diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index 7abfa0a4be0dec9fe251704e22dfef1f932e7c5b..e3db316698398ff693157d583ad1410d10dcf81d 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -36,6 +36,7 @@ import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import core from test_dist_base import TestDistRunnerBase, runtime_main +import paddle.compat as cpt from paddle.compat import long_type import hashlib @@ -315,8 +316,9 @@ def pad_batch_data(insts, """ return_list = [] max_len = max(len(inst) for inst in insts) - num_token = reduce(lambda x, y: x + y, - [len(inst) for inst in insts]) if return_num_token else 0 + num_token = six.moves.reduce( + lambda x, y: x + y, + [len(inst) for inst in insts]) if return_num_token else 0 # Any token included in dict can be used to pad, since the paddings' loss # will be masked out by weights and make no effect on parameter gradients. inst_data = np.array( @@ -328,7 +330,7 @@ def pad_batch_data(insts, return_list += [inst_weight.astype("float32").reshape([-1, 1])] else: # position data inst_pos = np.array([ - range(1, len(inst) + 1) + [0] * (max_len - len(inst)) + list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst)) for inst in insts ]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] @@ -385,10 +387,11 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx, return_num_token=True) data_input_dict = dict( - zip(data_input_names, [ - src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, - trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight - ])) + list( + zip(data_input_names, [ + src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, + trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight + ]))) return data_input_dict, np.asarray([num_token], dtype="float32") @@ -561,7 +564,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, np.log(TrainTaskConfig.label_smooth_eps / ( ModelHyperParams.trg_vocab_size - 1) + 1e-20)) init = False - for pass_id in xrange(TrainTaskConfig.pass_num): + for pass_id in six.moves.xrange(TrainTaskConfig.pass_num): pass_start_time = time.time() for batch_id, data in enumerate(train_data()): if batch_id >= 5: @@ -587,11 +590,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) total_num_token += num_token - feed_kv_pairs = data_input_dict.items() + feed_kv_pairs = list(data_input_dict.items()) if TrainTaskConfig.local: - feed_kv_pairs += { + feed_kv_pairs += list({ lr_scheduler.learning_rate.name: lr_rate - }.items() + }.items()) feed_list.append(dict(feed_kv_pairs)) if not init: @@ -873,6 +876,7 @@ class DataReader(object): f = tarfile.open(fpaths[0], "r") for line in f.extractfile(tar_fname): + line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): @@ -882,8 +886,9 @@ class DataReader(object): if not os.path.isfile(fpath): raise IOError("Invalid file: %s" % fpath) - with open(fpath, "r") as f: + with open(fpath, "rb") as f: for line in f: + line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): @@ -892,8 +897,9 @@ class DataReader(object): @staticmethod def load_dict(dict_path, reverse=False): word_dict = {} - with open(dict_path, "r") as fdict: + with open(dict_path, "rb") as fdict: for idx, line in enumerate(fdict): + line = cpt.to_text(line) if reverse: word_dict[idx] = line.strip("\n") else: @@ -1034,7 +1040,7 @@ def multi_head_attention(queries, # size of the input as the output dimension size. return layers.reshape( x=trans_x, - shape=map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])) + shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]]))) def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): """