提交 9db40b8e 编写于 作者: F fengjiayi

Complete sequence_padding GPU kernel

上级 c3de69a9
......@@ -282,6 +282,7 @@ op_library(unsqueeze_op DEPS reshape_op)
op_library(squeeze_op DEPS reshape_op)
op_library(extract_rows_op DEPS memory)
op_library(flatten_op DEPS reshape_op)
op_library(sequence_pad_op DEPS sequence_padding)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col)
......
......@@ -18,8 +18,6 @@ namespace paddle {
namespace operators {
namespace math {
enum CopyType { kSeqToPad, kPadToSeq };
template <typename T>
void CopyValidData(framework::Tensor* dst_tensor,
const framework::Tensor* src_tensor,
......@@ -67,7 +65,7 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& seq_tensor,
framework::LoDTensor* pad_tensor,
std::vector<T> pad_value = {0}, int pad_seq_len = -1,
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_lod = seq_tensor.lod();
......@@ -81,19 +79,21 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
step_width, layout);
PADDLE_ENFORCE(pad_value.size() == 1 ||
static_cast<int>(pad_value.size()) == step_width,
"The size of 'pad_value' can only be 1 or be equal to the "
PADDLE_ENFORCE(pad_value.numel() == 1 || pad_value.numel() == step_width,
"The numel of 'pad_value' can only be 1 or be equal to the "
"'step_width'.");
if (pad_value.size() == 1) {
pad_value = std::vector<T>(step_width, pad_value[0]);
}
// fill padding value
T* pad_data = pad_tensor->data<T>();
const T* pad_value_data = pad_value.data<T>();
if (pad_value.numel() == 1) {
for (int i = 0; i < pad_tensor->numel(); ++i) {
pad_data[i] = *pad_value_data;
}
} else {
for (int i = 0; i < pad_tensor->numel(); i += step_width) {
memcpy(pad_data + i, pad_value.data(), step_width * sizeof(T));
memcpy(pad_data + i, pad_value_data, step_width * sizeof(T));
}
}
CopyValidData<T>(pad_tensor, &seq_tensor, seq_offsets, pad_seq_len,
......@@ -117,7 +117,7 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout& layout = kBatchLengthWidth) {
const PadLayout layout = kBatchLengthWidth) {
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
const auto& seq_tensor_dims = seq_tensor->dims();
const auto& pad_tensor_dims = pad_tensor.dims();
......
......@@ -19,46 +19,32 @@ namespace paddle {
namespace operators {
namespace math {
template <typename T, bool Padding>
template <typename T, CopyType Type>
__global__ void SequencePaddingKernel(
T* pad_data, T* seq_data, const size_t* seq_offset, const size_t& seq_num,
const size_t& max_seq_len, const size_t& seq_width, bool norm_by_times,
const T& pad_value, const OutputLayout& output_layout) {
T* dst, const T* src, const T* pad_value, bool is_constant_pad,
const size_t* seq_offsets, const size_t& seq_num, const size_t& pad_seq_len,
const size_t& step_width, bool norm_by_len, const PadLayout& layout) {
size_t seq_idx = blockIdx.y;
size_t seq_start = seq_offset[seq_idx];
size_t seq_len = seq_offset[seq_idx + 1] - seq_start;
size_t seq_step_idx = blockIdx.x * blockDim.y + threadIdx.y;
size_t seq_data_offset = (seq_start + seq_step_idx) * seq_width;
size_t pad_data_offset = 0;
if (output_layout == kLengthBatchWidth) {
pad_data_offset = (seq_step_idx * seq_num + seq_idx) * seq_width;
} else {
pad_data_offset = (seq_idx * max_seq_len + seq_step_idx) * seq_width;
size_t seq_len = seq_offsets[seq_idx + 1] - seq_offsets[seq_idx];
size_t step_idx = blockIdx.x * blockDim.y + threadIdx.y;
size_t seq_data_offset = (seq_offsets[seq_idx] + step_idx) * step_width;
size_t pad_data_offset = layout == kBatchLengthWidth
? (seq_idx * pad_seq_len + step_idx) * step_width
: (step_idx * seq_num + seq_idx) * step_width;
T* dst_data = dst + (Type == kSeqToPad ? pad_data_offset : seq_data_offset);
const T* src_data =
src + (Type == kSeqToPad ? seq_data_offset : pad_data_offset);
if (step_idx < seq_len) {
float scale = norm_by_len ? (1.0f / static_cast<float>(seq_len)) : 1.0f;
for (size_t i = threadIdx.x; i < step_width; i += blockDim.x) {
dst_data[i] = scale * src_data[i];
}
if (seq_step_idx < seq_len) {
T scale = norm_by_times ? (1.0f / static_cast<T>(seq_len)) : 1.0f;
if (Padding) {
/* seq -> pad */
} else if (step_idx < pad_seq_len && Type == kSeqToPad) {
for (size_t i = threadIdx.x; i < seq_width; i += blockDim.x) {
pad_data[pad_data_offset + i] = scale * seq_data[seq_data_offset + i];
}
} else {
/* pad -> seq */
for (size_t i = threadIdx.x; i < seq_width; i += blockDim.x) {
seq_data[seq_data_offset + i] = scale * pad_data[pad_data_offset + i];
}
}
} else if (seq_step_idx < max_seq_len) {
if (Padding) {
/* seq -> pad */
for (size_t i = threadIdx.x; i < seq_width; i += blockDim.x) {
pad_data[pad_data_offset + i] = pad_value;
}
dst_data[i] = is_constant_pad ? pad_value[0] : pad_value[i];
}
}
}
......@@ -69,24 +55,26 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& context,
const framework::LoDTensor& seq_tensor,
framework::Tensor* pad_tensor,
T pad_value = static_cast<T>(0), bool norm_by_times = false,
size_t lod_level = 0,
OutputLayout output_layout = kBatchLengthWidth) {
CheckLoD(seq_tensor, lod_level);
auto& lod = seq_tensor.lod();
auto& seq_offset = framework::ToAbsOffset(lod)[lod_level];
auto seq_tensor_dims = seq_tensor.dims();
auto pad_tensor_dims = pad_tensor->dims();
int64_t max_seq_len = MaximumSequenceLength(seq_offset);
int64_t seq_num = seq_offset.size() - 1;
int64_t seq_width = seq_tensor.numel() / seq_tensor_dims[0];
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_lod = seq_tensor.lod();
const auto seq_offsets = framework::ToAbsOffset(seq_lod)[lod_level];
const auto& seq_tensor_dims = seq_tensor.dims();
const auto& pad_tensor_dims = pad_tensor->dims();
if (pad_seq_len == -1) {
pad_seq_len = MaximumSequenceLength(seq_offsets);
}
int step_width = seq_tensor.numel() / seq_tensor_dims[0];
int seq_num = seq_offset.size() - 1;
CheckDims(seq_tensor_dims, seq_offset.back(), pad_tensor_dims, max_seq_len,
seq_num, seq_width, output_layout);
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
step_width, layout);
PADDLE_ENFORCE(pad_value.numel() == 1 || pad_value.numel() == step_width,
"The numel of 'pad_value' can only be 1 or be equal to the "
"'step_width'.");
if (!norm_by_times && seq_num == 1UL) {
if (!norm_by_times && seq_num == 1UL && pad_seq_len == -1) {
TensorCopy(seq_tensor, context.GetPlace(), context, pad_tensor);
pad_tensor->Resize(pad_tensor_dims);
return;
......@@ -98,21 +86,22 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
* and at least 8 elements for each thread.
*/
size_t block_dim_x =
std::min(((((seq_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
std::min(((((step_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
size_t block_dim_y = kBlockSize / block_dim_x;
dim3 threads(block_dim_x, block_dim_y);
size_t grid_dim_x = (max_seq_len + block_dim_y - 1) / block_dim_y;
size_t grid_dim_x = (pad_seq_len + block_dim_y - 1) / block_dim_y;
size_t grid_dim_y = seq_num;
dim3 grid(grid_dim_x, grid_dim_y);
const T* seq_data = seq_tensor.data<T>();
T* pad_data = pad_tensor->data<T>();
const T* pad_value_data = pad_value.data<T>();
SequencePaddingKernel<T, 1><<<grid, threads, 0, context.stream()>>>(
pad_data, const_cast<T*>(seq_data),
seq_offset.CUDAData(context.GetPlace()), seq_num, max_seq_len,
seq_width, norm_by_times, pad_value, output_layout);
SequencePaddingKernel<T, kSeqToPad><<<grid, threads, 0, context.stream()>>>(
pad_data, seq_data, pad_value_data, pad_value.numel() == 1,
seq_offset.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
step_width, norm_by_times, layout);
}
};
......@@ -120,25 +109,23 @@ template <typename T>
class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
framework::LoDTensor* seq_tensor,
const framework::Tensor& pad_tensor,
bool norm_by_times = false, size_t lod_level = 0,
OutputLayout output_layout = kBatchLengthWidth) {
CheckLoD(*seq_tensor, lod_level);
auto& lod = seq_tensor->lod();
auto& seq_offset = framework::ToAbsOffset(lod)[lod_level];
auto seq_tensor_dims = seq_tensor->dims();
auto pad_tensor_dims = pad_tensor.dims();
int64_t max_seq_len = MaximumSequenceLength(seq_offset);
int64_t seq_num = seq_offset.size() - 1;
int64_t seq_width = seq_tensor->numel() / seq_tensor_dims[0];
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout layout = kBatchLengthWidth) {
auto seq_offsets = framework::ToAbsOffset(seq_tensor->lod())[lod_level];
const auto& seq_tensor_dims = seq_tensor->dims();
const auto& pad_tensor_dims = pad_tensor.dims();
if (pad_seq_len == -1) {
pad_seq_len = MaximumSequenceLength(seq_offsets);
}
int step_width = seq_tensor->numel() / seq_tensor_dims[0];
int seq_num = seq_offset.size() - 1;
CheckDims(seq_tensor_dims, seq_offset.back(), pad_tensor_dims, max_seq_len,
seq_num, seq_width, output_layout);
CheckDims(seq_tensor_dims, pad_tensor_dims, seq_offsets, pad_seq_len,
step_width, layout);
if (!norm_by_times && seq_num == 1UL) {
if (!norm_by_times && seq_num == 1UL && pad_seq_len == -1) {
TensorCopy(pad_tensor, context.GetPlace(), context, seq_tensor);
seq_tensor->Resize(seq_tensor_dims);
return;
......@@ -150,21 +137,21 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
* and at least 8 elements for each thread.
*/
size_t block_dim_x =
std::min(((((seq_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
std::min(((((step_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
size_t block_dim_y = kBlockSize / block_dim_x;
dim3 threads(block_dim_x, block_dim_y);
size_t grid_dim_x = (max_seq_len + block_dim_y - 1) / block_dim_y;
size_t grid_dim_x = (pad_seq_len + block_dim_y - 1) / block_dim_y;
size_t grid_dim_y = seq_num;
dim3 grid(grid_dim_x, grid_dim_y);
const T* pad_data = pad_tensor.data<T>();
T* seq_data = seq_tensor->data<T>();
SequencePaddingKernel<T, 0><<<grid, threads, 0, context.stream()>>>(
const_cast<T*>(pad_data), seq_data,
seq_offset.CUDAData(context.GetPlace()), seq_num, max_seq_len,
seq_width, norm_by_times, static_cast<T>(0), output_layout);
SequencePaddingKernel<T, kPadToSeq><<<grid, threads, 0, context.stream()>>>(
seq_data, pad_data, nullptr, false,
seq_offset.CUDAData(context.GetPlace()), seq_num, pad_seq_len,
step_width, norm_by_times, layout);
}
};
......
......@@ -25,6 +25,8 @@ namespace math {
enum PadLayout { kBatchLengthWidth = 0, kLengthBatchWidth };
enum CopyType { kSeqToPad, kPadToSeq };
inline static size_t MaximumSequenceLength(
const framework::Vector<size_t>& seq_offset) {
size_t seq_num = seq_offset.size() - 1;
......@@ -82,7 +84,7 @@ class PaddingLoDTensorFunctor {
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& seq_tensor,
framework::LoDTensor* pad_tensor,
std::vector<T> pad_value = {0}, int pad_seq_len = -1,
const framework::LoDTensor& pad_value, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout layout = kBatchLengthWidth);
};
......@@ -94,7 +96,7 @@ class UnpaddingLoDTensorFunctor {
const framework::LoDTensor& pad_tensor,
framework::LoDTensor* seq_tensor, int pad_seq_len = -1,
int lod_level = 0, bool norm_by_times = false,
const PadLayout& layout = kBatchLengthWidth);
const PadLayout layout = kBatchLengthWidth);
};
} // namespace math
......
......@@ -24,6 +24,8 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
paddle::framework::LoDTensor seq;
paddle::framework::LoDTensor seq_back;
paddle::framework::LoDTensor padding;
paddle::framework::LoDTensor cpu_pad_value;
paddle::framework::LoDTensor pad_value;
const size_t level = lod.size() - 1;
auto seq_dims =
......@@ -55,8 +57,17 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
padding.mutable_data<T>(padding_dims, *place);
T* pad_value_data =
cpu_pad_value.mutable_data<T>({1}, paddle::platform::CPUPlace());
*pad_value_data = static_cast<T>(0);
if (paddle::platform::is_cpu_place(*place)) {
pad_value = cpu_pad_value;
} else {
TensorCopySync(cpu_pad_value, *place, &pad_value);
}
paddle::operators::math::PaddingLoDTensorFunctor<DeviceContext, T>()(
*context, seq, &padding, {0}, -1, 0, false,
*context, seq, &padding, pad_value, -1, 0, false,
paddle::operators::math::kLengthBatchWidth);
seq_back.set_lod(lod);
......
......@@ -35,14 +35,11 @@ class SequencePadOpKernel : public framework::OpKernel<T> {
out->mutable_data<T>(ctx.GetPlace());
const auto* pad_value = ctx.Input<LoDTensor>("PadValue");
const T* pad_value_data = pad_value->data<T>();
std::vector<T> pad_value_vec(pad_value_data,
pad_value_data + pad_value->numel());
int padded_length = ctx.Attr<int>("padded_length");
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *x, out, pad_value_vec,
ctx.template device_context<DeviceContext>(), *x, out, *pad_value,
padded_length, 0, false, math::kBatchLengthWidth);
}
};
......
......@@ -161,10 +161,21 @@ class WarpCTCKernel : public framework::OpKernel<T> {
static_cast<int64_t>(num_sequences),
static_cast<int64_t>(sequence_width)});
warpctc_logits.mutable_data<T>(warpctc_logits_dims, ctx.GetPlace());
LoDTensor cpu_pad_value;
T* pad_value_data =
cpu_pad_value.mutable_data<T>({1}, platform::CPUPlace());
*pad_value_data = static_cast<T>(0);
LoDTensor pad_value;
if (platform::is_cpu_place(ctx.GetPlace())) {
pad_value = cpu_pad_value;
} else {
TensorCopySync(cpu_pad_value, ctx.GetPlace(), &pad_value);
}
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *logits, &warpctc_logits,
{static_cast<T>(0)}, -1, 0, false /* norm_by_times */,
math::kLengthBatchWidth);
pad_value, -1, 0, false /* norm_by_times */, math::kLengthBatchWidth);
const T* warpctc_logits_data = warpctc_logits.data<T>();
std::vector<int> warpctc_label_lengths(num_sequences);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册