[
'inputs'
][
cache_id
]
=
inputs
...
...
@@ -336,29 +408,35 @@ class PipelineParallel(MetaParallelBase):
if
self
.
grad_tensors
is
None
:
if
isinstance
(
outputs
,
paddle
.
Tensor
):
s
=
list
(
outputs
.
shape
)
dtype
=
'float
32'
dtype
=
'float
16'
if
self
.
use_amp
else
"float32"
self
.
grad_tensors
=
self
.
_allocate_buffer
(
s
,
dtype
,
num_buffers
=
1
)[
0
]
else
:
sizes
=
[
list
(
d
.
shape
)
for
d
in
outputs
if
d
.
dtype
in
FLOAT_TYPES
]
dtypes
=
[
'float32'
]
*
len
(
sizes
)
sizes
=
[
list
(
d
.
shape
)
for
d
in
outputs
if
is_float_tensor
(
d
)]
dtypes
=
[
'float16'
]
*
len
(
sizes
)
if
self
.
use_amp
else
[
'float32'
]
*
len
(
sizes
)
self
.
grad_tensors
=
self
.
_allocate_buffers
(
sizes
,
dtypes
,
num_
buffer
s
=
1
)[
0
]
sizes
,
dtypes
,
num_
cache
s
=
1
)[
0
]
if
isinstance
(
self
.
grad_tensors
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
grad_tensors
,
self
.
next_stage_id
)
paddle
.
distributed
.
recv
(
self
.
grad_tensors
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
else
:
assert
isinstance
(
outputs
,
tuple
)
for
d
in
self
.
grad_tensors
:
paddle
.
distributed
.
recv
(
d
,
self
.
next_stage_id
)
def
_step
(
self
,
lr_kwargs
=
None
):
self
.
_modifying_grad
=
True
paddle
.
distributed
.
recv
(
d
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
def
_step
(
self
):
self
.
_allreduce_grads
()
self
.
optimizer
.
step
()
self
.
optimizer
.
clear_gradients
()
self
.
_modifying_grad
=
False
def
_clear_grads
(
self
,
inputs
):
if
isinstance
(
inputs
,
paddle
.
Tensor
):
...
...
@@ -372,26 +450,24 @@ class PipelineParallel(MetaParallelBase):
def
_allocate_zeros
(
self
,
shape
,
dtype
):
return
paddle
.
zeros
(
shape
,
dtype
)
def
_allocate_buffer
(
self
,
shape
,
dtype
,
num_
buffers
=-
1
,
**
kwargs
):
buffer
s
=
[]
if
num_
buffer
s
==
-
1
:
num_
buffer
s
=
self
.
num_caches
for
count
in
range
(
num_
buffer
s
):
buffer
s
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
))
return
buffer
s
def
_allocate_buffers
(
self
,
shapes
,
dtypes
,
num_
buffer
s
=-
1
):
buffer
s
=
[]
if
num_
buffer
s
==
-
1
:
num_
buffer
s
=
self
.
num_caches
for
count
in
range
(
num_
buffer
s
):
buffer
=
[]
def
_allocate_buffer
(
self
,
shape
,
dtype
,
num_
caches
=-
1
):
cache
s
=
[]
if
num_
cache
s
==
-
1
:
num_
cache
s
=
self
.
num_caches
for
count
in
range
(
num_
cache
s
):
cache
s
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
))
return
cache
s
def
_allocate_buffers
(
self
,
shapes
,
dtypes
,
num_
cache
s
=-
1
):
cache
s
=
[]
if
num_
cache
s
==
-
1
:
num_
cache
s
=
self
.
num_caches
for
count
in
range
(
num_
cache
s
):
cache
=
[]
for
shape
,
dtype
in
zip
(
shapes
,
dtypes
):
buffer
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
,
requires_grad
=
requires_grad
))
buffers
.
append
(
buffer
)
return
buffers
cache
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
))
caches
.
append
(
cache
)
return
caches
def
save_state_dict
(
self
,
model_path
):
state_dict
=
self
.
_layers
.
state_dict
()
...
...
@@ -403,25 +479,9 @@ class PipelineParallel(MetaParallelBase):
_COMMAND_MAP
=
{
utils
.
Optimize
:
_step
,
#utils.ReduceGrads: _allreduce_grads,
utils
.
Forward
:
_forward
,
utils
.
Backward
:
_backward
,
}
def
_pre_forward
(
self
,
*
inputs
,
**
kwargs
):
pass
def
forward
(
self
,
*
inputs
,
**
kwargs
):
raise
RuntimeError
(
"Call train_batch for pipeline instead of forward."
)
def
_post_forward
(
self
,
output
):
pass
def
_pre_backward
(
self
,
loss
):
pass
def
backward_impl
(
self
,
loss
,
parameters
):
pass
def
_post_backward
(
self
,
loss
):
pass
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
浏览文件 @
a0f4ac54
...
...
@@ -16,7 +16,21 @@ import abc
import
paddle
from
...utils
import
hybrid_parallel_util
as
hp_util
__all__
=
[
'get_tensor_bytes'
,
]
__all__
=
[
'get_tensor_bytes'
,
'is_float_tensor'
,
]
FLOAT_TYPES
=
[
paddle
.
float16
,
paddle
.
float32
,
paddle
.
float64
,
]
def
is_float_tensor
(
tensor
):
"""Is a float tensor"""
return
tensor
.
dtype
in
FLOAT_TYPES
def
get_tensor_bytes
(
tensor
):
...
...
@@ -48,10 +62,6 @@ class Generator():
self
.
stage_id
=
stage_id
self
.
prev_stage
=
self
.
stage_id
-
1
self
.
next_stage
=
self
.
stage_id
+
1
assert
self
.
micro_batches
>=
self
.
stages
,
(
"micro_batches {} "
"must be greater than or equal to {}"
.
format
(
self
.
micro_batches
,
self
.
stages
))
@
abc
.
abstractmethod
def
generate
(
self
):
...
...
@@ -73,18 +83,25 @@ class TrainGenerator(Generator):
cmds
=
[]
forward_steps
=
0
backward_steps
=
0
while
(
forward_steps
<
startup_steps
):
cmds
.
append
(
Forward
)
forward_steps
+=
1
#while (forward_steps < startup_steps):
# cmds.append(Forward(cache_id=forward_steps))
# forward_steps += 1
#while (forward_steps < self.micro_batches):
# cmds.append(Forward(cache_id=forward_steps))
# forward_steps += 1
# cmds.append(Backward(cache_id=backward_steps))
# backward_steps += 1
#while (backward_steps < self.micro_batches):
# cmds.append(Backward(cache_id=backward_steps))
# backward_steps += 1
#cmds.append(Optimize())
while
(
forward_steps
<
self
.
micro_batches
):
cmds
.
append
(
Forward
)
cmds
.
append
(
Forward
(
cache_id
=
forward_steps
)
)
forward_steps
+=
1
cmds
.
append
(
Backward
)
backward_steps
+=
1
while
(
backward_steps
<
self
.
micro_batches
):
cmds
.
append
(
Backward
)
cmds
.
append
(
Backward
(
cache_id
=
backward_steps
)
)
backward_steps
+=
1
cmds
.
append
(
Optimize
)
cmds
.
append
(
Optimize
()
)
yield
cmds
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录