Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a042d86b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a042d86b
编写于
11月 15, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adjust structure for PR, peel int8 from fp32
上级
fc9e1347
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
477 addition
and
343 deletion
+477
-343
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+477
-343
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
a042d86b
...
@@ -296,6 +296,203 @@ template <typename T>
...
@@ -296,6 +296,203 @@ template <typename T>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
if
(
!
is_INT8
){
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Input tensor"
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
,
"Input must be with 4 dimensions, i.e. NCHW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
,
"Filter must be with 4 dimensions, i.e. OIHW"
);
if
(
bias
)
{
PADDLE_ENFORCE
(
bias
->
layout
()
==
DataLayout
::
kMKLDNN
&&
bias
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Bias tensor"
);
PADDLE_ENFORCE
(
bias
->
dims
().
size
()
==
1
,
"Bias must only have 1 dimension, i.e. X"
);
}
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO(tpatejko): add support for dilation
PADDLE_ENFORCE
(
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
ConvMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
groups
,
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
std
::
vector
<
primitive
>
pipeline
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
// create convolution op primitive
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
conv_p
;
if
(
bias
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
else
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
@@ -314,8 +511,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -314,8 +511,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
*
scale_weights
=
ctx
.
HasInput
(
"Scale_weights"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_weights"
)
:
nullptr
;
auto
*
scale_weights
=
ctx
.
HasInput
(
"Scale_weights"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_weights"
)
:
nullptr
;
auto
*
scale_out
=
ctx
.
HasInput
(
"Scale_out"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_out"
)
:
nullptr
;
auto
*
scale_out
=
ctx
.
HasInput
(
"Scale_out"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_out"
)
:
nullptr
;
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
bool
is_multi_channel
=
(
scale_weights
->
memory_size
()
>
1
)
?
true
:
false
;
bool
is_multi_channel
=
(
is_INT8
&&
scale_weights
->
memory_size
()
>
1
)
?
true
:
false
;
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
memory
::
format
::
format_undef
,
input
->
format
()
!=
memory
::
format
::
format_undef
,
...
@@ -374,8 +570,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -374,8 +570,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ctx
.
op
().
Output
(
"Output"
));
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
//scale_map.insert({key_conv_pd,{1.0f}});
//scale_map[key_conv_pd]={0.1f};
bool
scale_reuse
=
false
;
bool
scale_reuse
=
false
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
...
@@ -391,11 +586,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -391,11 +586,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
float
>
sum_scale
=
{
1.0
f
};
std
::
vector
<
float
>
sum_scale
=
{
1.0
f
};
std
::
vector
<
float
>
none_scale
=
{
0
};
std
::
vector
<
float
>
none_scale
=
{
0
};
if
(
is_INT8
&&
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
if
(
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
scale_reuse
=
true
;
scale_reuse
=
true
;
}
}
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
if
(
is_INT8
){
if
(
scale_reuse
){
if
(
scale_reuse
){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
//std::cout<<"load scale!!!!!!!!"<<std::endl;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
...
@@ -438,9 +632,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -438,9 +632,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
//printf("pause!!!");
//printf("pause!!!");
}
}
}
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
...
@@ -458,7 +649,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -458,7 +649,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
if
(
is_INT8
){
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
...
@@ -487,27 +678,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -487,27 +678,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
output_shift_scale
,
sum_scale
[
0
],
is_test
);
output_shift_scale
,
sum_scale
[
0
],
is_test
);
}
}
}
else
{
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
if
(
bias
)
{
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
float
>
(),
memory
::
format
::
x
);
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
}
else
{
conv_pd
=
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fuse_residual_conn
,
is_test
);
}
}
// Save conv_pd/src_memory/weights_memory for backward pass
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
...
@@ -524,14 +694,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -524,14 +694,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
;
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
int
mask_reorder
=
is_multi_channel
?
((
g
!=
1
)
?
(
1
<<
1
)
+
(
1
<<
0
)
:
1
<<
0
)
:
0
;
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
user_weights_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_weights_data
,
mask_reorder
);
}
else
{
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
bool
need_s8_to_u8
=
false
;
bool
need_s8_to_u8
=
false
;
...
@@ -548,7 +713,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -548,7 +713,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
if
(
is_INT8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
auto
residual_param_data
=
residual_param
->
data
<
uint8_t
>
();
auto
residual_param_data
=
residual_param
->
data
<
uint8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
...
@@ -574,23 +738,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -574,23 +738,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
fuse_relu
)
if
(
fuse_relu
)
need_s8_to_u8
=
true
;
need_s8_to_u8
=
true
;
}
}
}
else
{
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
}
}
else
{
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
if
(
is_INT8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
uint8_t
>
(
output_data
));
...
@@ -601,14 +751,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -601,14 +751,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
fuse_relu
)
if
(
fuse_relu
)
need_s8_to_u8
=
true
;
need_s8_to_u8
=
true
;
}
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
}
}
else
{
}
else
{
if
(
is_INT8
){
if
(
fuse_relu
){
if
(
fuse_relu
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
dst_memory_p
=
...
@@ -618,12 +762,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -618,12 +762,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst_memory_p
=
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
int8_t
>
(
output_data
));
}
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
}
// create convolution op primitive
// create convolution op primitive
...
@@ -637,7 +775,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -637,7 +775,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_bias_memory_p
=
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
if
(
is_INT8
){
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
if
(
scale_reuse
){
if
(
scale_reuse
){
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
...
@@ -652,10 +789,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -652,10 +789,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
}
bias_memory_p
=
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
}
else
{
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
}
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
bias_memory_p
,
dst_memory_p
);
}
else
{
}
else
{
...
@@ -675,6 +808,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -675,6 +808,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
}
}
private:
private:
...
@@ -780,7 +914,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -780,7 +914,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
bool
is_test
)
const
{
const
bool
fuse_residual_conn
,
bool
is_test
=
false
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
@@ -834,7 +968,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -834,7 +968,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
bool
is_test
)
const
{
const
bool
fuse_residual_conn
,
bool
is_test
=
false
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录