未验证 提交 a038747c 编写于 作者: G Guanghua Yu 提交者: GitHub

update quantization new format (#46305)

上级 7fb20b46
......@@ -223,7 +223,8 @@ class ImperativeQuantAware(object):
self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)
self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
self._quantize_outputs = ImperativeQuantizeOutputs(
moving_rate, activation_bits)
def quantize(self, model):
"""
......@@ -412,16 +413,18 @@ class ImperativeQuantizeOutputs(object):
Calculate the output scales for target layers.
"""
def __init__(self, moving_rate=0.9):
def __init__(self, moving_rate=0.9, activation_bits=8):
"""
The constructor for ImperativeQuantizeOutputs.
Args:
moving_rate(float): The decay coefficient of moving average.
The default value is 0.9.
activation_bits(int, optional): quantization bit number for activation. Default is 8.
"""
super(ImperativeQuantizeOutputs, self).__init__()
self._moving_rate = moving_rate
self._activation_bits = activation_bits
def apply(self, model):
"""
......@@ -478,7 +481,7 @@ class ImperativeQuantizeOutputs(object):
the saved model. Default None.
onnx_format (bool, optional): Whether to export the quantized model
with format of ONNX. Default is False.
**configs (dict, optional): Other save configuration options for
**config (dict, optional): Other save configuration options for
compatibility. We do not recommend using these configurations,
they may be removed in the future. If not necessary, DO NOT use
them. Default None.
......@@ -518,6 +521,7 @@ class ImperativeQuantizeOutputs(object):
model_filename=model_filename,
params_filename=params_filename))
if not onnx_format:
self._gather_scales(infer_program, scope, fetch_targets)
# Remove `moving_average_abs_max_scale` node in sub graphs.
......@@ -532,13 +536,15 @@ class ImperativeQuantizeOutputs(object):
self._set_skip_quant_attr(infer_program)
clip_extra = False
if onnx_format:
else:
graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
transform_pass = ReplaceFakeQuantDequantPass(scope, place)
transform_pass = ReplaceFakeQuantDequantPass(
scope, place, quant_bits=self._activation_bits)
transform_pass.apply(graph)
quant_weight_pass = QuantWeightPass(scope, place)
quant_weight_pass.apply(graph)
infer_program = graph.to_program()
clip_extra = True
......
......@@ -344,7 +344,7 @@ class PostTrainingQuantization(object):
self._fetch_list = None
self._data_loader = data_loader
self._out_scale_op_list = utils._out_scale_op_list
self._out_scale_op_list = utils.QUANT_SUPPORTED_OP_TYPE_LIST
self._quantized_weight_var_name = set()
self._quantized_act_var_name = set()
self._weight_op_pairs = {}
......@@ -843,9 +843,6 @@ class PostTrainingQuantization(object):
hist, _ = np.histogram(var_tensor_abs, bins=bins)
self._sampling_act_histogram[var_name][0] += hist
def l2_loss(self, gt, pred):
return ((gt - pred)**2).mean()
def _sample_ptf(self):
"""
The following code are modified from:
......@@ -885,10 +882,10 @@ class PostTrainingQuantization(object):
q_max) * scale4
quant_dequant_var_scale8 = np.clip(np.round(var_tensor / scale8), 0,
q_max) * scale8
score1 = self.l2_loss(var_tensor, quant_dequant_var_scale1)
score2 = self.l2_loss(var_tensor, quant_dequant_var_scale2)
score4 = self.l2_loss(var_tensor, quant_dequant_var_scale4)
score8 = self.l2_loss(var_tensor, quant_dequant_var_scale8)
score1 = utils.l2_loss(var_tensor, quant_dequant_var_scale1)
score2 = utils.l2_loss(var_tensor, quant_dequant_var_scale2)
score4 = utils.l2_loss(var_tensor, quant_dequant_var_scale4)
score8 = utils.l2_loss(var_tensor, quant_dequant_var_scale8)
score = [score1, score2, score4, score8]
mask = 2**score.index(min(score))
scale = scale1 * mask
......@@ -1035,7 +1032,7 @@ class PostTrainingQuantization(object):
scope=self._scope,
place=self._place,
quantizable_op_type=minor_quantizable_op_types,
is_full_quantized=self._is_full_quantize)
is_full_quantized=True)
for sub_graph in graph.all_sub_graphs():
sub_graph._for_test = True
......
......@@ -44,6 +44,7 @@ __all__ = [
'AddQuantDequantPassV2',
'ReplaceFakeQuantDequantPass',
'QuantWeightPass',
'AddQuantDequantForInferencePass',
]
_fake_quant_op_list = [
......@@ -1437,7 +1438,7 @@ class OutScaleForTrainingPass(object):
self._place = _get_paddle_place(place)
self._moving_rate = moving_rate
self._is_test = is_test
self._teller_set = utils._out_scale_op_list
self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
self._scale_dict = scale_dict
def apply(self, graph):
......@@ -1567,7 +1568,7 @@ class OutScaleForInferencePass(object):
scope(fluid.Scope): The scope is used to initialize these new parameters.
"""
self._scope = scope
self._teller_set = utils._out_scale_op_list
self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
def apply(self, graph):
"""
......@@ -1852,6 +1853,7 @@ class InsertQuantizeLinear(object):
channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
moving_rate(float): the rate for 'moving average' method.
is_test(bool, optional): Whether quantization with training or not. Default is True.
scale_dict(dict, optional): calibration ranges of tensors output.
"""
def __init__(self,
......@@ -1861,7 +1863,8 @@ class InsertQuantizeLinear(object):
quant_axis=-1,
channel_wise=False,
moving_rate=0.9,
is_test=True):
is_test=True,
scale_dict=None):
self._place = place
self._scope = scope
self.quant_bits = quant_bits
......@@ -1869,6 +1872,7 @@ class InsertQuantizeLinear(object):
self.channel_wise = channel_wise
self._is_test = is_test
self._moving_rate = moving_rate
self._scale_dict = scale_dict
def insert_quant_op(self, graph, var_node, var_name=None):
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
......@@ -1880,16 +1884,24 @@ class InsertQuantizeLinear(object):
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
scale_name = self._quantized_scale_name(var_name)
if self.channel_wise:
scale_var_shape = var_node.shape()[self.quant_axis]
scale_var_type = core.VarDesc.VarType.LOD_TENSOR
init_scale_value = np.zeros(scale_var_shape, dtype=data_type)
init_scale_value = np.ones(scale_var_shape,
dtype=data_type) * _SCALE_DEFAULT_VALUE
else:
scale_var_shape = 1
scale_var_type = var_node.type()
init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
if self._scale_dict is not None and var_node.name(
) in self._scale_dict.keys():
init_scale_value = np.array([self._scale_dict[var_node.name()]],
dtype=data_type)
scale_var_node = graph.create_persistable_node(
name=self._quantized_scale_name(var_name),
name=scale_name,
var_type=scale_var_type,
shape=[scale_var_shape],
var_dtype=var_node.dtype())
......@@ -2346,7 +2358,8 @@ class AddQuantDequantPassV2(object):
skip_pattern=["skip_quant"],
quantizable_op_type=["elementwise_add", "pool2d"],
is_full_quantized=False,
is_test=None):
is_test=None,
scale_dict=None):
"""
Args:
scope(paddle.Scope): The scope is used to initialize these new parameters.
......@@ -2366,6 +2379,7 @@ class AddQuantDequantPassV2(object):
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
quantizable_op_type.
scale_dict(dict, optional): calibration ranges of tensors output.
Examples:
.. code-block:: python
......@@ -2388,6 +2402,7 @@ class AddQuantDequantPassV2(object):
self._quant_bits = quant_bits
self._is_test = is_test
self._skip_pattern = skip_pattern
self._scale_dict = scale_dict
if is_full_quantized:
self._quantizable_op_type = utils._act_supported_quantizable_op_type
......@@ -2444,8 +2459,6 @@ class AddQuantDequantPassV2(object):
if is_skip or is_quantized:
continue
op_node.op()._set_attr("quantization_type",
"qat_without_weight")
arg_names = utils._get_op_input_var_names(op_node)
for arg_name in arg_names:
in_node = graph._find_node_by_name(
......@@ -2462,7 +2475,8 @@ class AddQuantDequantPassV2(object):
quant_axis=-1,
channel_wise=False,
moving_rate=self._moving_rate,
is_test=self._is_test)
is_test=self._is_test,
scale_dict=self._scale_dict)
quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
graph, in_node)
dequant_var_node = insert_quant_pass.insert_dequant_op(
......@@ -2491,13 +2505,14 @@ class ReplaceFakeQuantDequantPass(object):
replace quant-dequant ops with quantize_linear and dequantize_linear ops.
"""
def __init__(self, scope, place):
def __init__(self, scope, place, quant_bits=8):
r"""
Args:
scope(paddle.Scope): The scope is used to initialize these new parameters.
place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
parameters described above. If ``place`` is string, it can be It can be ``cpu``
or ``gpu:x``, where ``x`` is the index of the GPUs.
quant_bits(int, optional): quantization bit number for activation. Default is 8.
Examples:
.. code-block:: python
......@@ -2516,6 +2531,7 @@ class ReplaceFakeQuantDequantPass(object):
"""
self._place = _get_paddle_place(place)
self._scope = scope
self._quant_bits = quant_bits
assert self._scope != None, "scope must not be None."
assert self._place != None, "place must not be None."
......@@ -2525,7 +2541,8 @@ class ReplaceFakeQuantDequantPass(object):
fake_quant_dequant_ops = []
for op in graph.all_op_nodes():
if op.name() in _fake_quant_dequant_op_list:
if op.name() in _fake_quant_dequant_op_list or op.name(
) == "moving_average_abs_max_scale":
fake_quant_dequant_ops.append(op)
for _op in fake_quant_dequant_ops:
......@@ -2544,7 +2561,7 @@ class ReplaceFakeQuantDequantPass(object):
quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
"quant_axis") else -1
bit_length = op.op().attr("bit_length") if op.op().has_attr(
"bit_length") else 8
"bit_length") else self._quant_bits
zero_point_node = None
quanted_node = x_node
......@@ -2733,3 +2750,140 @@ class QuantWeightPass(object):
def _restore_var(self, name, array):
tensor = self._scope.find_var(name).get_tensor()
tensor.set(array, self._place)
class AddQuantDequantForInferencePass(object):
"""
When export quant model, it will traverse to find the output of each op, and then insert the quant/dequant op after it.
"""
def __init__(self, scope, place, quant_bits=8):
"""
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
If it's string, it can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
quant_bits(int, optional): quantization bit number for weight. Default is 8.
"""
self._scope = scope
self._place = place
self._quant_bits = quant_bits
self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
def apply(self, graph):
"""
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
dequant_node_map = {}
dequantized_vars_map = collections.OrderedDict()
for op_node in graph.all_op_nodes():
if op_node.name() in self._teller_set:
var_names = utils._get_op_output_var_names(op_node)
for var_name in var_names:
out_node = graph._find_node_by_name(op_node.outputs,
var_name)
if out_node.dtype() not in \
[core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
continue
if var_name in dequantized_vars_map:
dequant_var_node = dequantized_vars_map[var_name]
else:
dequant_var_node = self._insert_quant_dequant_op(
graph, out_node)
dequantized_vars_map[var_name] = dequant_var_node
dequant_node_map[var_name] = dequant_var_node
# remove unuse node and link act quant/dequant linear to op node
for op_node in graph.all_op_nodes():
if op_node.name() == 'moving_average_abs_max_scale':
graph.safe_remove_nodes(op_node)
else:
var_names = utils._get_op_input_var_names(op_node)
for var_name in var_names:
if var_name in dequant_node_map:
in_node = graph._find_node_by_name(
op_node.inputs, var_name)
graph.update_input_link(in_node,
dequant_node_map[var_name],
op_node)
return graph
def _scale_name(self, var_name):
"""
Return the scale name for the var named `var_name`.
"""
return "%s@scale" % (var_name)
def _insert_quant_dequant_op(self, graph, var_node):
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
var_name = var_node.name()
quant_axis = -1
quant_var_node = graph.create_var_node(
name="{}.quantized".format(var_name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_var_node = graph._find_node_by_name(graph.all_persistable_nodes(),
self._scale_name(var_name))
try:
zero_point_node = graph._find_node_by_name(
graph.all_persistable_nodes(),
"{}@zero_point".format(quant_var_node.name()))
except:
zero_point_node = graph.create_persistable_node(
name="{}@zero_point".format(quant_var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=scale_var_node.shape(),
var_dtype=core.VarDesc.VarType.INT32)
_init_var_node(zero_point_node,
np.zeros(scale_var_node.shape(), dtype="int32"),
self._scope, self._place)
inputs = {"X": var_node, "Scale": scale_var_node}
if zero_point_node is not None:
inputs["ZeroPoint"] = zero_point_node
attrs = {"quant_axis": quant_axis, "bit_length": self._quant_bits}
attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
outputs = {"Y": quant_var_node}
quant_op_node = graph.create_op_node(op_type="quantize_linear",
attrs=attrs,
inputs=inputs,
outputs=outputs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_var_node, quant_op_node)
if zero_point_node is not None:
graph.link_to(zero_point_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
# add dequant_linear node
dequant_var_node = graph.create_var_node(
name="{}.dequantized".format(quant_var_node.name()),
var_type=quant_var_node.type(),
shape=quant_var_node.shape(),
var_dtype=quant_var_node.dtype())
inputs = {"X": quant_var_node, "Scale": scale_var_node}
if zero_point_node is not None:
inputs["ZeroPoint"] = zero_point_node
attrs = {"quant_axis": -1, "bit_length": self._quant_bits}
attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
attrs=attrs,
inputs=inputs,
outputs={"Y": dequant_var_node})
graph.link_to(quant_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
if zero_point_node is not None:
graph.link_to(zero_point_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
......@@ -38,6 +38,7 @@ _act_supported_quantizable_op_type = [
"mean",
"not_equal",
"reshape",
"reshape2",
"dropout",
"bilinear_interp",
"nearest_interp",
......@@ -112,10 +113,12 @@ _act_supported_quantizable_op_type = [
"scale",
]
_out_scale_op_list = list(
QUANT_SUPPORTED_OP_TYPE_LIST = list(
set(_weight_supported_quantizable_op_type +
_act_supported_quantizable_op_type))
_out_scale_op_list = QUANT_SUPPORTED_OP_TYPE_LIST
_channelwise_quant_axis1_ops = [
'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
......@@ -430,6 +433,10 @@ def calculate_quant_cos_error(orig_tensor, qdq_tensor):
return cos_sim
def l2_loss(gt, pred):
return ((gt - pred)**2).mean()
class tqdm(object):
def __init__(self, total, bar_format='Loading|{bar}', ncols=80):
......
......@@ -292,24 +292,6 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_use_cache_file=is_use_cache_file)
ptq.quantize()
ptq.save_quantized_model(self.int8_model)
if onnx_format:
try:
collect_dict = ptq._calibration_scales
save_quant_table_path = os.path.join(self.int8_model,
'calibration_table.txt')
with open(save_quant_table_path, 'w') as txt_file:
for tensor_name in collect_dict.keys():
write_line = '{} {}'.format(
tensor_name,
collect_dict[tensor_name]['scale']) + '\n'
txt_file.write(write_line)
print(
"Quantization clip ranges of tensors is save in: {}".format(
save_quant_table_path))
except:
print(
"Unable to generate `calibration_table.txt`, please update PaddlePaddle >= 2.3.3"
)
def run_test(self,
model,
......@@ -429,36 +411,6 @@ class TestMKLDNNInt8ForMobilenetv1Avg(TestPostTrainingQuantization):
onnx_format=False)
class TestMKLDNNInt8ForMobilenetv1AbsMaxONNXFormat(TestPostTrainingQuantization
):
def test_onnx_format_abs_max_mobilenetv1(self):
model = "MobileNet-V1"
algo = "abs_max"
round_type = "round"
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
is_full_quantize = False
is_use_cache_file = False
is_optimize_model = False
# The accuracy diff of post-training quantization (abs_max) maybe bigger
diff_threshold = 0
self.run_test(model,
algo,
round_type,
data_urls,
data_md5s,
quantizable_op_type,
is_full_quantize,
is_use_cache_file,
is_optimize_model,
diff_threshold,
onnx_format=True)
class TestMKLDNNInt8ForMobilenetv1AbsMax(TestPostTrainingQuantization):
def test_abs_max_mobilenetv1(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册