提交 a037b099 编写于 作者: C caoying03

finish unittest.

上级 1e828dc1
......@@ -22,6 +22,7 @@ bool CrossEntropyOverBeam::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_EQ(0U, inputLayers_.size() % 3) << "Error input number.";
setNeedSequenceInfo(false);
......
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include <sstream>
#include <gtest/gtest.h>
......@@ -27,6 +28,10 @@ using namespace paddle; // NOLINT
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);
const size_t MAX_SEQ_NUM = 10;
const size_t MAX_SEQ_LEN = 27;
const size_t MAX_BEAM_SIZE = 10;
struct SingleBeamExpansion {
vector<int> seqStartPos;
vector<int> subSeqStartPos;
......@@ -34,37 +39,195 @@ struct SingleBeamExpansion {
// TODO(caoying): store this into Argument.ids
vector<real> selectedIndices;
vector<int> groundTruth;
vector<int> labelSeqStartPos;
vector<size_t> inBeam;
vector<int> rowIdxInBeam;
};
void genCandidateScores(bool hasSubSeq,
vector<real>& scores,
vector<int>& seqStartPos,
vector<int>& subSeqStartPos) {}
void genRand(real* numbers, size_t n) {
default_random_engine generator;
uniform_real_distribution<double> distribution(0.0, 1.0);
for (size_t i = 0; i < n; ++i) numbers[i] = distribution(generator);
}
vector<real> randSampling(real range, int n) {
CHECK_GE(range, n);
vector<real> num(range);
iota(begin(num), end(num), 0.);
if (range == n) return num;
random_shuffle(begin(num), end(num));
num.resize(n);
sort(begin(num), end(num));
return num;
}
void genSelectedIndicesAndGroundtruth(size_t beamSize,
void genCandidateScores(bool hasSubseq,
size_t beamSize,
SingleBeamExpansion& prevBeam,
SingleBeamExpansion& curBeam) {
vector<int>& seqStartPos = curBeam.seqStartPos;
seqStartPos.resize(1, 0);
vector<int>& subSeqStartPos = curBeam.subSeqStartPos;
subSeqStartPos.resize(1, 0);
srand((size_t)(time(NULL)));
// srand(1);
if (prevBeam.selectedIndices.size()) {
if (prevBeam.subSeqStartPos.size() > 1) {
int seqIdx = 1;
// samples in previous beam are nested sequences.
for (size_t i = 1; i < prevBeam.subSeqStartPos.size(); ++i) {
for (size_t j = 0; j < beamSize; ++j) {
if (prevBeam.selectedIndices[(i - 1) * beamSize + j] == -1.) break;
for (size_t k = 0; k < beamSize; ++k)
subSeqStartPos.push_back(1 + (rand() % MAX_SEQ_LEN) +
subSeqStartPos.back());
}
if (prevBeam.seqStartPos[seqIdx] == prevBeam.subSeqStartPos[i]) {
seqStartPos.push_back(subSeqStartPos.back());
seqIdx++;
}
}
} else {
// samples in previous beam are sequences.
for (size_t i = 0; i <= prevBeam.selectedIndices.size(); ++i) {
if (i && i % beamSize == 0) {
seqStartPos.push_back(subSeqStartPos.back());
if (i == prevBeam.selectedIndices.size()) break;
}
if (prevBeam.selectedIndices[i] == -1.) continue;
subSeqStartPos.push_back(subSeqStartPos.back() +
(1 + (rand() % MAX_SEQ_LEN)));
}
}
} else {
// the first beam expansion
int seqNum = 1 + (rand() % MAX_SEQ_NUM);
for (int i = 0; i < seqNum; ++i) {
if (hasSubseq) {
for (size_t j = 0; j < 1 + (rand() % MAX_SEQ_NUM); ++j)
subSeqStartPos.push_back(subSeqStartPos.back() +
(1 + (rand() % MAX_SEQ_LEN)));
seqStartPos.push_back(subSeqStartPos.back());
} else {
seqStartPos.push_back(seqStartPos.back() +
(1 + (rand() % MAX_SEQ_LEN)));
}
}
}
size_t totalSeqNum = hasSubseq ? subSeqStartPos.back() : seqStartPos.back();
curBeam.candidateScores.resize(totalSeqNum, 0.);
genRand(curBeam.candidateScores.data(), totalSeqNum);
}
void genSelectedIndices(size_t beamSize,
vector<int>& seqStartPos,
vector<real>& selectedIndices) {}
SingleBeamExpansion genOneBeam(size_t beamSize, bool hasSubSeq) {
SingleBeamExpansion beam;
genCandidateScores(
hasSubSeq, beam.candidateScores, beam.seqStartPos, beam.subSeqStartPos);
genSelectedIndicesAndGroundtruth(
beamSize,
hasSubSeq ? beam.subSeqStartPos : beam.seqStartPos,
beam.selectedIndices);
return beam;
vector<real>& selectedIndices) {
size_t selectedIdsCount = beamSize * (seqStartPos.size() - 1);
selectedIndices.resize(selectedIdsCount, -1.);
for (size_t i = 0; i < seqStartPos.size() - 1; ++i) {
int seqLen = seqStartPos[i + 1] - seqStartPos[i];
int n = min(seqLen, static_cast<int>(beamSize));
vector<real> ids = randSampling(seqLen, n);
memcpy(selectedIndices.data() + i * beamSize,
ids.data(),
sizeof(real) * ids.size());
}
}
void genGroundTruth(vector<SingleBeamExpansion>& beamExpansions,
size_t beamSize) {
size_t seqNum = beamExpansions[1].seqStartPos.size() - 1;
for (size_t i = 2; i < beamExpansions.size(); ++i)
CHECK_EQ(seqNum, beamExpansions[i - 1].seqStartPos.size() - 1);
// srand(1);
srand((size_t)(time(NULL)));
// initialize the first beam.
SingleBeamExpansion& beam = beamExpansions[1];
beam.groundTruth.resize(seqNum, 0);
beam.inBeam.resize(seqNum, 0);
beam.rowIdxInBeam.resize(seqNum, -1);
auto begPos = beam.selectedIndices.begin();
for (size_t i = 0; i < seqNum; ++i) {
int seqLen = beam.seqStartPos[i + 1] - beam.seqStartPos[i];
int label = rand() % seqLen;
auto endPos = begPos + beamSize;
beam.groundTruth[i] = label;
if (find(begPos, endPos, real(label)) != endPos) beam.inBeam[i] = 1;
begPos = endPos;
beam.rowIdxInBeam[i] = i;
}
// iterate over each beam expansions
for (size_t i = 2; i < beamExpansions.size(); ++i) {
SingleBeamExpansion& curBeam = beamExpansions[i];
SingleBeamExpansion& prevBeam = beamExpansions[i - 1];
curBeam.groundTruth.resize(seqNum, 0);
curBeam.inBeam.resize(seqNum, 0);
curBeam.rowIdxInBeam.resize(seqNum, -1);
// iterate over each sequence
for (size_t j = 0; j < seqNum; ++j) {
if (prevBeam.inBeam[j]) {
// gold sequence falls in the beam in previous search.
auto begPos = prevBeam.selectedIndices.begin();
auto endPos = begPos + prevBeam.rowIdxInBeam[j] * beamSize;
size_t totalExpansion =
prevBeam.rowIdxInBeam[j] * beamSize - count(begPos, endPos, -1.);
curBeam.rowIdxInBeam[j] = totalExpansion + prevBeam.groundTruth[j];
CHECK_LE(curBeam.rowIdxInBeam[j] + 1,
curBeam.subSeqStartPos.size() - 1);
int start = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j]];
int end = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j] + 1];
CHECK_GT(size_t(end), size_t(start));
int label = rand() % (end - start);
curBeam.groundTruth[j] = label;
auto findBeg = curBeam.selectedIndices.begin() +
curBeam.rowIdxInBeam[j] * beamSize;
auto findEnd = findBeg + beamSize;
if (find(findBeg, findEnd, real(label)) != findEnd)
curBeam.inBeam[j] = 1;
} else {
// in previous search, gold sequence has fallen off the beam,
// the beam search stops, here use -1 as a dummy label.
// It will not used in calculation the cost.
beamExpansions[i].groundTruth[j] = -1;
}
}
}
}
void genOneBeam(size_t beamSize,
bool hasSubseq,
SingleBeamExpansion& prevBeam,
SingleBeamExpansion& curBeam) {
genCandidateScores(hasSubseq, beamSize, prevBeam, curBeam);
genSelectedIndices(beamSize,
hasSubseq ? curBeam.subSeqStartPos : curBeam.seqStartPos,
curBeam.selectedIndices);
}
void genRandomBeamExpansion(size_t expansionCount,
size_t beamSize,
vector<SingleBeamExpansion>& beamExpansions) {
beamExpansions.clear();
for (size_t i = 0; i < expansionCount; ++i) {
beamExpansions.emplace_back(genOneBeam(beamSize, i));
}
beamExpansions.resize(expansionCount + 1);
// beamExpansions[0] is reserved.
for (size_t i = 1; i <= expansionCount; ++i)
genOneBeam(beamSize, bool(i - 1), beamExpansions[i - 1], beamExpansions[i]);
genGroundTruth(beamExpansions, beamSize);
}
void testCrossEntropyOverBeam(bool useGpu) {
......@@ -72,12 +235,12 @@ void testCrossEntropyOverBeam(bool useGpu) {
config.layerConfig.set_type("cross_entropy_over_beam");
const size_t expansionCount = 3;
const size_t beamSize = 3;
const size_t beamSize = MAX_BEAM_SIZE;
vector<SingleBeamExpansion> beams;
genRandomBeamExpansion(expansionCount, beamSize, beams);
size_t seqNum = 0;
for (size_t i = 0; i < beams.size(); ++i) {
for (size_t i = 1; i < beams.size(); ++i) {
const SingleBeamExpansion& beam = beams[i];
// create scores for all the candidates
MatrixPtr candidateScorePtr =
......@@ -88,7 +251,7 @@ void testCrossEntropyOverBeam(bool useGpu) {
ostringstream paramName;
paramName << "candidate_scores_" << i;
if (beam.subSeqStartPos.size()) {
if (beam.subSeqStartPos.size() > 1) {
seqNum = beam.subSeqStartPos.size() - 1;
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
paramName.str(),
......@@ -118,10 +281,9 @@ void testCrossEntropyOverBeam(bool useGpu) {
// create the ground truth
paramName.clear();
paramName << "label_" << i;
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
paramName.str(),
beam.groundTruth,
beam.labelSeqStartPos});
config.inputDefs.push_back(
{INPUT_SELF_DEFINE_DATA, paramName.str(), beam.groundTruth});
config.layerConfig.add_inputs();
}
testLayerGrad(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册