未验证 提交 9fec1618 编写于 作者: H hutuxian 提交者: GitHub

Ascend Framework Part3: Ascend Parser (#30391)

上级 e207fe63
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
import ascend_parser
class AscendIRParser(object):
def __init__(self):
self.graph_idx = 0
def _construct_input_map(self, input_varlist):
ret_map = {}
ge_in_operator = []
for id, var in enumerate(input_varlist):
if var.is_data: # input data
ge_input = core.GEOperatorFactory.create_operator(
var.name, "Data").set_attr_int32("index", id)
ret_map[var.name] = ge_input
ge_in_operator.append(ge_input)
else: # param, learning ...
ge_input = core.GEOperatorFactory.create_operator(var.name,
"Variable")
ge_input.update_output_desc("y",
core.GETensorDesc(
core.GEShape(var.shape),
core.GEFormat.FORMAT_ND,
core.GEDataType.DT_FLOAT))
ret_map[var.name] = ge_input
return ge_in_operator, ret_map
def parse_op(self, op):
if op.type in ascend_parser.registerd_op:
print("Op[%s] has been registered, begin to parse it" % (op.type))
op_parser = self.parser_factory.create_parse(
ascend_parser.registerd_op[op.type])
op_parser.apply(op)
else:
print("Op[%s] has not been registered, so we have to skip it" %
(op.type))
def _parse_program(self,
graph_name,
program,
input_varlist=[],
fetch_list=[]):
begin_graph_idx = self.graph_idx
ge_in_operator = []
ge_out_operator = []
self.var2geop = {}
block = program.global_block()
if len(block.ops) == 0:
print("There is no ops in program %s" % (graph_name))
return []
graph = core.GEGraph(graph_name)
ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)
self.parser_factory = ascend_parser.AscendParserFactory(graph,
self.var2geop)
for i, curop in list(enumerate(block.ops)):
self.parse_op(curop)
# Set fetch_var for GE
for e in fetch_list:
name = e
if not isinstance(e, str):
name = e.name
ge_out_operator.append(self.var2geop[name])
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
# if graph_name == "main":
# ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])
# Add ops that may be input of a graph, such as const.
for varname, geop in self.var2geop.items():
if varname.startswith("geinput"):
ge_in_operator.append(geop)
graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)
# Remove ops of origin program
op_num = len(block.ops)
for i in range(op_num - 1, -1, -1):
block._remove_op(i)
input_varlist = [var for var in input_varlist if var.is_data]
block.append_op(
type="ascend_trigger",
inputs={"FeedList": input_varlist},
outputs={"FetchList": fetch_list},
attrs={'graph_idx': self.graph_idx})
self.graph_idx += 1
return graph
def parse_program(self, startup_program, main_program, input_varlist,
fetch_list):
startup_graph = self._parse_program("startup", startup_program)
main_graph = self._parse_program("main", main_program, input_varlist,
fetch_list)
return startup_graph, main_graph
# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class AscendOptimizer(Optimizer):
def __init__(self, optimizer, fetch_list=[]):
self.inner_opt = optimizer
self.fetch_list = fetch_list
def __del__(self):
core.ge_finalize()
def _can_apply(self):
if not self.user_defined_strategy.ascend:
return False
# TODO(hutuxian): other check here
return True
def _disable_strategy(self, dist_strategy):
dist_strategy.ascend = False
dist_strategy.ascend_configs = {}
def _get_input_varlist(program):
ret_list = []
for var in program.list_vars():
if var.is_data or var.persistable:
ret_list.append(var)
return ret_list
def minimize(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
minimized = self.inner_opt.minimize(
loss, startup_program=startup_program)
self.ascend_instance = core.AscendInstance()
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config = {
"ge.exec.deviceId": "0",
"ge.graphRunMode": "1",
"ge.exec.precision_mode": "must_keep_origin_dtype"
}
core.ge_initialize(config)
# Init Session
self.ascend_instance.init_global_resources()
main_block = loss.block
self.parser = AscendIRParser()
input_varlist = _get_input_varlist(main_block.program)
startup_graph, main_graph = self.parser.parse_program(
startup_program, main_block.program, input_varlist, self.fetch_list)
self.ascend_instance.add_ascend_subgraph(0, startup_graph)
self.ascend_instance.add_ascend_subgraph(1, main_graph)
return minimized
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册