提交 9d45aa4f 编写于 作者: Y Yu Yang

Merge branch 'develop' into feature/EvaluatorValue

......@@ -4,6 +4,7 @@ cache:
- $HOME/third_party
- $HOME/.ccache
- $HOME/.cache/pip
- $HOME/Library/Caches/Homebrew
sudo: required
dist: trusty
os:
......
......@@ -25,8 +25,7 @@ def main():
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=inference, label=label)
topology = paddle.layer.parse_network(cost)
parameters = paddle.parameters.create(topology)
parameters = paddle.parameters.create(cost)
for param_name in parameters.keys():
array = parameters.get(param_name)
array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape)
......@@ -46,7 +45,7 @@ def main():
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(train_data_reader=train_reader,
topology=topology,
topology=cost,
parameters=parameters,
event_handler=event_handler,
batch_size=32, # batch size should be refactor in Data reader
......
# Python Data Reader Design Doc
Paddle reads data from data reader during training. It will be passed into `paddle.train` as a parameter.
## Data Reader Interface
Data reader is a function with no parameter that creates a iterable (anything can be used in `for x in iterable`):
```
iterable = data_reader()
```
Element produced for the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of [supported type](http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types) (e.g., numpy 1d array of float32, int, list of int)
An example implementation for single item data reader:
```python
def data_reader_fake_image():
while True:
yield numpy.random.uniform(-1, 1, size=20*20)
```
An example implementation for multiple item data reader:
```python
def data_reader_fake_image_and_label():
while True:
yield numpy.random.uniform(-1, 1, size=20*20), False
```
## Usage
data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
```python
# two data layer is created:
image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...)
# ...
paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...)
```
## Data Reader Decorators
Data reader decorators takes a single or multiple data reader, returns a new data reader. It is similar to a [python decorator](https://wiki.python.org/moin/PythonDecorators), but it does not use `@` syntax.
Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples:
### Prefetch Data
Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data.
Use `paddle.reader.buffered` to prefetch data:
```python
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100)
```
`buffered_reader` will try to buffer (prefetch) `100` data entries.
### Compose Multiple Data Readers
For example, we want to use a source of real images (reusing mnist dataset), and a source of fake images as input for [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
We can do:
```python
def data_reader_fake_image():
while True:
yield numpy.random.uniform(-1, 1, size=20*20)
def data_reader_bool(t):
while True:
yield t
true_reader = lambda : data_reader_bool(True)
false_reader = lambda : data_reader_bool(False)
reader = paddle.reader.combine(paddle.dataset.mnist, data_reader_fake_image, true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist produces two items per data entry.
# And we don't care second item at this time.
paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
```
### Shuffle
Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader that buffers `n` data entries and shuffle them before a data entry is read.
Example:
```python
reader = paddle.reader.shuffle(paddle.dataset.mnist, 512)
```
## Q & A
### Why return only a single entry, but not a mini batch?
If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`.
Practically, always return a single entry make reusing existing data reader much easier (e.g., if existing data reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
### Why use a dictionary but not a list to provide mapping?
We decided to use dictionary (`{"image":0, "label":1}`) instead of list (`["image", "label"]`) is because that user can easily resue item (e.g., using `{"image_a":0, "image_b":0, "label":1}`) or skip item (e.g., using `{"image_a":0, "label":2}`).
### How to create custom data reader
```python
def image_reader(image_path, label_path):
f = open(image_path)
l = open(label_path)
images = numpy.fromfile(
f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
for i in xrange(n):
yield images[i, :], labels[i] # a single entry of data is created each time
f.close()
# use python lambda to change image_reader into a function with no parameters.
reader = lambda : image_reader("/path/to/image_file", "/path/to/label_file")
paddle.train(reader, {"image":0, "label":1}, ...)
```
### How is `paddle.train` implemented
An example implementation of paddle.train could be:
```python
def minibatch_decorater(reader, minibatch_size):
def ret():
r = reader()
buf = [r.next() for x in xrange(minibatch_size)]
while len(buf) > 0:
yield buf
buf = [r.next() for x in xrange(minibatch_size)]
return ret
def train(reader, mapping, batch_size, total_pass):
for pass_idx in range(total_pass):
for mini_batch in minibatch_decorater(reader): # this loop will never end in online learning.
do_forward_backward(mini_batch, mapping)
```
......@@ -1012,93 +1012,18 @@ static InitFunction __reg_type_auc_sum__([]() {
*
* The config file api is value_printer_evaluator.
*/
class ValuePrinter : public Evaluator {
class ValuePrinter : public NotGetableEvaluator {
public:
virtual void eval(const NeuralNetwork& nn) {
layerOutputs_.clear();
for (const std::string& name : config_.input_layers()) {
auto& argu = nn.getLayer(name)->getOutput();
layerOutputs_[name] = std::unordered_map<std::string, std::string>();
auto& out = layerOutputs_[name];
argu.getValueString(&out);
for (auto field : {"value", "id", "sequence pos", "sub-sequence pos"}) {
auto it = out.find(field);
if (it != out.end()) {
LOG(INFO) << "layer=" << name << " " << field << ":\n" << it->second;
}
}
nn.getLayer(name)->getOutput().printValueString(LOG(INFO),
"layer=" + name + " ");
}
}
virtual void updateSamplesNum(const std::vector<Argument>& arguments) {}
virtual real evalImp(std::vector<Argument>& arguments) { return 0; }
private:
std::unordered_map<std::string, std::unordered_map<std::string, std::string>>
layerOutputs_;
// Evaluator interface
public:
void getNames(std::vector<std::string>* names) {
for (auto layerIt = layerOutputs_.begin(); layerIt != layerOutputs_.end();
++layerIt) {
for (auto it = layerIt->second.begin(); it != layerIt->second.end();
++it) {
names->push_back(config_.name() + "." + layerIt->first + "." +
it->second);
}
}
}
real getValue(const std::string& name, Error* err) const {
(void)(name);
if (err != nullptr) {
*err = Error(
"ValuePrinter do not support getValue, use getValueString instead.");
}
return .0f;
}
std::string getValueStr(const std::string& name, Error* err) const {
std::vector<std::string> buffer;
str::split(name, '.', &buffer);
if (buffer.size() < 2) {
if (err != nullptr) {
*err = Error("No such key %s", name.c_str());
}
return "";
}
auto fieldName = buffer[buffer.size() - 1];
auto layerName = buffer[buffer.size() - 2];
auto layerIt = layerOutputs_.find(layerName);
if (layerIt == layerOutputs_.end()) {
if (err != nullptr) {
*err = Error("No such layer %s", layerName.c_str());
}
return "";
}
auto fieldIt = layerIt->second.find(fieldName);
if (fieldIt == layerIt->second.end()) {
if (err != nullptr) {
*err = Error("No such value field %s", fieldName.c_str());
}
return "";
}
return fieldIt->second;
}
std::string getType(const std::string& name, Error* err) const {
Error localErr;
if (err == nullptr) {
err = &localErr;
}
this->getValueStr(name, err);
if (!err->isOK()) {
return "";
}
return "value_printer";
}
};
REGISTER_EVALUATOR(value_printer, ValuePrinter);
......
......@@ -19,25 +19,17 @@ namespace paddle {
class PrintLayer : public Layer {
public:
explicit PrintLayer(const LayerConfig& config) : Layer(config) {}
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override {}
};
void PrintLayer::forward(PassType passType) {
void forward(PassType passType) override {
Layer::forward(passType);
for (size_t i = 0; i != inputLayers_.size(); ++i) {
auto& argu = getInput(i);
const std::string& name = inputLayers_[i]->getName();
std::unordered_map<std::string, std::string> out;
argu.getValueString(&out);
for (auto field : {"value", "id", "sequence pos", "sub-sequence pos"}) {
auto it = out.find(field);
if (it != out.end()) {
LOG(INFO) << "layer=" << name << " " << field << ":\n" << it->second;
}
getInput(i).printValueString(LOG(INFO),
"layer=" + inputLayers_[i]->getName() + " ");
}
}
}
void backward(const UpdateCallback& callback) override {}
};
REGISTER_LAYER(print, PrintLayer);
......
......@@ -168,13 +168,17 @@ void SequenceConcatLayer::backward(const UpdateCallback& callback) {
size_t rightNumIns = 0;
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
leftNumIns = starts1[seqId + 1] - starts1[seqId];
if (inputGrad1) {
inputGrad1->subMatrix(starts1[seqId], leftNumIns)
->add(*(outputGrad->subMatrix(offset, leftNumIns)));
}
offset += leftNumIns;
rightNumIns = starts2[seqId + 1] - starts2[seqId];
if (inputGrad2) {
inputGrad2->subMatrix(starts2[seqId], rightNumIns)
->add(*(outputGrad->subMatrix(offset, rightNumIns)));
}
offset += rightNumIns;
}
}
......
......@@ -628,6 +628,18 @@ void Argument::getValueString(
}
}
void Argument::printValueString(std::ostream& stream,
const std::string& prefix) const {
std::unordered_map<std::string, std::string> out;
getValueString(&out);
for (auto field : {"value", "id", "sequence pos", "sub-sequence pos"}) {
auto it = out.find(field);
if (it != out.end()) {
stream << prefix << field << ":\n" << it->second;
}
}
}
void Argument::subArgFrom(const Argument& input,
size_t offset,
size_t height,
......
......@@ -305,6 +305,15 @@ struct Argument {
* @param out [out]: the return values.
*/
void getValueString(std::unordered_map<std::string, std::string>* out) const;
/**
* @brief printValueString will print the argument's output in order of
* 'value', 'id', 'sequence pos', 'sub-sequence pos'.
* @param stream: Output stream
* @param prefix: line prefix for printing.
*/
void printValueString(std::ostream& stream,
const std::string& prefix = "") const;
};
} // namespace paddle
......@@ -24,6 +24,7 @@ add_custom_target(paddle_python ALL DEPENDS
${OUTPUT_DIR}/.timestamp)
add_subdirectory(paddle/trainer_config_helpers/tests)
add_subdirectory(paddle/reader/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
DESTINATION opt/paddle/share/wheels
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# It would be too lengthy to require our users to prefix decorators with `decorator`.
# For example, we want the following line
#
# r = paddle.reader.decorator.bufferd(paddle.reader.creator.text("hello.txt"))
#
# to be a shorter version:
#
# r = paddle.reader.buffered(paddle.reader.creator.text("hello.txt"))
from decorator import *
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['buffered']
from Queue import Queue
from threading import Thread
def buffered(reader, size):
"""Creates a buffered data reader.
The buffered data reader will read and save data entries into a buffer.
Reading from the buffered data reader will proceed as long as the buffer
is not empty.
Args:
reader: the data reader to read from.
size: max buffer size.
Returns:
The buffered data reader.
"""
class EndSignal():
pass
end = EndSignal()
def read_worker(r, q):
for d in r:
q.put(d)
q.put(end)
def create_reader():
r = reader()
q = Queue(maxsize=size)
t = Thread(
target=read_worker, args=(
r,
q, ))
t.daemon = True
t.start()
e = q.get()
while e != end:
yield e
e = q.get()
return create_reader
add_test(NAME reader_decorator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/decorator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.reader
import time
def reader_10(dur):
for i in range(10):
time.sleep(dur)
yield i
class TestBuffered(unittest.TestCase):
def test_read(self):
for size in range(20):
b = paddle.reader.buffered(lambda: reader_10(0), size)
c = 0
for i in b():
self.assertEqual(i, c)
c += 1
self.assertEqual(c, 10)
def test_buffering(self):
# read have 30ms delay.
b = paddle.reader.buffered(lambda: reader_10(0.03), 10)
last_time = time.time()
for idx, i in enumerate(b()):
elapsed_time = time.time() - last_time
if i == 0:
time.sleep(0.3)
else:
# read time should be short, meaning already buffered.
self.assertLess(elapsed_time, 0.01)
last_time = time.time()
if __name__ == '__main__':
unittest.main()
import numpy as np
from paddle.proto.ModelConfig_pb2 import ModelConfig
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from . import layer as v2_layer
import py_paddle.swig_paddle as api
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
__all__ = ['Parameters', 'create']
def create(*topologies):
def create(*layers):
"""
Create parameter pool by topologies.
Create parameter pool by layers. In paddle, layer can be represent a
model config.
:param topologies:
:param layers:
:return:
"""
pool = Parameters()
for topo in topologies:
if not isinstance(topo, ModelConfig):
for layer in layers:
if not isinstance(layer, v2_layer.Layer):
raise ValueError(
'create must pass a topologies which type is ModelConfig')
for param in topo.parameters:
'create must pass a topologies which type is paddle.layer.Layer')
model_config = v2_layer.parse_network(*layers)
pool = Parameters()
for param in model_config.parameters:
pool.__append_config__(param)
return pool
......
import collections
import py_paddle.swig_paddle as api
from paddle.proto.ModelConfig_pb2 import ModelConfig
from py_paddle import DataProviderConverter
from paddle.proto.ModelConfig_pb2 import ModelConfig
from . import event as v2_event
from . import layer as v2_layer
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
from . import event as v2_event
__all__ = ['ITrainer', 'SGD']
......@@ -73,7 +74,7 @@ class SGD(ITrainer):
Training method. Will train num_passes of input data.
:param train_data_reader:
:param topology: Network Topology, a protobuf ModelConfig message.
:param topology: Network Topology, use one or more Layers to represent it.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param test_data_reader:
......@@ -87,6 +88,8 @@ class SGD(ITrainer):
if event_handler is None:
event_handler = default_event_handler
topology = v2_layer.parse_network(topology)
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册