Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a015ea8f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a015ea8f
编写于
10月 12, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine conv2d naive function
上级
b504a234
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
40 addition
and
53 deletion
+40
-53
python/paddle/v2/framework/tests/test_conv2d_op.py
python/paddle/v2/framework/tests/test_conv2d_op.py
+40
-53
未找到文件。
python/paddle/v2/framework/tests/test_conv2d_op.py
浏览文件 @
a015ea8f
...
...
@@ -3,30 +3,50 @@ import numpy as np
from
op_test
import
OpTest
def
conv2d_forward_naive
(
input
,
filter
,
group
,
conv_param
):
in_n
,
in_c
,
in_h
,
in_w
=
input
.
shape
out_c
,
f_c
,
f_h
,
f_w
=
filter
.
shape
assert
f_c
*
group
==
in_c
assert
np
.
mod
(
out_c
,
group
)
==
0
sub_out_c
=
out_c
/
group
stride
,
pad
=
conv_param
[
'stride'
],
conv_param
[
'pad'
]
out_h
=
1
+
(
in_h
+
2
*
pad
-
f_h
)
/
stride
out_w
=
1
+
(
in_w
+
2
*
pad
-
f_w
)
/
stride
out
=
np
.
zeros
((
in_n
,
out_c
,
out_h
,
out_w
))
input_pad
=
np
.
pad
(
input
,
((
0
,
),
(
0
,
),
(
pad
,
),
(
pad
,
)),
mode
=
'constant'
,
constant_values
=
0
)
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
for
g
in
range
(
group
):
input_pad_masked
=
input_pad
[:,
g
*
f_c
:(
g
+
1
)
*
f_c
,
i
*
stride
:
i
*
stride
+
f_h
,
j
*
stride
:
j
*
stride
+
f_w
]
f_sub
=
filter
[
g
*
sub_out_c
:(
g
+
1
)
*
sub_out_c
,
:,
:,
:]
for
k
in
range
(
sub_out_c
):
out
[:,
g
*
sub_out_c
+
k
,
i
,
j
]
=
np
.
sum
(
input_pad_masked
*
f_sub
[
k
,
:,
:,
:],
axis
=
(
1
,
2
,
3
))
return
out
class
TestConv2dOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_groups
()
self
.
op_type
=
"conv2d"
batch_size
=
2
input_channels
=
3
input_height
=
5
input_width
=
5
output_channels
=
6
filter_height
=
3
filter_width
=
3
stride
=
1
padding
=
0
output_height
=
(
input_height
-
filter_height
+
2
*
padding
)
/
stride
+
1
output_width
=
(
input_width
-
filter_width
+
2
*
padding
)
/
stride
+
1
input
=
np
.
random
.
random
((
batch_size
,
input_channels
,
input_height
,
input_width
)).
astype
(
"float32"
)
filter
=
np
.
random
.
random
(
(
output_channels
,
input_channels
/
self
.
groups
,
filter_height
,
filter_width
)).
astype
(
"float32"
)
output
=
np
.
ndarray
(
(
batch_size
,
output_channels
,
output_height
,
output_width
))
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
input_size
[
1
]
/
self
.
groups
filter_size
=
[
6
,
f_c
,
3
,
3
]
conv2d_param
=
{
'stride'
:
1
,
'pad'
:
0
}
input
=
np
.
random
.
random
(
input_size
).
astype
(
"float32"
)
filter
=
np
.
random
.
random
(
filter_size
).
astype
(
"float32"
)
output
=
conv2d_forward_naive
(
input
,
filter
,
self
.
groups
,
conv2d_param
)
self
.
inputs
=
{
'Input'
:
input
,
'Filter'
:
filter
}
self
.
attrs
=
{
...
...
@@ -34,39 +54,6 @@ class TestConv2dOp(OpTest):
'paddings'
:
[
0
,
0
],
'groups'
:
self
.
groups
}
output_group_channels
=
output_channels
/
self
.
groups
input_group_channels
=
input_channels
/
self
.
groups
for
batchid
in
xrange
(
batch_size
):
for
group
in
xrange
(
self
.
groups
):
for
outchannelid
in
range
(
group
*
output_group_channels
,
(
group
+
1
)
*
output_group_channels
):
for
rowid
in
xrange
(
output_height
):
for
colid
in
xrange
(
output_width
):
start_h
=
(
rowid
*
stride
)
-
padding
start_w
=
(
colid
*
stride
)
-
padding
output_value
=
0.0
for
inchannelid
in
range
(
group
*
input_group_channels
,
(
group
+
1
)
*
input_group_channels
):
for
frowid
in
xrange
(
filter_height
):
for
fcolid
in
xrange
(
filter_width
):
input_value
=
0.0
inrowid
=
start_h
+
frowid
incolid
=
start_w
+
fcolid
if
((
inrowid
>=
0
and
inrowid
<
input_height
)
and
(
incolid
>=
0
and
incolid
<
input_width
)):
input_value
=
input
[
batchid
][
inchannelid
][
inrowid
][
incolid
]
filter_value
=
filter
[
outchannelid
][
inchannelid
%
input_group_channels
][
frowid
][
fcolid
]
output_value
+=
input_value
*
filter_value
output
[
batchid
][
outchannelid
][
rowid
][
colid
]
=
output_value
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录