Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9fec1618
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9fec1618
编写于
1月 18, 2021
作者:
H
hutuxian
提交者:
GitHub
1月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Ascend Framework Part3: Ascend Parser (#30391)
上级
e207fe63
变更
2
展开全部
显示空白变更内容
内联
并排
Showing
2 changed file
with
768 addition
and
0 deletion
+768
-0
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
...tributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
+179
-0
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
...distributed/fleet/meta_optimizers/ascend/ascend_parser.py
+589
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
0 → 100644
浏览文件 @
9fec1618
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
Optimizer
import
paddle.fluid.core
as
core
import
numpy
as
np
import
ascend_parser
class
AscendIRParser
(
object
):
def
__init__
(
self
):
self
.
graph_idx
=
0
def
_construct_input_map
(
self
,
input_varlist
):
ret_map
=
{}
ge_in_operator
=
[]
for
id
,
var
in
enumerate
(
input_varlist
):
if
var
.
is_data
:
# input data
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Data"
).
set_attr_int32
(
"index"
,
id
)
ret_map
[
var
.
name
]
=
ge_input
ge_in_operator
.
append
(
ge_input
)
else
:
# param, learning ...
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Variable"
)
ge_input
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
var
.
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
))
ret_map
[
var
.
name
]
=
ge_input
return
ge_in_operator
,
ret_map
def
parse_op
(
self
,
op
):
if
op
.
type
in
ascend_parser
.
registerd_op
:
print
(
"Op[%s] has been registered, begin to parse it"
%
(
op
.
type
))
op_parser
=
self
.
parser_factory
.
create_parse
(
ascend_parser
.
registerd_op
[
op
.
type
])
op_parser
.
apply
(
op
)
else
:
print
(
"Op[%s] has not been registered, so we have to skip it"
%
(
op
.
type
))
def
_parse_program
(
self
,
graph_name
,
program
,
input_varlist
=
[],
fetch_list
=
[]):
begin_graph_idx
=
self
.
graph_idx
ge_in_operator
=
[]
ge_out_operator
=
[]
self
.
var2geop
=
{}
block
=
program
.
global_block
()
if
len
(
block
.
ops
)
==
0
:
print
(
"There is no ops in program %s"
%
(
graph_name
))
return
[]
graph
=
core
.
GEGraph
(
graph_name
)
ge_in_operator
,
self
.
var2geop
=
self
.
_construct_input_map
(
input_varlist
)
self
.
parser_factory
=
ascend_parser
.
AscendParserFactory
(
graph
,
self
.
var2geop
)
for
i
,
curop
in
list
(
enumerate
(
block
.
ops
)):
self
.
parse_op
(
curop
)
# Set fetch_var for GE
for
e
in
fetch_list
:
name
=
e
if
not
isinstance
(
e
,
str
):
name
=
e
.
name
ge_out_operator
.
append
(
self
.
var2geop
[
name
])
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
# if graph_name == "main":
# ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])
# Add ops that may be input of a graph, such as const.
for
varname
,
geop
in
self
.
var2geop
.
items
():
if
varname
.
startswith
(
"geinput"
):
ge_in_operator
.
append
(
geop
)
graph
.
set_inputs
(
ge_in_operator
).
set_outputs
(
ge_out_operator
)
# Remove ops of origin program
op_num
=
len
(
block
.
ops
)
for
i
in
range
(
op_num
-
1
,
-
1
,
-
1
):
block
.
_remove_op
(
i
)
input_varlist
=
[
var
for
var
in
input_varlist
if
var
.
is_data
]
block
.
append_op
(
type
=
"ascend_trigger"
,
inputs
=
{
"FeedList"
:
input_varlist
},
outputs
=
{
"FetchList"
:
fetch_list
},
attrs
=
{
'graph_idx'
:
self
.
graph_idx
})
self
.
graph_idx
+=
1
return
graph
def
parse_program
(
self
,
startup_program
,
main_program
,
input_varlist
,
fetch_list
):
startup_graph
=
self
.
_parse_program
(
"startup"
,
startup_program
)
main_graph
=
self
.
_parse_program
(
"main"
,
main_program
,
input_varlist
,
fetch_list
)
return
startup_graph
,
main_graph
# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class
AscendOptimizer
(
Optimizer
):
def
__init__
(
self
,
optimizer
,
fetch_list
=
[]):
self
.
inner_opt
=
optimizer
self
.
fetch_list
=
fetch_list
def
__del__
(
self
):
core
.
ge_finalize
()
def
_can_apply
(
self
):
if
not
self
.
user_defined_strategy
.
ascend
:
return
False
# TODO(hutuxian): other check here
return
True
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
ascend
=
False
dist_strategy
.
ascend_configs
=
{}
def
_get_input_varlist
(
program
):
ret_list
=
[]
for
var
in
program
.
list_vars
():
if
var
.
is_data
or
var
.
persistable
:
ret_list
.
append
(
var
)
return
ret_list
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
self
.
ascend_instance
=
core
.
AscendInstance
()
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config
=
{
"ge.exec.deviceId"
:
"0"
,
"ge.graphRunMode"
:
"1"
,
"ge.exec.precision_mode"
:
"must_keep_origin_dtype"
}
core
.
ge_initialize
(
config
)
# Init Session
self
.
ascend_instance
.
init_global_resources
()
main_block
=
loss
.
block
self
.
parser
=
AscendIRParser
()
input_varlist
=
_get_input_varlist
(
main_block
.
program
)
startup_graph
,
main_graph
=
self
.
parser
.
parse_program
(
startup_program
,
main_block
.
program
,
input_varlist
,
self
.
fetch_list
)
self
.
ascend_instance
.
add_ascend_subgraph
(
0
,
startup_graph
)
self
.
ascend_instance
.
add_ascend_subgraph
(
1
,
main_graph
)
return
minimized
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
0 → 100644
浏览文件 @
9fec1618
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录